朱寨镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
朱寨镇实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)如图,∠1=100°,要使a∥b,必须具备的另一个条件是()
A. ∠2=100°
B. ∠3=80°
C. ∠3=100°
D. ∠4=80°
【答案】C
【考点】平行线的判定
【解析】【解答】解:∠3=100°,∠1=100°,
则∠1=∠3,
则a∥b.故答案为:C.
【分析】∠1和∠3是同位角,如果它们相等,那么两直线平行.
2、(2分)若方程的解是负数,则的取值范围是()
A.
B.
C.
D.
【考点】解一元一次不等式,解含括号的一元一次方程
【解析】【解答】解:解含有系数m的方程,可得x=- ,然后根据方程的解为负数,可知4m-5>
0,解得m>- .
故答案为:A.
【分析】先把m看作已知数,解关于x的一元一次方程,求出x的值(用含m的代数式表示),由方程的解是负数可知x<0即4m-5>0,然后解不等式即可求出m的取值范围。
3、(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】无理数的认识
【解析】【解答】解:上述各数中,属于无理数的有:两个.
故答案为:B.
【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。
4、(2分)已知且-1<x-y<0,则k的取值范围是()
A. -1<k<-
B. 0<k<
C. 0<k<1
D. <k<1
【考点】解二元一次方程组,解一元一次不等式组
【解析】【解答】解:由②-①得:x-y=-2k+1
∵-1<x-y<0,
∴-1<-2k+1<0,
解之:<k<1
故答案为:D
【分析】观察方程组同一未知数的系数特点及已知条件-1<x-y<0,因此将②-①,求出x-y的值,再整体代入,建立关于k的一元一次不等式组,解不等式组,即可得出结果。
5、(2分)在数轴上标注了四段范围,如图,则表示的点落在()
A. 段①
B. 段②
C. 段③
D. 段④
【答案】C
【考点】实数在数轴上的表示,估算无理数的大小
【解析】【解答】解:∵2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,
∴7.84<8<8.41,
∴2.8<<2.9,
∴表示的点落在段③
故答案为:C
【分析】分别求出2.62,2.72,2.82,2.92,32值,就可得出答案。
6、(2分)若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为()
A. 20°
B. 55°
C. 20°或55°
D. 75°
【答案】C
【考点】二元一次方程组的其他应用,平行线的性质
【解析】【解答】解:∵∠A的两边与∠B的两边分别平行
∴∠A=∠B,∠A+∠B=180°
∵∠A的度数比∠B的度数的3倍少40°
∴∠A=3∠B-40°
∴或
解之:或
故答案为:C
【分析】根据∠A的两边与∠B的两边分别平行,得出∠A=∠B,∠A+∠B=180°,再根据∠A的度数比∠B 的度数的3倍少40°,建立两个二元一次方程组,解方程组,即可求得结果。
7、(2分)如图,已知AB∥CD,∠1=56°,则∠2的度数是()
A. 34°
B. 56°
C. 65°
D. 124°
【考点】平行线的性质
【解析】【解答】解:∵AB∥CD,∠1=56°,
∴∠2=∠1=56°.
故答案为:B.
【分析】根据两直线平行,同位角相等,即可得出答案。
8、(2分)已知a<b,则下列不等式中不正确的是()
A. a+4<b+4
B. a﹣4<b﹣4
C. ﹣4a<﹣4b
D. 4a<4b
【答案】C
【考点】不等式及其性质
【解析】【解答】解:A、两边都加4,不等号的方向不变,A不符合题意;
B、两边都减4,不等号的方向不变,B不符合题意;
C、两边都乘以﹣4,不等号的方向改变,C符合题意;
D、两边都乘以4,不等号的方向不变,D不符合题意;
故答案为:C.
【分析】本题是让找不正确的选项,因为a<b,所以两边同时加上4或减去4,不等号的方向不改变;当两边同时乘以或除以一个负数时,不等号的方向要改变.
9、(2分)实验课上,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()
A. 4种
B. 3种
C. 2种
D. 1种
【考点】二元一次方程的解,二元一次方程的应用
【解析】【解答】根据题意可得:5x+6y=40,根据x和y为非负整数可得:或,共两种,故选C.
