2017年秋季学期新版新人教版九年级数学上册第二十五章、概率初步导学案

合集下载

九年级数学上册第25章概率初步数学活动教案(新版)新人教版

九年级数学上册第25章概率初步数学活动教案(新版)新人教版

概率初步数学活动一、活动导入1.活动课题:在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在哪个区域的可能性最大?今天我们就来做试验估计豆子落在哪个区域的可能性最大.(板书课题)2.活动目标:(1)通过试验估计几何概率.(2)进一步感受偶然事件中蕴含确定的规律性.3.活动重、难点:重点:两个试验活动.难点:保证试验条件相同.二、活动过程活动1 用频率估计几何概率1.活动指导:(1)活动内容:教材第150页活动1.(2)活动时间:10分钟.(3)活动方法:完成活动参考提纲.(4)活动参考提纲:①活动1中的几何图形适用于我们做试验吗?图中各圆最合适的半径分别为多少?豆子可以改成什么?适用.2cm,4cm,6cm.豆子可以改成花生米.②如果把三个圆的半径分别定为20cm、 40cm、60cm,请重新制作圆盘,完成试验.③分别估计豆子落在A,B,C区域的概率.A :59B :13C :192.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:了解学生是否能设计替代试验.②差异指导:指导学生设计替代试验.(2)生助生:同桌之间互相交流.4.强化:(1)一般地,如果在一次试验中,结果落在区域D 中每一点都是等可能的,用A 表示“试验结果落在区域D 中的一个小区域M 中”这个事件,那么事件A 发生的概率是()的面积的面积M P A D =. (2)设计替代试验应注意的事项.活动2 抽到黑桃的概率跟抽取的顺序的关系1.活动指导:(1)活动内容:教材第150页活动2.(2)活动时间:5分钟.(3)活动方法:完成活动参考提纲.(4)活动参考提纲:①全班同学3人一组,分别试验,如果扑克牌不足可选择其他替代试验,把各组的试验次数与第1位、第2位、第3位同学抽取黑桃的次数分别相加,并计算频率填入下表:②他们抽到黑桃的概率跟抽取的顺序有关系吗?无关③分别求出3位同学抽到黑桃的概率,跟试验的结果一致吗?一致2.自学:学生参考活动指导进行活动性学习.3.助学:(1)师助生:①明了学情:看学生是否能顺利完成试验,关注学生处理试验道具不足和试验次数不足的问题.②差异指导:指导学生分组试验以及试验数据的处理.(2)生助生:同桌之间互相交流.4.强化:抽到黑桃的概率跟抽取的顺序无关.三、评价1.学生的自我评价(围绕三维目标):这节课你有什么收获?有哪些不足?2.教师对学生的评价:(1)表现性评价:从学生动手操作能力与参与活动的积极性等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过两个数学活动,让学生感受概率的真实性,活动一是一个几何问题,根据图形引导学生知道用落在相应区域的豆子数与整个区域的豆子数的比估计概率,进而与相应区域的面积对比,发现区域面积与豆子落在该区域的概率的关系.活动二是用频率估计概率的方法验证现实生活中的问题,了解一般情况下,抽取的签与抽签顺序无关这个事实.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是(B)A.落在菱形内B.落在圆内C.落在正六边形内D.一样大第1题图第2题图第3题图2.(10分)射击打靶训练时,靶子(如图)是由5个多轮的同心圆构成,那么可能性最小的是射中(C)A.第7环B.第6环C.第10环D.第9环3.(10分)如图所示的平面图是4×4方格,若向方格面掷飞镖,飞镖落在黑色区域的概率为14. 4.(10分)如图所示,一个大正方形地面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都落在大正方形地面上.求跳伞运动员一次跳伞落在草坪上的概率.解:因为正方形草坪S S =12,所以P (跳伞运动员一次跳伞落在草坪上)=12. 5.(20分)一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有多少个?解:设口袋中的白球大约有x 个,由题意可得x x =+606100.解得x =9. 所以小明估计口袋中的白球大约有9个.二、综合应用(20分)6.(20分)如图,长方形内有一不规则区域,现在玩投掷游戏,如果随机掷中长方形的300次中,有150次是落在不规则图形内.(1)你能估计出掷中不规则图形的概率吗?(2)若该长方形的面积为150平方米,试估计不规则图形的面积.解:(1)掷中不规则图形的概率为12.(2)S =⨯=150********(平方米) 三、拓展延伸(20分)7.(20分)如图,某商标是由边长均为2的正三角形、正方形、正六边形金属薄片镶嵌而成的图案.(1)求这个镶嵌图案中一个正三角形的面积;(2)如果在这个镶嵌图案中随机确定一个点O ,那么点O落在镶嵌图案中的正方形区域的概率为多少?(结果保留两位小数)解:(1)正三角形S =⨯=122(2)正方形六边形S ,S =⨯===2246所以正方形总正三角形正六边形S S S S =++=+1011244所以P (点O 落在镶嵌图案中的正方形区域)=正方形总S .S =≈11054.。

九年级数学上册第二十五章概率初步概率导学案新人教

九年级数学上册第二十五章概率初步概率导学案新人教

25.1.2 概率一、自主学习1.认真自学课本第130页至第131页内容,并完成以下的填空:(1)概率的定义:记为:(2)课本两个试验有什么共同的特点?每一次试验中,每一次试验中,,2、从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有种?抽到1的概率为多少?即:概率是P(抽到1号)= 3、掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?即: P(出现点数是1)=归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为注意:1.概率从数量上刻画了一个随机事件发生的可能性的大小. 2 .当A是必然发生的事件时,P(A)=当A是不可能发生的事件时,P(A)=归纳:事件发生的可能性,则它的概率越接近;反之,事件发生的可能性越,则它的概率越接近。

总之0≤P(A)≤1二、合作探究掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为3,(2)点数为偶数,(3)点数大于1小于5三、展示交流1、如图是一个转盘,转盘分成6个相同的三角形,颜色分为红、绿、黄三种颜色。

指针的位置固定,转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置(指针指向两个三角形的交线时,当作指向右边的三角形)。

求下列事件的概率:1)指针指向红色 .2) 指针指向黄色或绿色 .3)指针不指向绿色.2、课本133页练习。

在具体情境中了解概率意义四、随堂检测1.小冲、小明、小芳在一起做游戏时,需要确定游戏的先后顺序.•他们约定用“石头、剪子、布”猜拳的方式确定.在1•个回合中小芳•出“布”的概率是______.2.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏.游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,•其余商标牌的背面是一张哭脸.若翻到哭脸,就不得奖.参与这个游戏的观众有3•次翻牌机会(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,他第三次翻牌获奖的概率是().(A)14(B)15(C)16(D)3203.如图,对角线将一个长宽不等的矩形分成4个区域,分别涂上红、黄、蓝、白四色,中间装有匀速转动的指针,则指针在每个区域内的概率是()A.一样大B.蓝白区域大C.红黄区域大D.由指针转动的速度确定4好落在灰色地面上的概率.5.“抢椅子”游戏中5人争抢去坐4张椅子,那么每个人可能坐到椅子的概率是()A.15B.19C.14D.456.一套未入住的80㎡的住宅,其中卧室①12㎡,卧室②14㎡,卧室③18㎡,卫生间8㎡,厨房8㎡,其余为客厅,一只小猫在室内地面上任意走动,那么这只小猫在各个地方的概率是多少?中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.在△ABC 中,AB=3,BC=4,AC=2,D ,E ,F 分别为AB ,BC ,AC中点,连接DF ,FE ,则四边形DBEF 的周长是( )A .5B .7C .9D .11【答案】B【解析】试题解析:∵D 、E 、F 分别为AB 、BC 、AC 中点,∴DF=12BC=2,DF ∥BC ,EF=12AB=32,EF ∥AB ,∴四边形DBEF 为平行四边形,∴四边形DBEF 的周长=2(DF+EF )=2×(2+32)=1.故选B . 2.关于x 的不等式21x a --的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-【答案】D 【解析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-,所以112a -=-, 解得1a =-; 故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【解析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:12x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程. 4.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A .B .C .D .【答案】D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.6.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°【答案】C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD 中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.7.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002 x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.8.如图,正六边形ABCDEF内接于O,M为EF的中点,连接DM,若O的半径为2,则MD的长度为()ABC.2 D.1 【答案】A【解析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【详解】连接OM、OD、OF,∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠∴==故选A.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.9.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.19【答案】D【解析】试题分析:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=kx(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣36【答案】B【解析】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x 轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.二、填空题(本题包括8个小题)11.如图,点,A B是反比例函数(0,0)ky k xx=>>图像上的两点(点A在点B左侧),过点A作AD x⊥轴于点D,交OB于点E,延长AB交x轴于点C,已知2125OABADCSS∆∆=,145OAES∆=,则k的值为__________.【答案】203【解析】过点B 作BF ⊥OC 于点F ,易证S △OAE =S 四边形DEBF =145,S △OAB =S 四边形DABF ,因为2125OAB ADC S S ∆∆=,所以2125DABF ADC S S ∆=四边形,425BCF ADCS S ∆∆=,又因为AD ∥BF ,所以S △BCF ∽S △ACD ,可得BF:AD=2:5,因为S △OAD =S △OBF ,所以12×OD×AD =12×OF×BF ,即BF:AD=2:5= OD :OF ,易证:S △OED ∽S △OBF ,S △OED :S △OBF =4:25,S △OED :S 四边形EDFB =4:21,所以S △OED =815 ,S △OBF = S △OED + S 四边形EDFB =815+145=103, 即可得解:k=2 S △OBF =203. 【详解】解:过点B 作BF ⊥OC 于点F ,由反比例函数的比例系数|k|的意义可知:S △OAD =S △OBF ,∴S △OAD - S △OED =S △OBF 一S △OED ,即S △OAE =S 四边形DEBF =145,S △OA B =S 四边形DABF,∵2125OAB ADC S S ∆∆=, ∴2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=,∵AD ∥BF ∴S △BCF ∽S △ACD ,又∵425BCFADCSS∆∆=,∴BF:AD=2:5,∵S△OAD=S△OBF,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=20 3.故答案为20 3.【点睛】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.12.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.【答案】1095【解析】由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.【详解】详解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴BMAM=AMAE,即513=13AE,∴AE=1695,∴DE=AE﹣AD=1695﹣12=1095.故答案为1095.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA 是解题的关键.13.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)【答案】(2n,1)【解析】试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),∴点A4n+1(2n,1).14.在数轴上与2 所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣1【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.15.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.【答案】1 【解析】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.16.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果P运动一周时,点Q运动的总路程为__________.【答案】4【解析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C 时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A 时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【详解】在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,=①当点P从O→B时,如图1、图2所示,点Q②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴AQ=2AC,又∵∴AQ=2∴OQ=2﹣1=1,则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2④当点P从A→O时,点Q运动的路程为AO=1,∴点Q故答案为4.考点:解直角三角形17.分解因式6xy2-9x2y-y3 = _____________.【答案】-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.18.如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心.大于12MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是________.【答案】a+b=1.【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.三、解答题(本题包括8个小题)19.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.【答案】1.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】原式=(+)•=•=2(x+2)=2x+4,当x =﹣时,原式=2×(﹣)+4=﹣1+4=1.【点睛】本题考查的知识点是分式的化简求值,解题的关键是熟练的掌握分式的化简求值.20.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?【答案】(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)∵被调查总人数为m=10÷10%=100人,∴用支付宝人数所占百分比n%=30100%30%100⨯=,∴m=100,n=35.(2)网购人数为100×15%=15人,微信人数所占百分比为40100%40%100⨯=,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.21.某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【答案】(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y与x之间的函数关系式为y=kx+b,根据题意得:1205014030k bk b+=⎧⎨+=⎩,解得:1170kb=-⎧⎨=⎩,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴当x=130时,W 有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.22.先化简22442x xx x-+-÷(x-4x),然后从正整数作为x的值代入求值.【答案】当x=-1时,原式=1=11+2-;当x=1时,原式=11=1+23【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.【详解】原式=22(2)4(2)x xx x x--÷-=()2(2)•(2)2(2)x xx x x x--+-=12x+∵xx为整数,∴若使分式有意义,x只能取-1和1当x=1时,原式=13.或:当x=-1时,原式=123.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【答案】(1)见解析;(1)见解析.【解析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEBAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.24.在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF 的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.【答案】(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34DF DMDE DN==,∵∠EDF=90°,∴tan∠DEF=34DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t+,13t),代入直线AD 的解析式y=﹣34x+6得:t=7517;综上所述,当AD 将△DEF 分成的两部分的面积之比为1:2时,t 的值为7541或7517. 考点:四边形综合题.25.先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 【答案】-1【解析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】解:2211a a a a ⎛⎫-÷⎪--⎝⎭(1)(1)12a a a a a ---=•-1(1)12a a a a a -+-=•- 2a=, 当2a =-时,原式212-==-. 【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.26.如果a 2+2a-1=0,求代数式24()2a a a a -⋅-的值.【答案】1【解析】221a a +=2224422a a a a a a a a -⎛⎫-⋅= ⎪--⎝⎭=()()()()2222222a a a a a a a a a +-=+=+-=1.故答案为1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.5 【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AGBF BE=,又∵AE=BE,∴AE2=AG•BF=2,∴,∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.2.据中国电子商务研究中心()发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.81159.5610⨯元B.1011.595610⨯元C.111.1595610⨯元D.81.1595610⨯元【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,⊙O的直径AB垂直于弦CD,垂足为E.若60B∠=︒,AC=3,则CD的长为A.6 B.CD.3 【答案】D【解析】解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB 垂直于弦CD,60B∠=︒,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.4.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.1 【答案】C【解析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.5.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【答案】D【解析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.6.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4【答案】C【解析】试题解析:∵x=-2是关于x 的一元二次方程22302x ax a +-=的一个根,∴(-2)2+32a×(-2)-a 2=0,即a 2+3a-2=0, 整理,得(a+2)(a-1)=0,解得 a 1=-2,a 2=1.即a 的值是1或-2.故选A .点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.7.若点A (2,1y ),B (-3,2y ),C (-1,3y )三点在抛物线24y x x m =--的图象上,则1y 、2y 、3y 的大小关系是( ) A .123y y y >>B .213y y y >>C .231y y y >>D .312y y y >> 【答案】C【解析】首先求出二次函数24y x x m =--的图象的对称轴x=2ba-=2,且由a=1>0,可知其开口向上,然后由A (2,1y )中x=2,知1y 最小,再由B (-3,2y ),C (-1,3y )都在对称轴的左侧,而在对称轴的左侧,y 随x 得增大而减小,所以23y y >.总结可得231y y y >>. 故选C .点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数20y ax bx c a =++≠()的图象性质.8.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个 【答案】C【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a <0;抛物线的对称轴为x=-2ba=1,则b=-2a ,2a+b=0,b=-2a ,故b >0;抛物线交y 轴于正半轴,得:c >0.∴abc <0, ①正确;2a+b=0,②正确;由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;观察图象得当x=-2时,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a 与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.9.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.710【答案】D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:710.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.函数y=ax2+1与ayx=(a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .【答案】B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);ayx=位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);ayx=位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.二、填空题(本题包括8个小题)11.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线21y x k2=+与扇形OAB的边界总有两个公共点,则实数k的取值范围是.【答案】-2<k <12。

九年级数学上册第二十五章概率初步25.1.2概率导学案2(新版)新人教版

九年级数学上册第二十五章概率初步25.1.2概率导学案2(新版)新人教版

25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=m n 解决一些实际问题.重点:运用P(A)=m n解决实际问题. 难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟)自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15. 2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12. 点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=m n”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A .两枚硬币全部正面朝上;B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D ) A .116 B .516 C .38 D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D ) A .536 B .38 C .1536 D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__. 4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13. 学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)。

九年级数学上册 第25章 概率初步 精品导学案 新人教版

九年级数学上册 第25章 概率初步 精品导学案 新人教版

概率初步课题:第二十五章概率初步小结序号学习目标:1、知识和技能:1)。

.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。

2)。

用所学的概率知识去解决某些现实问题。

2、过程和方法:1)初步形成评价与反思的意识。

2)通过举例,进一步发展学生随机观念和统计观念。

3)体验解决问题策略的多样性,发展实践能力和创新精神。

3、情感、态度、价值观:1)积极参与回顾与思考的过程,对数学有好奇心和求知欲。

2)形成实事求是的态度。

学习重点:引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图。

学习难点:结合事例,理解实验频率与理论概率的关系。

导学过程一、课前预习:阅读教材152页有关内容,思考下列问题:1、将本章知识结构图绘制的详细一些。

2.独立思考,回答“回顾与思考“中提出的问题。

二、课堂导学:1、导入同学们,学完本章后,初中阶段统计与概率部分就全部学完了,你能总结出在本章的学习中你学到的知识吗?2、出示任务、自主学习1)。

.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。

2)。

用所学的概率知识去解决某些现实问题。

3、合作探究阅读教材152页有关内容,回答下列问题:1.将本章知识结构图绘制的详细一些。

2.独立思考,回答“回顾与思考“中提出的问题。

三、展示反馈完成《问题导学》140—142页自主测评1---5题四、学习小结:本节课我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概率知识的结果框架图,在自我回忆和总结中找出实验频率与理论概率的关系。

五、达标检测:1.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛 B.小麦的亩产量一定为1000公斤C.在仅装有5个红球的袋中摸出1球,是红球 D.农历十五的晚上一定能看到圆月2.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性大3.抛掷两枚各面分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件:;写出这个实验中的一个必然事件:.4.如图4,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是.5.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应设个白球,个红球,个黄球.6.某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球的袋中摸出1个球,再从装有编号为1、2、3的三个红球的袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你认为这种方法公平吗?请说明理由.7。

初中数学九年级上册《25.10 概率初步》导学案

初中数学九年级上册《25.10 概率初步》导学案

第二十五章概率初步年级:九年级内容:第二十五章章概率初步复习(一)课型: 复习课学习目标1、立足教材,打好基础,查漏补缺,系统复习,熟练掌握本部分的基本知识、基本方法和基本技能.2、让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.3、通过学生自己归纳总结本部分内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.学习重点:将本部分的知识有机结合,强化训练学生综合运用数学知识的能力,.学习难点:把数学知识转化为自身素质. 增强用数学的意识.教材分析一、知识脉络二、基础知识1必然事件。

2不能事件.3确定事件.4不确定事件(随机事件)5表示,叫做该事件的概率.6概率的理论计算有:①;②三、知识应用例1、任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1、2、3、4、5、6),“6”朝上的概率是多少?【分析】考虑两个方面,一是所有可能出现的结果有几种,二是“6”朝上的结果有几种。

【讨论解决】1列树状图求出概率P=( )例2、 两人要去某风景区游玩, 每天某一时段开往该风景区有三辆车(票价相同),但是他们不知道这些车的舒适程度, 也不知道车子开过来的顺序. 两人采取了不同的乘车方案:甲无论如何总是上开来的第一辆车,而乙则是先观察后上车, 当第一辆车开来时 他不上车, 而是仔细观察车的舒适度, 如果第二辆车的状况比第一辆车好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题: ⑴三辆车按出现的先后顺序工有哪几种不同的可能? ⑵ 你认为甲、乙两人采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么? 【分析】由于各车的舒适度不同,而且开过来的顺序也事先未知,因此不同的乘车方案使自己乘坐上等车的可能性不一样.我们只要将三种不同的车开来的可能性顺序全部列出来,再对照甲乙二人不同的乘车方案,就可以得出两人乘坐上等车的可能性. 【讨论解决】⑴三辆车开来的先后顺序有 种可能,分别是:( )、( )、( )、( )、( )、( );⑵由于不考率其他因素,三辆车6种顺序出现的可能性相同.甲、乙二人分别乘坐上等车的概率,用列表法可得.于是不难看出,甲乘上等车的概率是(31);而乙乘上等车的概率是(21). ∴乙采取的方案乘坐上等车的可能性大.【说明】解决本题的关键是通过 的方法将三辆车开来的顺序列出来,再根据甲、乙两种不同的乘车方案求出他们乘坐上等车的概率.另外本题也可以通过画数状图来求解.例3、 某电脑公司现有A 、B 、C 三种型号的甲品牌电脑和D 、E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.⑴写出所有选购方案(利用树状图或列表方法表示);⑵ 如果⑴中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?⑶ 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台. 【分析】本题实际上是要在A ,B ,C 三种型号的甲品牌电脑中选择一种,再从D ,顺序 甲 乙E 两种型号的乙品牌电脑中选择一种,我们可以在所有选购方案中按照题意要求就可以确定符合条件的方案.【解】⑴ 树状图如下:或列表如下 :有6种可能结果: .⑵ 因为选中A 型号电脑有 种方案,即 ,所以A 型号电脑被选中的概率是(31) .(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得(要求学生写出过程)【分析】本题通过画树状图确定了所有选购方案后,再运用方程组对所有的方案进行取舍,从而确定符合题意的方案,题目设计巧妙,各问之间环环相扣,并且渗透了方程思想,是一道不可多得的好题.四、问题式小结:1、本章包括哪些内容?2、应用本章知识解决哪些问题? 五、【目标检测】(1) 从一副没有“大小王”的扑克牌中随机地抽取一张,点数为“5”的概率是(2) 在( )a 2( )4a( )4中,任意填上“+”或“—”共得到 种不同的代数式,能构成完全平方式的概率是(3)布袋中有红黄蓝三种颜色的球各一个,A、从中先摸出一个球,记下他的颜色,将他放回布袋,搅匀,再摸出一个球,记下他的颜色,求得到的两颜色中有一红一黄的概率;B、如果摸出第一个球之后不放回布袋,再摸第二个球,这时得到的两个颜色中有一红一黄的概率是多少?数学选择题解题技巧1、排除法。