【分析】根据总人数为40人,建立二元一次方程,再根据x和y为非负整数,,用含y的代数式表示出x,得到x=,求出y的取值范围为0<y<,得出满足条件的x、y的值即可。
10、(2分)下列计算正确的是()
A. B. C. D.
【答案】D
【考点】算术平方根,立方根及开立方,同底数幂的乘法,同类项
【解析】【解答】解:A.∵2a与3b不是同类项,不能合并,故错误,A不符合题意;
B.∵=6,故错误,B不符合题意;
C.∵≠3,故错误,C不符合题意;
D.∵72×73=75,故正确,D符合题意;
故答案为:D.
【分析】A.同类项:所含字母相同,相同字母指数相同,由此判断是否为同类项;故可判断错误;
B.算术平方根只有正,平方根才有正负;故错误;
C.9开立方根不会等于3,故错误;
D.同底数幂相乘,底数不变,指数相加,由此计算即可.
11、(2分)若,则y用只含x的代数式表示为()
A.y=2x+7
B.y=7﹣2x
C.y=﹣2x﹣5
D.y=2x﹣5
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:,
由①得:m=3﹣x,
代入②得:y=1+2(3﹣x),
整理得:y=7﹣2x.
故答案为:B.
【分析】由方程(1)变形可将m用含x、y的代数式表示,再将m代入方程(2)中整理可得关于x、y的方程,再将这个方程变形即可把y用含x的代数式表示出来。
12、(2分)如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()
A.180°n
B.(n+1)·180°
C.(n-1)·180°
D.(n-2)·180°
【答案】C
【考点】平行线的性质
【解析】【解答】解:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……
∵A1B∥A n C,
∴A3E∥A2D∥…∥A1B∥A n C,
∴∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….
∴∠A1+∠A1A2A3+…+∠A n-1A n C=(n-1)·180°.
故答案为:C.
【分析】过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……根据平行的传递性得A3E∥A2D∥…∥A1B∥A n C,再由平行线的性质得∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….将所有式子相加即可得证.
二、填空题
13、(1分)将线段AB平移1cm得到线段A'B',则点A到点A'的距离是________ cm.
【答案】1
【考点】坐标与图形变化﹣平移
【解析】【解答】解:∵将线段AB平移1cm得到线段A'B',
∴点A到点A'的距离是1cm
故答案为:1【分析】一个图形和它经过平移后所得的图形中,连接各组对应点的线段是相等的,都等于图形平移的距离
14、(1分)在两个连续整除a和b之间,a<<b,,那么a+b的值是________.
【答案】7
【考点】估算无理数的大小,代数式求值
【解析】【解答】解:∵9<11<16,
∴3<<4.
∴a=3,b=4.
∴a+b=7.
故答案为:7
【分析】根号11的被开方数11介于两个完全平方数9和16之间,从而根据算术平方根的意义,被开方数越大,其算数平方根也越大,从而得出。
根号11介于3和4之间,进而得出a,b的值,再代入代数式计算即可。
15、(1分)如图,∠BAC=90°,AD⊥BC,垂足为D,则点C到直线AB的距离是线段________的长度.
【答案】CA
【考点】点到直线的距离
【解析】【解答】解:∵∠BAC=90°
∴CA⊥AB
∴点C到直线AB的距离是线段AC的长度。
故答案为:CA
【分析】根据已知可得出CA⊥AB,再根据点到直线的距离的定义,即可得出答案。
16、(1分)如图,已知1= 2,B=40 ,则3=________
【答案】40°
【考点】平行线的判定与性质
【解析】【解答】解:∵∠1= ∠2
∴AB∥CE
∴∠3=∠B=40°
【分析】根据内错角相等两直线平行,可得出AB∥CE,再根据两直线平行,同位角相等,可求得结果。
17、(1分)护士若要统计一病人一昼夜体温情况,应选用________统计图.
【答案】折线
【考点】扇形统计图,条形统计图,折线统计图,统计图的选择
【解析】【解答】解:根据题意,要求直观表现一病人一昼夜体温情况,即体温的变化情况,结合统计图各自的特点,应选择折线统计图.
【分析】折线统计图反映数据的变化情况,条形统计图反映各组数据的具体数目,扇形图反映部分与整体百分比,可根据实际需要恰当选择。
三、解答题
18、(5分)已知代数式ax2+3x-b,在x=1时,值为3;x=-2时,值为4.求x=3时,这个代数式的值.
【答案】解:依题可得:,
变形为:,
(2)-(1)得:
a=,
∴a=b=,
∵x=3,
∴ax2+3x-b,
=9a+9-b,
=8a+9,
=.
∴x=3时,这个代数式的值为.
【考点】二元一次方程组的其他应用
【解析】【分析】依题可得一个关于a和b的二元一次方程组,解之得a和b的值,再将x=3代入即可求得代数值.
19、(5分)一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?
【答案】解:设小明答对了x道题,
4x+(30﹣x)≥90
解得x≥24
答:小明至少答对24道题.
【考点】一元一次不等式的应用
【解析】【分析】解本题时需注意找不等量中的关键词“至少”,也就是. 这是解决此题的关键.
20、(20分)利用不等式的基本性质,将下列不等式化为“x>a”或“x<a”的形式:
(1)x+2>7.
(2)3x<-12.
(3)-7x>-14.
(4)x<2.
【答案】(1)解:两边都减去2,得x>5
(2)解:两边都除以3,得x<-4
(3)解:两边都除以-7,得x<2
(4)解:两边都乘3,得x<6
【考点】不等式及其性质
【解析】【分析】(1)根据不等式的性质①两边的减去2即可。
(2)根据不等式的性质②两边都除以3即可。
(3)根据不等式的性质③两边都除以-7即可。
(4)根据不等式的性质②两边都乘以3(除以)即可。
21、(5分)若(x−3y+6)2+|4x−2y−3|=0,试求x与y的值.
【答案】解:依题可得:
,
(1)×4-(2)得:
10y=27,
∴y=,
将y=代入(1)得:
x=.
∴.
【考点】解二元一次方程组,非负数之和为0
【解析】【分析】根据平方根和绝对值的非负性得一个二元一次方程组,解之即可得出答案.
22、(15分)某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.
(1)求购进甲、乙两种花卉,每盆各需多少元?
(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?
【答案】(1)解:设购进甲种花卉每盆x元,乙种花卉每盆y元,
解得,
即购进甲种花卉每盆16元,乙种花卉每盆8元
(2)解:由题意可得,
W=6x+800−16x8×1,
化简,得
W=4x+100,
即W与x之间的函数关系式是:W=4x+100
(3)解:
解得,
故有三种购买方案,
由W=4x+100可知,W随x的增大而增大,
故当x=12时,800−16x8=76,即购买甲种花卉12盆,一种花卉76盆时,获得最大利润,此时W=4×12+100=148,
即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,一种花卉76盆时,获利最大,最大利润是148元.
【考点】一元一次不等式组的应用,一次函数与不等式(组)的综合应用,二元一次方程组的实际应用-销售问题
【解析】【分析】(1)设购进甲种花卉每盆x元,乙种花卉每盆y元,根据“ 购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆”可列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;
(2)购进甲种花卉x盆,则购进乙种花卉盆,根据总获利可写出W与x的函数关系式;
(3)由(2)知购进乙种花卉的盆数,再根据“ 购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍”可列出相应的不等式组,从而可以得到有几种购进方案,哪种方案获利最大,最大利润是多少
23、(10分)
(1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.
(2)现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1cm的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.
【答案】(1)解:设三角形各边需用火柴杆数目分别为x、y、3x,
依题意有,
由方程可得≤x<.
因x为正整数,故x=15或16.
所以满足条件的三角形有15,40,45或16,36,48两组
(2)解:这些小段的长度只可能是1,1,2,3,5,8,13,21,34,55,89…
但1+1+2+…+34+55=143<150.