九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】

九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】

概率初步一、内容及内容解析1.内容用试验估计“豆子落在区域C”“每个同学抽到黑桃”的概率.2.内容解析活动1中“豆子落在区域C”的概率可以用几何概型求得.几何概型是另一种等可能概型,它与古典概型的区别在于试验结果是无限个.只要把半径为6的圆内部所有点作为试验的全部结果,区域C内的所有点作为事件W的结果,则根据公式P(W)=构成事件W的区域面积/试验的全部结果所构成的区域面积,可求得相应事件的概率.因此,“豆子落在区域C的概率”等于半径为2的圆的面积与半径为6的圆的面积的比,但学生没有学过此概率模型.活动2“每个同学抽到黑桃”试验,是想通过频率估计概率的方法,去验证现实生活中常用的抓阄的方法是否公平.其实,把3个人都抽完一次签作为一次试验,通过古典概型可计算每个同学抽到黑桃的概率是相等的,但这里列基本事件对学生来说有点难度.由于这两种试验发生的概率,以学生现有的知识不容易通过计算获得,因此只能通过用频率估计概率.通过这两个数学活动,可以帮助学生进一步理解概率的意义,拓宽对概率的认识,并且进一步体会到频率估计概率方法应用的广泛性以及概率在实际生活中的作用.基于以上分析,确定本课的教学重点是:估计活动1与活动2的概率,体会频率估计概率应用的广泛性以及在实际生活中的作用.二、目标和目标解析1.目标(1)通过试验,获得“豆子落在区域C”“每个同学抽到黑桃”的概率.(2)通过试验,体会频率估计概率应用的广泛性以及在实际生活中的作用.2.目标解析达成目标(1)的标志是:学生分组多次重复试验,统计每次试验落在A,B,C三个区域中豆子数的比,并分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法.学生通过分组进行多次重复试验,统计每次试验抽中的人,最终计算每个人抽中的频率,估计出“每个同学抽到黑桃”的概率.达成目标(2)的标志是:学生初步发现区域面积与概率的关系,并认识到用频率估计概率的方法的应用范围更广,更具有一般性,同时体会到用概率帮助解释如“抓阄是否公平”等生活实际中的疑问.三、教学问题诊断这两个活动都没有原始数据,需要学生自己首先从事收集数据的活动,然后对数据进行处理,最后运用统计知识进行分析数据,这样的活动都具有较强的实践性和综合性.因此,需要教师对如何试验,进行哪些操作给以帮助和指导.对于分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法,学生没有相关的知识与经验,此时需要教师设计问题予以启发.基于以上分析,确定本节课的教学重点是:通过试验获得“豆子落在区域C”“每个同学抽到黑桃”的概率.四、教学过程设计1.完成活动1的试验问题1 在如图所示的图形中随机撒一把豆子,计算落在A,B,C三个区域中豆子数的比.多次重复这个试验,你能否发现上述比与A,B,C三个区域的面积有何关系?师生活动:学生观察思考,教师先指导学生记录试验结果,然后教师组织学生分组进行试验.每组试验20次,并将各组的试验结果统计在一起.然后提问:(1)对照多次试验的结果,落在A,B,C三个区域中豆子数的比是否具有一定的稳定性?(2)上述比与A,B,C三个区域的面积有何关系?(3)这表明落在A,B,C三个区域中豆子数的多少与什么有关?设计意图:让学生亲自动手试验,获得真实数据,并对数据收集、整理、分析,发现落在A,B,C三个区域中豆子数的多少与每个区域的面积大小有关.体会随机事件的随机性与稳定性特征.问题2 如果将“豆子落在区域C”记作事件W,请估计事件W的概率.师生活动:教师提出问题,学生思考.根据频率估计概率,落在区域C中的豆子数与落在A,B,C三个区域中豆子总数之比,可以作为“豆子落在区域C”的概率.设计意图:通过频率估计几何概型试验中的概率,使学生体会频率估计概率是求概率的一般方法.2.完成活动2的试验问题3 3张扑克牌中只有1张黑桃,3为同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?如何得到这个概率?师生活动:教师出示问题,然后组织学生进行讨论,最后发现用列举法求比较困难,于是选择用频率估计概率的方法.教师组织学生分组试验,每组记录好试验的次数,以及每次试验抽中黑桃的人数,每组试验20次,计算20次试验中,每个人抽中黑桃的次数,并计算频率,最后教师将全班同学试验次数,每个人抽中黑桃的次数进行汇总,并计算随着试验次数增加时,每个人抽中黑桃的频率,最后全班共同分析,随着试验次数的增加,每个人的频率稳定在13左右.因此,每个人抽到黑桃的概率跟抽取的顺序无关.设计意图:使学生经历用频率估计概率的过程,感受在大量重复试验中,随着试验次数的增加,频率趋于稳定性.问题4 抓阄是实际生活中常见的一种进行选择的方法,有人说这种方法公平,也有人说这种方法不公平,通过上述摸牌试验,你觉得这种方法公平吗?为什么?师生活动:教师出示问题,学生思考、讨论.设计意图:学生受到摸牌试验的启发,不难发现摸牌与抓阄是同类试验,因此每个人抽中的概率是相同的,因此抓阄是公平的.让学生体会到数学方法可以解释生活中很多现象的原因.3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课中两个试验的概率是通过怎样的方法得到的?(2)你觉得试验在求概率中有何作用?(3)你觉得概率在生活中对你有何帮助?设计意图:通过小结,总结本节课所学内容,体会试验在求概率中的作用,以及概率在生活实际中的作用.4.布置作业就“抓阄公平吗?”采访一下自己的父母或朋友,用你所学的数学知识和他们进行交流.五、目标检测设计1.如图,在正方形ABCD 中随机选取一点,你能设计一个试验,用频率估计概率的方法,求出此点恰在△ABO 内部的概率吗?设计意图:考查学生能否设计试验利用频率估计概率.2.4张扑克牌中只有1张黑桃,4位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?设计意图:考查学生是否了解了这种游戏的公平性.A B D C O。

2017年秋季学期新版新人教版九年级数学上学期25.1.2、概率导学案7

2017年秋季学期新版新人教版九年级数学上学期25.1.2、概率导学案7
A.抛一枚均匀的硬币,出现正面、反面的概率不能确定;
B、抛一枚均匀的硬币,出现正面的概率比较大;
C、抛一枚均匀的硬币,出现反面的概率比较大;
D、抛一枚均匀的硬币,出现正面、反面的概率相等。
3、从不透明的口袋中摸出红球的概率为1/5,若袋中红球有3个,则袋中共有球( ).
A、5个B、8个C、10个D、15个
4、柜子里有5双鞋,取出一只鞋是右脚鞋的概率是().A、 ;B、 ;C、 ;D、 。
5、某储蓄卡的密码是一组四位数字,每一位上的数字可以在0-9这10个数字中选取。某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地输入密码的最后一位数字,正好输对密码的概率是多少?
四、课外训练
1、小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为()A. ; B、 ;C、1;D、 。
2、从只装有4个红2、从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是 ,摸到红球的概率是 ,则()
。A. ; B、 ;C、 ;D、 。
3、袋里有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,任意摸出一个绿球的概率是三分之一。
求:⑴、袋中黄球的个数;
4、2011年8月,某书店各类图书的 销售情况如下图:
实验二:掷一个骰子,向上一面的点数有()种可能,即(),由于骰子的构造、质地均匀,又是随机掷出的所以我们断言:每种结果的可能性()都是()。
二、课堂检测
1、在生产的100件产品中,有95件正品,5件次品。从中任抽一件是次品的概率为( ).
A.0.05B.0.5 C.0.95 D.95
2、下列说法中正确的是().
⑵、明天太阳从西方升起;

九年级数学上册第二十五章概率初步25.3用频率估计概率导学案新版新人教版

九年级数学上册第二十五章概率初步25.3用频率估计概率导学案新版新人教版

25.3用频率估计概率一、新课导入1.导入课题:在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0. 5?下面我们带着小明提出的问题进入本节课的学习一一用频率估计概率.2.学习目标:(1)知道大量重复试验时,频率趋于一个稳定值,知道这个稳定值与概率的关系.(2)会用频率估计概率.3.学习重、难点:重点:理解当试验次数较大时,试验频率趋于理论概率.难点:用频率估计概率的思想方法解决相关实际问题.二、分层学习第一层次学习4.自学指导:(1)自学内容:教材第142页到第143页“思考”之前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,按课本要求,同学之间加强合作,进行试验,并做好数据的统计,再对数据进行分析,观察频率的变化趋势,从中摸索有何规律.(4)自学参考提纲:①通过试验,完成教材第142页的表25-3以及图25. 3-1.②通过分析试验所得数据,你发现出现“正而向上”的频率有什么变化规律?“正而向上”的频率在0. 5附近摆动.③阅读并分析表25-4中抛掷硬币实验的数据,你有什么发现?随着试验次数的增加,“正而向上”的频率稳定于0.5.5.自学:学生可参考自学指导进行自学,小组交流,合作学习.6.助学:(1)师助生:①明了学情:深入课堂了解学生的试验情况,并对存在的问题进行收集.②差异指导:对在学习中存在的突出问题进行点拨引导.(2)生助生:小组间相互协作交流,解决学习中的问题.7.强化:随着抛掷硬币次数的增加,硬币“正面朝上”的频率会在0. 5左右摆动,并且摆动幅度越来越小.第二层次学习8.自学指导:(1)自学内容:教材第143页“思考”到第144页“练习”之前的内容.(2)自学时间:4分钟.(3)自学方法:阅读、思考,并相互交流探讨各自的结论.(4)自学参考提纲:①当实验次数足够大时,一个随机事件出现的频率与它的概率有什么关系?频率非常接近于概率.②举例说明你对“概率是针对大量重复试验而言的,大量试验反映的规律并非在每一次试验中都发生.”这句话的理解.③练习:a.下表记录了一名球员在罚球线上投篮的结果.i.计算投中频率(结果保留小数点后两位).ii.这名球员投篮1次,投中的概率约是多少(结果保留小数点后一位)?解:投中的概率约是0.5.b.用前面抛掷硬币的试验方法,全班同学分组做掷骰子的试验,估计掷一次骰子时“点数是1”的概率.解:估计P (点数是1)二1.62.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:深入了解学生参与活动、完成任务的情况.②差异指导:引导学生合作试验.(2)生助生:分组合作完成试验.4.强化:(1)在大量重复试验中,事件A发生的频率会稳定在某个常数附近.只要试验的次数足够大,我们就可以用事件A发生的频率去估计概率.(2)概率是针对大量试验而言的,大量试验反映的规律并非在每一次试验中都发生.第三层次学习1.自学指导:(1)自学内容:教材第144页到第145页的问题1.(2)自学时间:4分钟.(3)自学要求:总结用频率估计概率的思想来解决实际问题的一般思路和频率的确定方法.(4)自学参考提纲:①幼树的移植成活率采用频率去估计.②完成表25-5及表后的填空.③怎样估计幼树移植的成活率?随着移植数的增加,幼树移植成活的频率越来越稳定,用移植总数最多时成活的频率估计幼树移植的成活率.④练习:某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:一般地,1000千克种子中大约有多少是不能发芽的?将表中数据补全,可以看出发芽种子的频率在0. 9左右摆动,所以估计种子发芽的概率为 0. 9.1000-1000X0. 9=100 (千克).,.1000千克种子中大约有100千克是不能发芽的.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:对完成提纲中的问题有困难的学生适时指导.(2)生助生:交流讨论、改正错误.4.强化:解决此类问题的基本步骤:计算频率:估计概率;作出结论.第四层次学习1.自学指导:(1)自学内容:教材第145页到第146页的问题2.(2)自学时间:5分钟.(3)自学方法:先弄清损坏率的算法,再填表.(4)自学参考提纲:①完成教材第146页表25-6.②可得柑橘损坏的概率为0. 1 ,所以柑橘完好的概率为取.③怎样计算柑橘的实际成本?用以2元/千克的价格购进10000千克的成本除以10000千克中完好柑橘的质量9000 千克,即为实际成本.④整个问题的问答过程与问题1的解答过程有何异同?相同点:都是用频率估计概率.不同点:问题2是通过损坏率求完好率,而问题1是直接求发芽率.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:教师对重、难点之处适时点拨引导.(2)生助生:小组间交流互助.(1)解题思路:①求频率:②估计概率;③求出问题结果:④作出结论.(2)练习:为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中捕获n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么鱼塘中鱼的条数可估计为—.你认为这种估计方法有道理吗?为什么?b解:有道理.不妨设鱼塘中鱼的总条数为禺则,所以* =竺.x a b三、评价1.学生的自我评价(围绕三维目标):相互交流各自的学习态度、学习方法和收获,反省学习中的不足.2.教师对学生的评价:(1)表现性评价:教师对学生在课堂学习中的态度和行为上的表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的.这节课教师应把握教学难度,注意关注学生的接受情况.<----------- 湃价作业------------- >(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(D)A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.(10分)下列说法正确的是(D)A.连续抛掷骰子20次,掷出5点的次数是0,则第21次一定抛出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50治所以明天将有一半时间在下雨D,抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等3.(10分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是(D)A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的而点数是44.(10分)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是(C)摸球的次数〃10() 150 20() 50() 80() 100() 摸到白球的次数也58 96 116 295 484 601摸到白球的概率0.58 0.64 ().58 0. 59 0. 605 0. 601A. 0. 4B. 0. 5C. 0. 6D. 0. 75.(10分)盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数, 某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为(B)A. 90 个B. 24 个C. 70 个D. 32 个6.(10分)一个口袋中放有20个球,其中红球6个,白球和黑球若干个,每个球除了颜色外没有任何区别,小王通过大量重复试验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在0. 25左右,请你估计袋中黑球的个数为1.移植总数n 400 750 1500 350() 700() 90()0 14000成活数加369 662 1335 3203 6335 8073 12628 成活的频率生0. 923 0. 883 0. 890 0.915 0.905 0. 897 0.902二、综合应用(20分)8.(10分)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01):(2)这些频率具有什么样的稳定性?解:这些频率稳定在0. 8附近.(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1).这名运动员射击一次时“射中9环以上”的概率约为0.8.9.(10分)动物学家通过大量的调查估计,某种动物活到20岁的概率为0. 8,活到25岁的概率为0. 5,活到30岁的概率为0. 3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率是多少?解:(1)设这种动物共有10n只,则根据题意可知能活到20岁的有8n只,能活到25岁的有5n只,能活到30岁的有3n只,所以现年20岁的这种动物活到25岁的概率为5« 5耳=——=一;18〃 8(2)由(1)知,现年25岁的这种动物能活到30岁的概率是巴=三=—.5« 5三、拓展延伸(10分)10.(10分)鸟类学家要估计某森林公园内鸟的数量,你能用学过的知识,为鸟类学家提出一种估计鸟的数量的方法吗?(在一定的时期内,森林公园可以近似地看做与外部环境是相对封闭的)解:在一年中该森林公园内的鸟相对较多的时期,选择一天(晴天)捕捉1000只鸟,并在这些鸟的身体上做上记号,然后全部放飞,两三天后的一天(晴天)再捕捉1000只鸟,检查其中带有记号的鸟的数量,记为a,则这段时期该森林公园内的数量是此只.a。

新人教版九年级数学上册第二十五章概率初步全章教案.

新人教版九年级数学上册第二十五章概率初步全章教案.

)))))))第二十五章概率课题: 25.1 随机事件教课目的:知识技术目标认识必定发生的事件、不行能发生的事件、随机事件的特色.数学思虑目标学生经历体验、操作、察看、归纳、总结的过程, 发展学生从纷纷复杂的表象中,提炼出实质特色并加以抽象归纳的能力.解决问题目标能依据随机事件的特色 , 鉴别哪些事件是随机事件.感情态度目标引领学生感觉随机事件就在身旁, 加强学生珍惜时机,掌握时机的意识.教课要点:随机事件的特色 .教课难点:判断现实生活中哪些事件是随机事件.教课过程<活动一 >【问题情境】摸球游戏三个不透明的袋子均装有10 个乒乓球 . 精选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球 , 记录下颜色 , 放回 , 搅匀 , 重复前面的试验 . 每人摸球 5 次. 依照摸出黄色球的次数排序 , 次数最多的为第一名 , 其次为第二名 , 最少的为第三名 .【师生行为】教师预先准备的三个袋子中分别装有 10 个白色的乒乓球; 5 个白色的乒乓球和5 个黄色的乒乓球; 10 个黄色的乒乓球 .学生踊跃参加游戏, 经过操作和察看, 归纳猜想出在第1 个袋子中摸出黄色球是不行能的, 在第2 个袋子中可否摸出黄色球是不确立的, 在第3 个袋子中摸出黄色球是必定的 .教师合时指引学生归纳出必定发生的事件、随机事件、不行能发生的事件的特点 .【设计企图】经过生动、开朗的游戏 , 自但是然地引出必定发生的事件、随机事件和不行能发生的事件 , 不单能够激发学生的学习兴趣 , 并且有利于学生理解 . 能够奇妙地实现从实践认识到理性认识的过渡 .<活动二 >【问题情境】指出以下事件中哪些是必定发生的, 哪些是不行能发生的,哪些是随机事件?1.往常加热到 100°C 时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是 6 点;4.胸怀三角形的内角和,结果是 360°;5.经过城市中某一有交通讯号灯的路口,碰到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人走开水能够正常生活 100 天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快 .【师生行为】教师利用多媒体课件演示问题, 使问题情境更具生动性 .学生踊跃思虑 , 回答以下问题 , 进一步夯实必定发生的事件、随机事件和不行能发生的事件的特色 . 在比较充足的感知下,达到加深理解的目的 .教师在学生达成问题后应注意指引学生发此刻我们生活的四周大批地存在着随机事件 .【设计企图】引领学生经历由实践认识到理性认识再从头认识实践问题的过程 , 同时引入一些知识问题 , 使学生进一步感悟数学是认识客观世界的重要工具 .<活动三 >【问题情境】情境 15 名同学参加演讲比赛 , 以抽签方式决定每一个人的出场次序 . 签筒中有 5 根形状、大小相同的纸签 , 上边分别标有出场的序号 1,2,3,4,5. 小军第一抽签 , 他在看不到纸签上的数字的状况下从签筒中随机地抽取一根纸签 .情境 2小伟掷一个质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数.在详细情境中列举不行能发生的事件、必定发生的事件和随机事件.【师生行为】学生第一独立思虑 , 再把自己的看法和小组其余同学沟通 , 并提炼出小构成员列举的主要事件,在全班公布 .【设计企图】开放性的问题有利于培育学生的发散性思想和创新思想 , 也有利于学生加深对学习内容的理解 . <活动四 >【问题情境】请你列举一些生活中的必定发生的事件、随机事件和不行能发生的事件.【师生行为】教师指引学生充足沟通,热忱议论.【设计企图】随机事件在现实世界中宽泛存在. 经过让学生自己找到大批丰富多彩的实例,使学生从不同侧面、不同视角进一步深入对随机事件的理解与认识.<活动五 >【问题情境】李宁运动品牌打出的口号是“全部皆有可能”,请你说说对这句话的理解.【师生行为】教师注意指引学生独立思虑, 沟通合作 , 提高学生对问题的理解与判断能力.【设计企图】存心识地引领学生从数学的角度从头审察现实世界,初步感悟辩证一致的思想.<活动六 >【问题情境】归纳、小结部署作业设计一个摸球游戏 , 要求对甲乙公正 .【师生行为】学生反省、议论 . 学生在设计游戏的过程中,进一步感悟随机事件的特色 . 作业的开放性为学生创建了更大的学习空间 .【设计企图】讲堂小结采纳学生反省报告形式 , 帮助学生形成较完好的认知结构 . 作业使讲堂内容得以丰富和延展 .教课方案说明现实生活中存在着大批的随机事件,而概率正是研究随机事件的一门学科 . 本课是“概率初步”一章的第一节课 . 教课中,教师第一以一个学生喜闻乐道的摸球游戏为背景,经过试验与剖析,使学生体验有些事件的发生是必定的、有些是不确立的、有些是不行能的,引出必定发生的事件、随机事件、不行能发生的事件 . 而后,经过对不同事件的剖析判断,让学生进一步理解必定发生的事件、随机事件、不行能发生的事件的特色 . 联合详细问题情境,引领学生设计提出必定发生的事件、随机事件、不行能发生的事件,拥有相当的开放度,鼓舞学生的逆向思想与创新思想,在必定程度上知足了不同层次学生的学习需要 .做游戏是学习数学最好的方法之一,依据本节课内容的特色,教师设计了摸球游戏,力争引领学生在游戏中形成新认识,学习新看法,获取新知识,充足调换了学生学习数学的踊跃性,表现了学生学习的自主性 . 在游戏中参加数学活动,在游戏中剖析、归纳、合作、思虑,意会数学道理 . 在快乐轻松的学习氛围中,显性目标和隐性目标自然达成 , 在必定程度上 , 创始了一个崭新的数学讲堂教课模式 .课题 : 25.1.2 概率的意义教课目的 :〈一〉知识与技术1.知道经过大批重复试验时的频次能够作为事件发生概率的预计值2.在详细情境中认识概率的意义〈二〉教课思虑让学生经历猜想试验--采集数据--剖析结果的研究过程,丰富对随机现象的体验,领会概率是描绘不确立现象规律的数学模型 . 初步理解频次与概率的关系 .〈三〉解决问题在分组合作学习过程中累积数学活动经验,发展学生合作沟通的意识与能力.锻炼怀疑、独立思虑的习惯与精神,帮助学生逐渐成立正确的随机看法.〈四〉感情态度与价值观在合作研究学习过程中,激发学生学习的好奇心与求知欲 . 体验数学的价值与学习的乐趣 . 经过概率意义教课,浸透辩证思想教育 .【教课要点】在详细情境中认识概率意义.【教课难点】对频次与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教课过程】一、创建情境,引出问题教师提出问题:周末市体育场有一场出色的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去 . 我很犯难,真不知该把球给谁 . 请大家帮我想个方法来决定把球票给谁 .学生:抓阄、抽签、猜拳、投硬币,,,教师对同学的较好想法予以必定 . (学生必定有很多较好的想法,在众多方法中推选出大家较认同的方法 . 如抓阄、投硬币)追问,为何要用抓阄、投硬币的方法呢?由学生议论:这样做公正. 能保证小强与小明获取球票的可能性相同大在学生议论讲话后,教师评论归纳.用扔掷硬币的方法分派球票是个随机事件,只管预先不可以确立“正面向上”还上“反面向上”,但同学们很简单感觉到或猜到这两个随机事件发生的可能性是相同的,各占一半,因此小强、小明获取球票的可能性相同大.怀疑:那么,这类直觉能否真的是正确的呢?指引学生以扔掷壹元硬币为例,不如着手做扔掷硬币的试验来考证一下.说明:现实中不确立现象是大批存在的,新课标指出:“学生数学学习内容应当是现实的、存心义、富裕挑战的”,设置实质生活问题情境切近学生的生活实际,很简单激发学生的学习热忱,教师应付此予以必定,并鼓舞学生踊跃思虑,为讲堂教课创建民主和睦的氛围,也为下一步指引学生展开研究沟通活动打下基础.二、着手实践,合作研究1.教师部署试验任务 .(1)明确规则 .把全班分红 10 组,每组中有一名学生扔掷硬币,另一名同学作记录,其余同学察看试验一定在相同条件下进行 .(2)明确任务,每组掷币 50 次,以脚踏实地的态度,仔细统计“正面向上”的频数及“正面向上”的频次,整理试验的数据, 并记录下来 ..2.教师巡视学生疏组试验状况. 注意:(1).察看学生在研究活动中,能否踊跃参加试验活动、能否愿意沟通等,关注学生能否踊跃思虑、勇于战胜困难.(2).要求真切记录试验状况. 关于合作学习中有可能产生的纪律问题予以调控 . 3. 各组报告实验结果 .因为试验次数较少,因此有可能有些组试验获取的“正面向上”的频次与先前的猜想有进出 . 提出问题:能否是我们的猜想出了问题?指引学生剖析议论产生差别的原由 .在学生充足议论的基础上,启迪学生剖析议论产生差别的原由 . 使学生认识到每次随机试验的频次拥有不确立性,同时相信随机事件发生的频次也有规律性,指引他们小组合作,进一步研究 .解决的方法是增添试验的次数,基于讲堂时间有限,指引学生进行全班沟通合作 . 4.全班沟通 .把各组测得数据一一报告,教师将各组数据记录在黑板上 . 全班同学对数据进行累计,依照书上 P 140要求填好 25-2. 并依据所整理的数据,在 25.1-1 图上标明出对应的点 , 达成统计图 .表 25-2n想想 1(投影出示) . 察看统计表与统计图,你发现“正面向上”的频次有什么规律?注意学生的语言表述状况,意思正确予以必定与鼓舞. 正“面向上”的频次在 0.5 上下颠簸 . 想想 2(投影出示)跟着扔掷次数增添,“正面向上”的频次变化趋向有何规律?在学生议论的基础上,教师帮助归纳. 使学生认识到每次试验中随机事件发生的频次拥有不确立性,同时发现随机事件发生的频次也有规律性. 在试验次数较少时,“正面向上”的频次起伏较大,而跟着试验次数的渐渐增添,一般地,频次会趋于稳固,“正面向上”的频次愈来愈靠近0.5. 这也与我们刚开始的猜想是一致的. 我们就用 0.5 这个常数表示“正面向上”发生的可能性的大小 .说明:注意帮助解决学生在填写统计表与统计图碰到的困难 . 经过以上实践研究活动,让学生真切地感觉到、清楚地察看到试验所表现的规律,即大批重复试验事件发生的频次靠近事件发生的可能性的大小(概率) . 鼓舞学生在学习中要踊跃合作沟通,思虑研究 . 学会聆听他人建议,勇于表达自己的看法 .为了给学生供给大批的、快捷的试验数据, 利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高讲堂教课效率,使他们能直观地、便利地察看到试验结果的规律性 --大批重复试验中,事件发生的频次渐渐稳固到某个常数邻近.其实,历史上有很多有名数学家也做过掷硬币的试验. 让学生阅读历史上数学家做掷币试验的数据统计表(看书P 141 表 25-3). 表 25-3经过以上学生亲身着手实践 , 电脑协助演示 , 历史资料展现 , 让学生真切地感觉到、清楚地察看到试验所表现的规律,大批重复试验中,事件发生的频次渐渐稳固到某个常数附近 , 即大批重复试验事件发生的频次靠近事件发生的可能性的大小(概率) . 同时 , 又感觉到不论试验次数多么大 , 也没法保证事件发生的频次充足地靠近事件发生的概率 .在研究学习过程中 , 应注意评论学生在活动中参加程度、自信心、能否愿意交流等,鼓舞学生在学习中不怕困难踊跃思虑,敢于表达自己的看法与感觉, 养成实事求是的科学态度 .5.下边我们可否研究一下“反面向上”的频次状况?学生自然可依照“正面向上”的研究方法,很简单总结得出:“反面向上”的频次也相应稳固到 0.5.教师归纳:(1)由以上试验,我们考证了开始的猜想,即扔掷一枚质地平均的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半) . 也就是说,用扔掷硬币的方法能够使小明与小强获取球票的可能性相同 .(2)在实质生活还有很多这样的例子,如在足球比赛中,裁判用掷硬币的方法来决定两方的比赛场所等等 .说明:这个环节,让学生亲身经历了猜想试验——采集数据——剖析结果的研究过程,在真切数据的剖析中形成数学思虑,在议论沟通中达成知识的主动建构,为下一环节概率意义的教课作了很好的铺垫 .三、评论归纳,揭露新知问题 1. 经过以上大批试验,你对频次有什么新的认识?有没有发现频次还有其余作用?学生研究沟通 . 发现随机事件的可能性的大小能够用随机事件发生的频次渐渐稳固到的值(或常数)预计或去描绘 .经过猜想试验及研究议论,学生不难有以上认识 . 对学生可能存在语言上、描绘中的不正确等注意予以纠正,但要求不用过高 .归纳:以上我们用随机事件发生的频次渐渐稳固到的常数刻画了随机事件的可能性的大小 . 那么我们给这样的常数一个名称,引入概率定义 . 给出概率定义(板书):一般地,在大批重复试验中,假如事件 A 发生的频次nm会稳固在某个常数p 邻近,那么这个常数p 就叫做事件 A 的概率(probability ), 记作 P (A ) = p.注意指出:1.概率是随机事件发生的可能性的大小的数目反应.2.概率是事件在大批重复试验中频次渐渐稳固到的值,即能够用大批重复试验中事件发生的频率去预计获取事件发生的概率,但两者不可以简单地等同.想想 (学生沟通议论问题 2.频次与概率有什么差别与联系?从定义能够获取两者的联系 , 可用大批重复试验中事件发生频次来预计事件发生的概率 . 另一方面 , 大批重复试验中事件发生的频次稳固在某个常数 (事件发生的概率邻近,说明概率是个定值 , 而频次随不同试验次数而有所不同 , 是概率的近似值 , 两者不可以简单地等同 .说明:猜想试验、剖析议论、合作研究的学习方式十分有利于学生对概率意义的理解,使之明确频次与概率的联系,也使本节课教课重难点得以打破 . 为下节课进一步研究概率和此后的学习打下了基础 . 自然,学生随机看法的养成是顺序渐进的、长久的 . 这节课教课应掌握教课难度,注意关注学生接受状况 .四.练习稳固,发展提高. 学生练习1.书上 P143. 练习 .1. 稳固用频次预计概率的方法. 2.书上 P143. 练习 .2 稳固对概率意义的理解 .教师应当关注学生对知识掌握状况,帮助学生解决碰到的问题. 五.归纳总结,沟通收获:1.学生相互沟通这节课的领会与收获,教师可将学生的总结与板书串一同,使学生对知识掌握条理化、系统化.2.在学生沟通总结时,还应注意总结评论这节课所经历的研究过程,领会到的数学价值与合作沟通学习的意义.【作业设计】(1)达成 P144 习题 25.1 2、 4(2)课外活动分小组活动,用试验方法获取图钉从必定高度落下后钉尖着地的概率 . 【教课方案说明】这节课是在学习了25.1.1 节随机事件的基础上学习的,学生经过大批重复试验,体验用事件发生的频次去刻画事件发生的可能性大小,进而获取概率的定义.1.对概率意义的正确理解,是成立在学生经过大批重复试验后,发现事件发生的频次能够刻画随机事件发生可能性的基础上 . 联合学生认知规律与教材特色,这节课以用掷硬币方法分派球票为问题情境,指引学生亲身经历猜想试验—采集数据—剖析结果的研究过程 . 这切合《新课标》“从学生已有生活经验出发,让学生亲身经历将实质问题抽象为数学模型并进行解说与应用的过程”的理念 .切近生活现实的问题情境,不单易于激发学生的求知欲与研究热忱,并且会促进他们面对要解决的问题勇敢猜想,主动试验,采集数据,剖析结果,为追求问题解决主动与他人沟通合作. 在知识的主动建构过程中,促进了教课目的的有效达成.更重要的是,主动参加数学活动的经历会使他们终生得益.2.随机现象是现实世界中广泛存在的,概率的教课的一个很重要的目标就是培育学生的随机看法 . 为了实现这一目标,教课方案中让学生亲身经历对随机事件的研究过程,经过与他人合作研究,使学生自我主动修正错误经验,揭露频次与概率的关系,进而逐渐成立正确的随机看法,也为此后进一步学习概率有关知识打下基础 .3.在教课中,本课力争向学生供给从事数学活动的时间与空间,为学生的自主研究与伙伴的合作沟通供给保障,进而促进学生学习方式的转变,使之获取宽泛的数学活动经验 . 教师在学习活动中是组织者、指引者与合作者,应注意评论学生在活动中参加程度、自信心、能否愿意沟通等,给学生以合时的指引与鼓舞.课题 : 25.2 列举法求概率教课目的:知识与技术目标学惯用列表法、画树形图法计算概率,并经过比较概率大小作出合理的决议。