1+1+2+…+34+55+89=232>150.故n的最大值为10,共有以下7种形式:(1,1,2,3,5,8,13,21,34,62)(1,1,2,3,5,8,13,21,35,61)(1,1,2,3,5,8,13,21,36,60)(1,1,2,3,5,8,13,21,37,59)(1,1,2,3,5,8,13,21,35,60)(1,1,2,3,5,8,13,21,36,59)(1,1,2,3,5,8,13,21,36,58).
【考点】解一元一次不等式组,一元一次不等式组的特殊解,三角形三边关系
【解析】【分析】(1)设三角形各边需用火柴杆数目分别为x、y、3x,根据三角形三边和为100建立方程,再由y不小于最小边,不大于最长边和三角形的两边之和大于第三边,列出不等式组,解不等式组求出x的取值范围,再根据x是整数可得出满足条件的三角形的三边长。
(2)由n段之和为150,是一个定值,要使n尽可能大,必须每一段的长度尽可能小,由此可以依题意构造一个数列,即可解答。
24、(6分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.
(1)数轴上点A表示的数为________.
(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.
①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?
②设点A的移动距离AA′=x.
(ⅰ)当S=4时,求x的值;
(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.
【答案】(1)4
(2)解:①因为S恰好等于原长方形OABC面积的一半,所以S=6,所以O′A=6÷3=2,当长方形OABC 向左运动时,如图3,A′表示的数为2;当长方形OABC向右运动时,如图4,因为O′A′=AO=4,所以OA′=4+4-2=6,所以A′表示的数为 6.故数轴上点A′表示的数是6或 2.
②(i)如图3,由题意得CO·OA′=4,因为CO=3,
所以OA′=,所以x=4-=(ii)如图3,当原长方形OABC向左移动时,点D表示的数为4-
x,点E表示的数为-x,由题意可得方程:4-x-x=0,解得x=,如图4,当原长方形OABC 向右移动时,点D,E表示的数都是正数,不符合题意,故舍去.所以综上所述x=.
【考点】数轴及有理数在数轴上的表示,正方形的性质,平移的性质
【解析】【解答】解:(1)∵长方形OABC的面积为12,OC边长为3,
∴OA=12÷3=4,
∴数轴上点A表示的数为4.
故答案为:4.
【分析】(1)根据长方形的面积=长宽=OA OC=12即可求解;
(2)①根据S恰好等于原长方形OABC面积的一半,可得S=6= OA′OC,由题意分长方形OABC向左运动时(或当长方形OABC向右运动时)两种情况求解即可;
②由题意分两种情况讨论求解:当原长方形OABC向左移动时,点D表示的数为4- x,点E表示的数为
- x,由题意可得方程:4- x- x=0,解方程即可求解;当原长方形OABC向右移动时,点D,E 表示的数都是正数,不符合题意,故舍去。
25、(10分)下表为某主题公园的几种门票价格.李老师家用1600元作为购买门票的资金.
(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,则“指定日普通票”和“夜票”各买多少张?(2)李老师若想用全部资金购买“指定日普通票”“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.
【答案】(1)解:设买“指定日普通票”x张,“夜票”y张.
由题意得:,
解得
∴“指定日普通票”买6张,“夜票”买4张.
(2)能,理由如下:
设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.
由题意得200x+160y+100(10-x-y)=1600.
整理得5x+3y=30,
∵x,y均为正整数,且每种至少一张,
∴当x=3,y=5,10-x-y=2时,李老师的想法能实现.
【考点】二元一次方程的解,二元一次方程组的实际应用-鸡兔同笼问题
【解析】【分析】(1)设买“指定日普通票”x张,“夜票”y张.,购买指定日普通票的花费为200x元,购买夜票的花费为100y元,根据购买“指定日普通票”和“夜票”共10张,和购买“指定日普通票”和“夜票”共花费1600元列出方程组,求解即可;
(2)能,理由如下:设李老师买“指定日普通票”x张,“平日普通票”y张,则“夜票”为(10-x-y)张.根据购买三种票的总花费是1600元,列出二元一次方程,再求出其正整数解,进而根据而且每张票至少一张,即可得出答案。