最新人教版九年级数学上册导学案:第二十五章 概率初步

最新人教版九年级数学上册导学案:第二十五章 概率初步

第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件一、新课导入1.导入课题:情景:5名同学参加演讲比赛,现要确定选手的比赛出场顺序,为了体现比赛的公平性,决定采取临时抽签的方式决定出场先后顺序. 签筒中有5张形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地抽取一张纸签.问题:你能猜一猜小军会抽到几吗?今天我们来学习随机事件.(板书课题)2.学习目标:(1)认识必然事件、不可能事件和随机事件.(2)会确定随机事件发生可能性的大小.3.学习重、难点:重点:认识必然事件、不可能事件和随机事件,随机事件发生可能性的大小.难点:确定随机事件发生可能性的大小.二、分层学习1.自学指导:(1)自学内容:教材第127页到第128页“练习”以上的内容.(2)自学时间:5分钟.(3)自学方法:结合自学提纲互相交流.(4)自学提纲:①问题1中(2)~(4)哪种情况可能发生?哪种情况不可能发生?(4)可能发生,(3)不可能发生.②问题2中(2)~(4)哪种情况可能发生?哪种情况不可能发生?(4)可能发生,(3)不可能发生.③问题1和2中的情况(2)一定发生吗?一定发生.④什么叫必然事件?什么叫不可能事件?什么叫随机事件?在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不发生的事件,称为随机事件.⑤各举一、两例说明必然事件,不可能事件和随机事件,然后相互交流一下.必然事件:太阳从东边升起;水涨船高不可能事件:太阳从西边升起随机事件:明天是晴天2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生的答题情况.②差异指导:教师对个别突出问题进行点拨引导.(2)生助生:引导学生相互交流帮助认识问题.4.强化:(1)必然事件、不可能事件、随机事件的概念.(2)练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.①通常加热到100℃时,水沸腾;②篮球队员在罚球线上投篮一次,未投中;③掷一次骰子,向上的一面是6点;④度量三角形的内角和,结果是360°;⑤经过城市中某一有交通信号灯的路口,遇到红灯;⑥某射击运动员射击一次,命中靶心.解:必然事件:①;不可能事件:④;随机事件:②③⑤⑥.1.自学指导:(1)自学内容:教材第128页问题3到第129页的内容.(2)自学时间:5分钟.(3)自学方法:动手实验,从实验中感受随机事件发生的可能性大小.(4)探究提纲:①在问题3中,摸到哪种球的可能性大些?摸到球的可能性大小与什么有关?摸到黑球的可能性大些,摸到球的可能性大小与袋子中该种球的多少有关.②一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能相同.③举一些说明不同的随机事件发生的可能性大小不同的例子,与同桌交流一下.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂了解学生对问题3的实验过程和结果的探究以及由问题3的实验过程和结果得出的结论.②差异指导:教师对个性和共性问题进行点拨和引导.(2)生助生:小组内相互交流研讨.4.强化:(1)归纳:随机事件发生的可能性是有大小的.(2)练习:①已知地球表面陆地面积与海洋面积的比约为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”的可能性更大.②你能列举一些生活中的随机事件、不可能事件和必然事件的例子吗?解:明天会下雨,老张明天6:00起床等都是随机事件,从一个装有5个黑球和4个白球的袋子里任意取一个球,取到红球为不可能事件,取到黑球或白球为必然事件.三、评价1.学生的自我评价(围绕三维目标):这节课我学习了哪些知识,掌握了哪些技能和解决问题的方法?2.教师对学生的评价:(1)表现性评价:重点点评学生的学习态度、学习方法和实际效果及存在的问题.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):通过这些生动有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的代表性,最主要的是活动中含有大量的随机事件,可激发学生的探知欲.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)“任意打开一本200页的数学书,正好是第50页”,这是随机事件(选填“随机”“必然”或“不可能”).2.(10分)从数1、2、3、4、5中任取两个数字,得到的都是偶数,这一事件是随机事件.3.(10分)下列所描述的事件:①某个数的绝对值小于0;②守株待兔;③某两个负数的积大于0;④水中捞月.其中属于不可能事件的有①④.4.(10分)一个口袋中装有红、黄、蓝三个大小和形状都相同的球,从中任取一球,得到红球与得到蓝球的可能性相同.5.(10分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中判断题的可能性较小.6.(20分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)通常温度降到0℃以下,纯净的水结冰;(2)随意翻到一本书的某页,这页的页码是奇数;(3)地面发射1枚导弹,未击中空中目标;(4)测量某天的最低气温,结果为-150℃;(5)汽车累积行驶1万千米,从未出现故障.解:(2) (3) (5)是随机事件,(1)是必然事件,(4)是不可能事件.二、综合应用(20分)7.(10分)从一副扑克牌中任取一张,摸到大王与摸到小王的可能性(A)A.相等B.不相等C.有时相等,有时不等D.无法确定8.(10分)某班共有学生36人,其中男生20人,女生16人,今从中选一名班长,所有人都有同样的机会当选,下列叙述正确的是(B)A.男生当选与女生当选的可能性相等B.男生当选的可能性大于女生当选的可能性C.男生当选的可能性小于女生当选的可能性D.无法确定三、拓展延伸(10分)9.(10分)一个不透明的袋子中装有6个红球和4个白球,请根据此信息设计一个随机事件、一个必然事件和一个不可能事件.解:随机事件:从袋子中任取一球,取到的球是红球;必然事件:从袋子中任取一球,取到的球是红球或白球;不可能事件:从袋子中任取一球,取到的球是黑球.25.1.2概率一、新课导入1.导入课题:在同样条件下,某一随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能否用数值进行刻画呢?这是我们今天要讨论的问题.2.学习目标:(1)理解概率的概念,知道概率的值与事件发生的可能性大小的对应关系.(2)会运用列举法求一步实验和简单两步实验中事件发生的概率.(3)会根据几何图形的面积求事件发生的概率.3.学习重、难点:重点:概率的概念及求法.难点:理解()m P A n =中m,n 的意义. 二、分层学习1.自学指导:(1)自学内容:教材第130页到第131页例1上面的内容.(2)自学时间:5分钟.(3)自学方法:阅读课文,注意概率公式的运用条件.(4)自学参考提纲:①试验1中抽出的签上的号码有几种可能?每个号码被抽到的可能性相等吗? 有5种可能.每个号码被抽到的可能性相等.②试验2中向上的一面的点数有几种可能?每个点数出现的可能性相等吗? 有6种可能.每个点数出现的可能性相等.③试验1和2中每种可能性占全部可能性的比例怎么表示?试验:115;试验:126.④试验1和2中,每次试验的结果有什么共同的特点?每一次试验中,可能出现的结果只有有限个;每一次试验中,各种结果出现的可能性相等.⑤什么叫做概率?怎样记法?一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值称为随机事件A 发生的概率,记为P(A).⑥试验1中抽到奇数有几种可能?用概率怎样表示?3种可能.用概率表示为35.⑦公式()mP An=中,m、n之间的数量关系是0≤m≤n,P(A)的取值范围是0≤P(A)≤1.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂了解学生的自学情况,发现学习中存在的问题.②差异指导:教师对学习中的个性和共性问题进行点拨引导.(2)生助生:同桌之间互相讨论.4.强化:(1)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为:()mP An=,当m=n时,A为必然事件,概率P(A)=1;当m=0时,A为不可能事件,概率P(A)=0.(2)概率与事件发生的可能性大小的对应关系:1.自学指导:(1)自学内容:教材第131页例1到第132页的内容.(2)自学时间:5分钟.(3)自学方法:从例题中学习怎样求m和n的值.(4)自学参考提纲:①例1中掷骰子是否符合随机事件的两个特点?共有几种等可能的结果?符合.共有6种等可能的结果.②例2中转转盘是否符合等可能事件的两个特点?共有几种可能的结果?如果各小扇形的圆心角不同,那么问题中的概率能求吗?不符合.共有3种可能的结果.如果各小扇形的圆心角不同,那么问题中的概率不能求.③掷1个质地均匀的正方体骰子,观察向上一面的点数,求下列事件的概率:a.点数是6的约数;23b.点数是质数;12c.点数是合数.132.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生通过例1、例2的学习对公式()mP An=的认识情况.②差异指导:对重点问题进行归纳引导.(2)生助生:小组间互助解决各自疑难问题.4.强化:(1)用列举法求概率的要点及解题格式.(2)把一副普通扑克牌中的13张黑桃牌洗均匀后正面向下放在桌子上,从中随机抽取一张,求下列事件的概率:①抽出的牌是黑桃6;②抽出的牌是黑桃10;③抽出的牌带有人像;④抽出的牌上的数小于5;⑤抽出的牌的花色是黑桃.解:①113;②113;③313;④4133;⑤1.(3)如图,有一个质地均匀的正十二面体,十二个面上分别写有1~12这十二个整数.投掷这个正十二面体一次,求下列事件的概率:①向上一面的数字是2或3;②向上一面的数字是2的倍数或3的倍数.解:①16;②23.1.自学指导:(1)自学内容:教材第133页例3.(2)自学时间:5分钟.(3)自学要求:认真学习例3中是怎样用概率来分析问题,并作出明确判断的.(4)自学参考提纲:①相互交流例3游戏的规则,理解游戏规则的实际意义.②怎样计算A区域遇到地雷的概率?A区域的方格共有8个,标号3表示在这8个方格中有3个方格里埋有1颗地雷,因此,A区遇到地雷的概率是38.③怎样计算B区域遇到地雷的概率?B区域的方格数为9×9-9=72,其中有地雷的方格数为10-3=7,因此,B区遇到地雷的概率是772.④概率越大,说明遇到地雷的可能性越大,所以第二步应点击 B 区域.⑤如果小王在游戏开始点击的第一个方格上出现了标号1时,第二步在两个区域遇到地雷的概率分别是多少?A区域:18;B区域:182.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:看学生是否理解题意,能否顺利确定m,n的值.②差异指导:引导学生仔细阅读(特别是游戏规则),指导学生确定m,n的值.(2)生助生:学生相互交流解决疑难.4.强化:(1)总结本题的解题思路.(2)归纳几何概率的求解要点.(3)练习:①在例3中,如果小王在游戏开始时踩中的第一个格上出现了标号1,则下一步踩在哪一区域比较安全?解:踩在哪个区域都一样.②甲、乙两人打赌,甲说,往图中的区域掷石子,它会落在阴影部分上,乙说不会落在阴影部分上,你认为谁获胜的概率较大?通过计算说明.解:(甲获胜)P ==123328,(乙获胜)P ==205328.<3588,乙获胜的概率较大. ③如图所示,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6. a.若自由转动转盘,当它停止转动时,指针指向奇数区域的概率是多少?解:P (指向奇数区域)=12b.请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23. 解:当自由转动的转盘停止时,指针指向6的约数.三、评价1.学生的自我评价(围绕三维目标):相互交流自己的学习收获和存在的不足.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的情感、态度、方法和存在的问题进行归纳总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)通过抽签,用学生喜欢的扑克牌和掷骰子试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探究、合作交流得出此类型概率的求法,进而掌握本节课的知识,让学生在解决问题的过程中,提高了思维能力,增强了思维的缜密性,并且培养了学生解决问题的信心.(2)在概率的古典定义基础上,教科书给出了概率的取值范围为0~1,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.学生在学习例2时,应注意三种颜色并非三种可能,要求学生去仔细体会.(时间:12分钟满分:100分)一、基础巩固(80分)1.(10分)“明天降水的概率是15%”,下列说法中,正确的是(A)A.明天降水的可能性较小B.明天将有15%的时间降水C.明天将有15%的地区降水D.明天肯定不降水2.(10分)事件A:打开电视,它正在播广告;事件B:抛掷一枚质地均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件发生的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是(B)A.P(C)<P(A)=P(B)B.P(C)<P(A)<P(B)C.P(C)<P(B)<P(A)D.P(A)<P(B)<P(C)3.(10分)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为(B)A. 13B.14C.15D.164.(10分)掷一枚质地均匀的硬币的试验有2 种可能的结果,它们的可能性相同,由此确定“正面向上”的概率是1 2 .5.(10分)10件外观相同的产品中有1件不合格.现从中任意抽取1件进行检测,抽到不合格产品的概率为1 10.6.(10分)袋子中有2个红球,3个绿球和4个蓝球,它们只有颜色上的区别.从袋子中随机地取出一个球.(1)能够事先确定取出的球是哪种颜色的吗?(2)取出每种颜色的球的概率会相等吗?(3)你认为取出哪种颜色的球的概率最大?解:(1)不能;(2)不相等;(3)蓝球.7.(10分)不透明的袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:(1)摸到红球的概率是多少?(2)摸到白球的概率是多少?(3)摸到黄球的概率是多少?解:(1) 19;(2)13;(3)59.8.(10分)如图是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.解:(1) 14;(2)34.二、综合应用(10分)9.(10分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.(1)从盒中随机取出一枚棋子,如果它是黑棋的概率是38,写出表示x和y关系的表达式;(2)往盒中再放进10枚黑棋,取得黑棋的概率变为12,求x和y的值.解:(1)因为xx y=+38,所以5x=3y.(2)因为xx y+=++101102,所以x+10=y,又5x=3y,所以x=15,y=25.三、拓展延伸(10分)10.(10分)如图是计算机中的一种益智小游戏“扫雷”的画面,在一个9×9的小方格的正方形雷区中,随机埋藏着10颗地雷,每个小方格内最多只能埋藏1颗地雷.小红在游戏开始时首先随机地点击一个方格,该方格中出现了数字“3”,其意义表示该格的外围区域(图中阴影部分,记为A区域)有3颗地雷;接着,小红又点击了左上角第一个方格,出现了数字“1”,其外围区域(图中阴影部分)记为B区域;“A区域与B区域以及出现数字‘1’和‘3’两格”以外的部分记为C区域.小红在下一步点击时要尽可能地避开地雷,那么她应点击A、B、C中的哪个区域?请说明理由.解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷,所以点击A 区域遇到地雷的概率为38;同理,点击B 区域遇到地雷的概率为13. C 区域方格数为9×9-9-4=68.其中有地雷的方格数为10-3-1=6.所以点击C 区域遇到地雷的概率为636834.由于<<3133438,即点击C 区域遇到地雷的可能性最小,所以小红在下一步点击时应点击C 区域.25.2 用列举法求概率第1课时用列表法求概率一、新课导入1.导入课题:同时抛掷两枚质地均匀的硬币或骰子,会出现哪些可能的结果?怎样才能不重不漏地列举所有可能出现的结果呢?本节课我们学习用列表法列举所有可能出现的结果并求概率.(板书课题)2.学习目标:(1)会用直接列举法和列表法列举所有可能出现的结果.(2)会用列表法求出事件的概率.3.学习重、难点:重点:用直接列举法和列表法列举所有可能出现的结果.难点:求概率.二、分层学习1.自学指导:(1)自学内容:教材第136页例1.(2)自学时间:5分钟.(3)自学方法:阅读课文分析,理解课本是怎样列举出所有可能的结果的,并学会课本上用不同字母表示不同事件的方法和记法.(4)自学参考提纲:①掷两枚硬币会出现哪些不同的结果?你能列举出来吗?有四种不同的结果:正正、正反、反正、反反.②先后两次掷硬币和一次同时掷下两枚硬币有什么区别?出现的可能性发生变化了吗?没有区别.出现的可能性没有变化.2.自学:学生可参考自学指导进行自学.3.助学(1)师助生:①明了学情:深入课堂了解学生是否理解列举这几种结果的方法.②差异指导:对共性问题进行适时点拨引导.(2)生助生:学生相互交流帮助解疑难.4.强化:(1)归纳两步试验中列举全部结果的要点.(2)练习:①袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个.求下列事件的概率:a.第一次摸到红球,第二次摸到绿球.b.两次都摸到相同颜色的小球;c.两次摸到的球中有一个绿球和一个红球.解:a. 14; b12.; c.12②合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D 随机坐到其他三个座位上,求学生B坐在2号座位的概率.解:1 3③“石头、剪刀、布”是广为流传的游戏,游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,求双方出现相同手势的概率.解:1 31.自学指导:(1)自学内容:教材第136页例2至第137页.(2)自学时间:10分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①同时掷两枚质地均匀的骰子,会出现哪些可能的结果?列表列举所有可能的结果:②由表可知:同时掷两枚骰子,可能出现的结果有36 种,并且它们出现的可能性相等.两枚骰子的点数相同的结果有 6 种,所以P(两枚骰子的点数相同)= 16;两枚骰子的点数和是9的结果有4 种,所以P(两枚骰子的点数和是9)= 19;至少有一枚骰子的点数为2的结果有11 种,所以P(至少有一枚骰子的点数为2)= 11 36.③如果把例2中的“同时掷两枚骰子”改为“把一枚骰子掷两次”,所得到的结果有变化吗?为什么?没有变化,因为试验的条件是相同的.④当一次试验要涉及两个因素,并且可能出现的结果数目较多时,通常采用列表法.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否掌握了列表法.②差异指导:分类指导与集中辅导相结合.(2)生助生:学生之间相互交流帮助认知理解.4.强化:(1)列表法适用的条件及表格设计方法.(2)练习:①有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽取1张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有36种,并且它们出现的可能性相等.其中第二次取出的数字能够整除第一次取出的数字(记为事件A )的结果有14种,所以()P A ==1473618. ②有5张看上去无差别的卡片,上面分别标有0,1,2,3,4.求: a.从中任取两张卡片,两张卡片上的数字之和等于4概率;解:列举出所有可能出现的结果:(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).所有可能出现的结果共有10种,并且它们出现的可能性相等,其中满足两张卡片上的数字之和等于4(记为事件A )的结果有2种,所以()PA ==21105. b.从中任取2次卡片,每次取1张.第一次取出卡片,记下数字后放回,再取第二次.两次取出的卡片上的数字之和恰好等于4概率.解:列举出所有可能出现的结果:由表可以看出可能出现的结果共有25种,并且它们出现的可能性相等,其中两次取出的卡片上的数字之和恰好等于4(记为事件B )的结果有5种,所以()P B ==51255. 三、评价1.学生的自我评价:说说列举所有结果时,怎样才能做到不重不漏.2.教师对学生的评价:(1)表现性评价:教师对学生在学习中的态度、情感、方法、成果及不足进行归纳总结.(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):(1)本节课通过以学生喜闻乐见的掷硬币、掷骰子等游戏为载体,充分调动了学生的学习欲望,将学生摆在了真正的主体位置上,充分发挥了他们的主观能动性,从而让学生在趣味中掌握本节课的知识.生活中有许多关于概率的问题,本节课的学习亦能让学生尝试用概率的知识去解决生活中的问题,从而体会到概率知识在生活中的应用价值.(2)教师引导学生交流归纳知识点,看学生是否可以不重不漏地列举出事件发生的所有可能,能否找出事件A 中包含几种可能的结果,并能求P (A ),教学时要重点突出方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是(D )A.12B.15C.136D.11362.(10分)纸箱里有一双拖鞋,从中随机取一只,放回后再取一只,则两次取出的鞋都是左脚的鞋的概率为14. 3.(10分)有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车,则两个人同坐2号车的概率为14. 4.(10分)有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 6 的概率最大,抽到和大于8的概率为325. 5.(10分) 如图,随机闭合开关K 1,K 2,K 3中的两个,求能让两盏灯泡同时发光的概率. 解:列举出闭合三个开关中的两个的全部结果:K 1K 2,K 1K 3,K 2K 3. 所有可能的结果共有3种,并且这三种结果出现的可能性相等. 只有同时闭合K 1、K 3,才能让两盏灯泡同时发光(记为事件A ),所以()PA 13. 6.(20分)一个不透明的袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机地摸取一个小球然后放回,再随机地摸出一个小球.求下列事件的概率:(1)两次取出的小球标号相同; (2)两次取出的小球标号和等于4. 解:两次取出小球的标号列举如下:。

人教版数学九年级上册第25章-概率初步(教案)

人教版数学九年级上册第25章-概率初步(教案)
概率的性质
1.理解概率的基本性质,如非负性、规范性、可加性等。
2.掌握互斥事件和独立事件的概率计算方法。
25.4概率的应用
1.能运用概率知识解决实际问题。
2.了解概率在生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言描述随机现象,提高抽象概括能力。
2.培养学生运用概率知识进行问题分析,提升逻辑推理和数学思维能力。
此外,在教学过程中,我尝试采用小组讨论和实验操作的方式,让学生在实践中学习概率。从学生的反馈来看,这种教学方式取得了较好的效果,大家积极性很高,课堂氛围活跃。但同时,我也注意到,在小组讨论过程中,部分学生依赖性强,不够主动。因此,我需要在组织小组活动时,更加注重激发学生的主观能动性,引导他们积极参与讨论,提高合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲解概率的性质和应用时,我发现学生对于理论知识的应用还不够熟练。为了帮助学生更好地将所学知识运用到实际问题中,我计划在后续的教学中,增加一些与生活密切相关的综合题,让学生在解决问题的过程中,深化对概率性质的理解。
最后,我觉得在课堂教学过程中,要关注学生的个体差异。对于学习困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习兴趣。同时,对于学有余力的学生,可以适当增加拓展性内容,激发他们的学习潜能。
2.教学难点
-理解随机事件的抽象概念:学生对随机事件的理解可能存在困难,需要通过具体实例和生活情境帮助学生理解。

九年级数学上册第二十五章概率初步 学案设计新版新人教版

九年级数学上册第二十五章概率初步    学案设计新版新人教版

第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件(第1课时)学习目标1.借助典型事例了解必然事件、不可能事件、随机事件的概念;会正确判断生活中的简单事件哪些是随机事件、必然事件或不可能事件.2.主动通过试验,观察—探究—归纳出随机事件的概念和特点,从而培养抽象概括的能力和分析、解决问题的能力.3.在愉快的学习中获得成功体验,感受数学就在身边,乐于亲近数学,体会数学的应用价值.学习过程设计一、提出问题,创设情境1.试分析:“从一堆牌中任意抽一张抽到红牌”这一事件的发生情况.图①图②图③2.思考:下图中三人每次都能摸到红球吗?二、信息交流,揭示规律归纳必然事件、不可能事件、随机事件的概念.三、运用规律,解决问题【例1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字会是0吗?(3)抽到的数字会是6吗?(4)抽到的数字会是1吗?(5)你能说出一个与问题(3)相似的问题吗?【例2】阅读日记:划横线的事件中,哪些是必然事件? 哪些是不可能事件? 哪些是随机事件?2013年3月11日晴早上,我迟到了,在楼梯上遇到了班主任,她批评了我一顿.我想我真不走运,她经常在办公室的啊,今天我真倒霉.我明天不能再迟到了,不然明天早上我将在楼梯上遇到班主任.中午放学回家,我看了一场篮球赛,我想长大后我会比姚明还高,我将长到10米高.看完比赛后,我又回到学校上学.下午放学后,我开始写作业.今天作业太多了,我不停地写啊写,一直写到太阳从西边落下.四、变式训练,深化提高1.现有背面相同的两张牌(红牌和黑牌),下列事件属于哪类事件?(1)洗匀后任意抽一张,抽到黑牌;(2)洗匀后任意抽一张,抽到红牌或黑牌;(3)抽一张牌 ,放回,洗匀后再抽一张牌.这样先后抽得的两张牌都是红牌.(4)抽一张牌,不放回,再抽一张牌.这样先后抽得的两张牌都是红牌.2.请你举一些生活中的必然事件、随机事件和不可能事件的例子.布置作业指出下列事件中,哪些是必然事件,哪些是不可能事件?哪些是随机事件?1.通常加热到100 ℃时,水沸腾;2.篮球队员在罚球线上投篮一次,未投中;3.掷一枚骰子,向上一面的点数是6;4.任意画一个三角形,其内角和是360°;5.经过有交通信号灯的路口,遇到红灯;6.射击运动员射击一次,命中靶心.参考答案一、设计问题,创设情境1.图①:必然发生;图②:必然不发生;图③:可能发生,也可能不发生.2.小明:可能摸到红球也可能摸不到红球;小麦:一定不会摸到红球;小米:一定会摸到红球.二、信息交流,揭示规律在一定条件下,必然会发生的事件叫做必然事件;在一定条件下,必然不会发生的事件叫做不可能事件;在一定条件下:可能发生也可能不发生的事件,称为随机事件.三、运用规律,解决问题【例1】解:(1)抽到的数字有五种可能的结果;(2)抽到的数字不会是0;(3)抽到的数字不会是6;(4)抽到的数字会是1;(5)例如:抽到的数字会是9吗?【例2】解:在楼梯上遇到了班主任(必然事件)明天早上我将在楼梯上遇到班主任(随机事件)我将长到10米高(不可能事件)太阳从西边落下(必然事件)四、变式训练,深化提高1.解:(1)随机事件;(2)必然事件;(3)随机事件;(4)不可能事件.2.例如:摸一张彩票中奖是随机事件.布置作业1.必然事件;2.随机事件;3.随机事件;4.不可能事件;5.随机事件;6.随机事件.第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件(第2课时)学习目标1.从生活实例中了解随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小可能不同.2.经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力,培养随机观念.3.感受随机事件就在身边,增强珍惜机会、把握机会的意识.学习过程设计一、提出问题,创设情境问题:袋子中装有4个黑球、2个白球,这些球形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机地从袋子中摸出一个球.(1)摸出的这个球是白球还是黑球?动手试试看.(2)如果两种球都有可能被摸出,那么“摸出黑球”和“摸出白球”的可能性一样大吗?二、信息交流,揭示规律活动1:如果两种球都有可能被摸出,那么“摸出黑球”和“摸出白球”的可能性一样大吗?(各小组汇报试验结果的情况.)活动2:分组交流;通过以上从袋中摸球的试验,你能得到什么启示?三、运用规律,解决问题1.已知地球表面陆地面积与海洋面积的比均为3∶7.如果宇宙中飞来一块陨石落在地球上,则陨石“落在海洋里”与“落在陆地上”哪个可能性更大?2.一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性大?四、变式训练,深化提高1.能否通过改变上述袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?2.你能编写一道判断某个随机事件发生可能性大小的问题吗?五、反思小结,观点提炼布置作业桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张,(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?参考答案一、提出问题,创设情境(1)摸出的可能是白球,也可能是黑球;(2)摸出黑球的可能性大.二、信息交流,揭示规律活动1:“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.活动2:一般地,1.随机事件发生的可能性是有大小的;2.不同的随机事件发生的可能性的大小有可能不同.三、运用规律,解决问题1.落在海洋里的可能性大一些2.不能.例如:共100页的一本书,翻到奇数页与偶数页的可能性一样大.四、变式训练,深化提高1.可以.例如:白球个数不变,拿出2个黑球或黑球个数不变,加入2个白球.2.例如:一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其他都是黄球,从中任摸1个,摸中哪种球的可能性最大?五、反思小结,观点提炼一般地,1.随机事件发生的可能性是有大小的;2.不同的随机事件发生的可能性的大小有可能不同.布置作业(1)不能确定;(2)黑桃;(3)可以,去掉1张黑桃或增加1张红桃.第二十五章概率初步25.1 随机事件与概率25.1.2 概率学习目标1.借助生活实例了解概率的意义,渗透随机观念;能计算一些简单随机事件的概率.2.经历猜想试验—收集数据—分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.3.在合作探究学习过程中,体验数学的价值与学习的乐趣.感受辩证思想.学习过程设计一、提出问题,创设情境问题1:从分别标有数字1,2,3,4,5的5张形状、大小相同的纸签中随机抽取一张,抽出的签上的数字有几种可能?每一个数字被抽到的可能性大小相等吗?问题2:抛掷一枚质地均匀的骰子,它落地时向上的点数有几种可能?分别是什么?每种点数出现的可能性大小一样吗?是多少?二、信息交流,揭示规律活动1:揭示概率的定义.活动2:以上两个试验有哪些共同特点?活动3:探索求事件概率的方法.(1)在问题1抽签试验中,“抽到1号”这个事件包含种可能结果,在全部种可能的结果中所占的比为,于是这个事件的概率为.(2)“抽到偶数号”这个事件包含抽到和这种可能结果,在全部5种可能结果中所占的比为,于是这个事件的概率为.活动4:思考:根据求概率的方法,事件A发生的概率P(A)的取值范围是什么?三、运用规律,解决问题【例1】掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:①点数为2;②点数为奇数;③点数大于2且小于5.【例2】如图是一个质地均匀的转盘,转盘分成7个大小相同的扇形,颜色分为红、黄、绿三种.指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置(指针指向两个扇形的交线时当作指向右边的扇形),求下列事件的概率.(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.四、变式训练,深化提高1.如图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?2.你能列举一些用概率刻画随机事件可能性大小的例子吗?五、反思小结,观点提炼布置作业掷一枚质地均匀的正方体骰子,观察向上一面的点数.(1)求掷得点数为2或4或6的概率;(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率.参考答案一、提出问题,创设情境问题1:由于纸签的形状、大小相同,又是随机抽取的,所以可能的结果有1,2,3,4,5,共5种,由此可以认为:每个数字被抽到的可能性相等,都是1.问题2:由于骰子质地均匀,又是随机掷出的,因此有6种等可能的结果:1,2,3,4,5,6.每.种结果出现的可能性相等,都是16二、信息交流,揭示规律活动1:一般地,对于一个随机事件A,把刻画其发生可能性大小的数值,称之为随机事件A发生的概率,记为P(A).活动2:共同特点: 1.每一次试验中,可能出现的结果只有有限个;2.每一次试验中,各种结果出现的可能性相等.活动3:(1)1511(2)24222活动4:在P(A)=中,由m和n的含义可知0≤m≤n,进而有0≤≤1,因此0≤P(A)≤1.特别地,当A为必然事件事件时P(A)=1;当A为不可能事件时,P(A)=0;事件发生的可能性越大,它的概率越接近1;反之,事件发生的可能性越小,它的概率越接近0.三、运用规律,解决问题.【例1】①P(点数为2)=16②P(点数为奇数)=1.2.③P(点数大于2且小于5)=13【例2】共有7种等可能的结果.(1)指针指向红色有3种结果,P(指针指向红色)=3.(2)指针指向红色或黄色共有5种等可能的结果,P(指针指向红色或黄色)=.(3)指针不指向红色有4种等可能的结果,P(指针不指向红色)=.四、变式训练,深化提高1.A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是3.B区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B区域的任一方.格,遇到地雷的概率是2,即点击A区域遇到地雷的可能性大于点击B区域遇到地雷的可能性,因而第二由于3>2步应该点击B区域.2.例如:1袋子里有1个红球,3个白球和5个黄球,每个球除颜色外其余都相同,从中任意摸出1个球,则P(摸到红球)=1;P(摸到白球)=1;P(摸到黄球)=.3五、反思小结,观点提炼概率的定义、求法及取值范围.如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=.0≤m≤n,有0 ≤≤1.布置作业掷1枚质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等..(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A)=12(2)小明前五次都没掷得点数2,可他第六次掷得的点数仍然可能为1,2,3,4,5,6,共6.种.他第六次掷得点数2(记为事件B)有1种结果,因此P(B)=16第二十五章概率初步25.2 用列举法求概率25.2 用列举法求概率(第1课时)学习目标1.理解用列举法(列表法)求随机事件的概率,进一步培养随机观念.2.经历用列举法求简单随机事件的概率的过程,体会“分步”策略在解决复杂问题所起到的重要作用.3.在探究过程中,要有条理地思考问题和增强应用数学的意识.学习过程设计一、提出问题,创设情境1.袋中有20只红球,8只黑球,这些球除了颜色以外没有任何区别.搅匀后从袋中取一只球,取出黑球的概率是多少?2.抛掷两枚质地均匀的硬币,求下列事件的概率:(1)两枚硬币全部正面向上;(2)两枚硬币全部反面向上;(3)一枚硬币正面向上、一枚硬币反面向上..你同意他给出的结论吗?在解答时,小明认为上述问题三个随机事件的概率均为13二、信息交流,揭示规律思考交流:“掷两枚硬币”共有几种结果?三、运用规律,解决问题同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子的点数之和是9;(3)至少有一枚骰子的点数为2.活动1:列表:活动2:如何借助上述表格中的信息计算问题中三个事件的概率?四、变式训练,深化提高1.把上题中“同时掷两枚硬币”换为“抛掷一枚均匀的硬币2次”,得到的结果有变化吗?2.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.(1)两张牌的牌面数字之和等于4的概率是多少?(2)从所列表格中你还能提出什么问题?五、反思小结,观点提炼1.用列表法求概率应注意哪些问题?2.列表法适用于解决哪类概率求解问题?布置作业在6张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?参考答案一、提出问题,创设情境1.P (取出黑球)= 2 =2. 2.(1)1(2)1(3)12三个随机事件的概率均为13是错误的.二、信息交流,揭示规律掷两枚硬币,:所以:(1)P (正正)=1 ;(2)P (正反)=12;(3) P (反反)=1.三、运用规律,解决问题 活动1:活动2:由列表得,同时掷两枚骰子,可能出现的结果有36种,它们出现的可能性相等.(1)两枚骰子的点数相同(记为事件A )的结果有6种,则P (A )=636=16. (2)两枚骰子的点数之和是9(记为事件B )的结果有4种,则P (B )= 36=1 . (3)至少有一枚骰子的点数为2(记为事件C )的结果有11种,则P (C )=1136.四、变式训练,深化提高1.“把一枚硬币抛掷2次”与“同时掷两枚硬币”所得试验结果一样;类似的,“同时掷两枚质地相同的骰子”与“把一枚骰子掷2次”,所得到的结果没有变化.所以,当试验涉及两个因素时,可以“分步”对问题进行分析.2.(1)P (数字之和为4)=13.(2)如:取的数字相同的概率是多少? 五、反思小结,观点提炼1.确保试验中每种结果出现的可能性大小相等.2.当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法.布置作业解:由列表得,两次抽取卡片后,可能出现的结果有36种,它们出现的可能性相等. 满足第一次取出的数字能够整除第二次取出的数字(记为事件A )的结果有14种,则P (A )=1 36=1 .第二十五章 概率初步 25.2 用列举法求概率25.2 用列举法求概率(第2课时)学习目标1.理解用列举法(画树状图法)求随机事件的概率的方法,进一步培养随机观念.2.经历用列举法求简单随机事件的概率的过程,体会“分步”策略对解决复杂问题所起到的重要作用.3.在探究过程中,有条理地思考问题和增强应用数学的意识.学习过程设计一、提出问题,创设情境1.同时抛掷两枚硬币,两枚硬币全部正面向上的概率是.2.若同时抛掷三枚硬币,试列举出所有的试验结果.二、信息交流,揭示规律活动1:同时抛掷三枚硬币,求下列事件的概率:(1)三枚硬币全部正面向上;(2)两枚硬币正面向上一枚硬币反面向上;(3)至少有两枚硬币正面向上.活动2:想一想,什么时候用列表法方便,什么时候用画树状图方便?三、运用规律,解决问题甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?四、变式训练,深化提高经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.五、反思小结,观点提炼什么时候用列表法方便,什么时候用画树状图法方便?布置作业甲转盘的三个等分区域分别写有数字1,2,3,乙转盘的四个等分区域分别写有数字4,5,6,7.现分别转动两个转盘,求指针所指数字之和为偶数的概率.甲乙参考答案一、提出问题,创设情境1.12.略二、信息交流,揭示规律活动1:由树状图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等. (1)三枚硬币全部正面向上(记为事件A )的结果只有1种,则 P (A )=1.(2)两枚硬币正面向上一枚硬币反面向上(记为事件B )的结果有3种,则P (B )=3.(3)至少有两枚硬币正面向上(记为事件C )的结果有4种,则P (C )= =12.活动2:当一次试验涉及2个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法.一次试验涉及3个或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用画树状图法.三、运用规律,解决问题解:根据题意,画出如下的树状图由树状图得,所有可能出现的结果有12种,它们出现的可能性相等. (1)只有1个元音字母的结果有5种,则 P (1个元音)=12; 有2个元音字母的结果有4种,则P (2个元音)= 12=13; 全部为元音字母的结果只有1种,则 P (3个元音)=112; (2)全是辅音字母的结果共有2种,则 P (3个辅音)=212=16;四、变式训练,深化提高解:根据题意,画出如下的树状图共有27种等可能的结果 (1)P (全部继续直行)=12 ;(2)P (两车向右转,一车向左转)=1;(3)P (至少两车向左转)=2 .五、反思小结,观点提炼当一次试验涉及2个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法;一次试验涉及3个或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用画树状图法.布置作业 解法一:共有12种不同结果,每种结果出现的可能性相同,其中数字之和为偶数的有 6 种,故P (指针所指数字之和为偶数)=612=12. 解法二:由树状图看出共 12种等可能的结果,P (指针所指数字之和为偶数)=612=12.第二十五章 概率初步 25.3 用频率估计概率25.3 用频率估计概率(第1课时)学习目标1.知道通过大量重复试验,可以用频率估计概率;了解频率与概率的区别与联系.2.经历抛掷硬币试验的过程,对数据进行收集整理、描述与分析,体验频率的随机性与规律性,了解用频率估计概率的合理性与必要性,培养随机观念.3.培养动手能力和处理数据的能力及理性精神和合作精神.学习过程设计一、提出问题,创设情境思考: 1.抛掷一枚硬币,正面向上的概率是多少?2.抛掷一枚硬币100次是否会50次正面向上,50次反面向上呢?二、信息交流,揭示规律活动1:抛硬币试验.试验要求:1.每组六名同学分为三小组,分别做投掷试验;2.按要求计算频数(结果保留两位小数),并向组长汇报,由组长填写好表格.投掷试验的总次数不少于100次.活动2:揭示频率与概率的关系.三、运用规律,解决问题(1)把表补充完整(精确到0.01);(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?四、变式训练,深化提高用前面抛掷硬币试验的方法,全班同学分组做掷骰子的试验,估计掷一次骰子时“点数是1”的概率.五、反思小结,观点提炼谈一谈自己对频率与概率的关系的认识.布置作业由表中数据可估计油菜籽发芽的概率为.参考答案一、提出问题,创设情境1.抛掷一枚硬币,正面向上的概率是0.5.2.抛掷一枚硬币100次不一定会有50次正面向上,50次反面向上.二、信息交流,揭示规律活动1(以一组为例活动2:估计抛掷一枚硬币正面向上的概率为0.5.三、运用规律,解决问题(1)0.560.600.520.520.490.510.50(2)可以估计这名球员投篮一次,投中的概率约是0.5.四、变式训练,五、反思小结,观点提炼当试验次数很大时,一个事件发生的频率会稳定在相应的概率附近.我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率.布置作业0.9第二十五章概率初步25.3 用频率估计概率25.3 用频率估计概率(第2课时)学习目标1.进一步理解用频率估计概率的合理性;理解频率与概率的区别与联系.2.经历用频率估计概率解决实际问题的过程,提高应用频率估计概率解决问题的能力.3.培养互助合作的精神,体会合作学习的重要性.学习过程设计一、提出问题,创设情境由上表可以发现,随着移植数的增加,幼树移植成活的频率在左右摆动, 并且随着移植棵数越来越大,这种规律愈加明显.二、信息交流,揭示规律随着试验次数的增加,随机事件发生的频数与概率之间有什么关系?三、运用规律,解决问题某水果公司以2元/kg的成本新进了10 000 kg柑橘.如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,所得结果四、变式训练,深化提高某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就中学生喜欢的笔袋的颜色随机调查了5 000名中学生,并在调查到1 000名、2 000名、3 000名、4 000名、5 000名时分别计算中学生喜欢的各种笔袋的颜色的频率,绘制折线图如下:(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10 000名同学时,红色的频率是多少吗?(3)若你是该厂的负责人,你将如何安排生产各种颜色笔袋的产量?五、反思小结,观点提炼 回顾学习历程,总结收获.布置作业在一个有10万人的小镇,随机调查了2 000人,其中有250人看中央电视台的“早间新闻”.在该镇随便问一个人,他看“早间新闻”的概率大约是多少?该镇看中央电视台“早间新闻”的人大约有多少?参考答案 一、提出问题,创设情境0.940 0.923 0.883 0.905 0.897 0.9二、信息交流,揭示规律在相同的条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定的常数,可以用这个常数估计这个事件发生的概率.三、运用规律,解决问题由表可知,500 kg 的柑橘损坏的频率为0.103,则可估计这批柑橘损坏的概率为0.1,在 1 000 kg,柑橘中完好柑橘的质量为10 000×(1-0.1)=9 000(kg),完好柑橘的实际成本为2 10 000 000=20 ≈2.22(元/kg).设每千克柑橘的售价为x 元,列方程得(x-2.22)×9 000=5 000, 解得x ≈2.8(元).答:出售时,每千克定价大约2.8元可获利润5 000元. 四、变式训练,深化提高(1)随着调查次数的增加,红色的频率基本稳定在40%左右; (2)估计调查到10 000名同学时,红色的频率约是40%.(3)红、黄、蓝、绿及其他颜色的笔袋的生产比例大约为4∶2∶1∶1∶2 . 五、反思小结,观点提炼用样本去估计总体、用频率去估计概率的思想. 布置作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十五章概率初步25.1随机事件与概率25.1.1随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是(A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少? 解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上; B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球. 解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.13×2=1×23.∴这个游戏对双方公平.学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果. 2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.从中任选一头猪,__0.1 .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。

相关文档
最新文档