(试题7)八年级上学期期末综合测试题(人教版八年级上册数学)
人教版八年级数学上册《期末考试综合测试卷》测试题及参考答案

人教版八年级数学上册期末考试综合测试卷(时间:120 分钟,满分:120 分)一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.每小题给出的四个选项中,只有一项符合题目要求)1. 下列计算正确的是().A.x 2·x 3=x 6B.-2x 2+3x 2=-5x 2C.(-3ab )2=9a 2b 2D.(a+b )2=a 2+b 22. 计算 3ab 2·5a 2b 的结果是().A.8a 2b 2B.8a 3b 3C.15a 3b 3D.15a 2b 23. 下列方程无解的是().A. 3=1B.�-2+x=�-2+1�-1�-1�-1C.6 − 6=2D.�-1=2� 3��+1 34. 如图,欲测量内部无法到达的古塔相对两点 A ,B 间的距离,可延长 AO 至点 C ,使 CO=AO ,延长 BO 至点 D ,使 DO=BO ,则△COD ≌△AOB ,从而通过测量 CD 就可测得 A ,B 间的距离,其全等的根据是 ().A.SASB.ASAC.AASD.SSS5. 已知等腰三角形的一边长为 4,一边长为 9,则它的周长是().A.17B.22C.17 或 22D.13 6. 若一个多边形的内角和为 900°,则这个多边形是().A.五边形B.六边形C.七边形D.八边形7.若 a+b=5,ab=-24,则 a 2+b 2 的值为( ).A.73B.49C.43D.238.如图,在△ABC 中,延长BC 边上的中线AD 到点E,使DE=AD,则下列结论成立的是( ).A.DE=DCB.CE=ABC.CE=CBD.AE=BC9.如图,AB∥CD,AE 平分∠CAB 交CD 于点E.若∠C=50°,则∠AED=( ).A.65°B.115°C.125°D.130°10.已知1 = 1 + 1 , 1 = 1 −1 , �1( ).�1 �1�2 �2�2 �1则�2等于A.�1+�2�2-�1B. �1-�2�2+�1C. �2-�1�1+�2D.�2+�1�1-�2二、填空题(本大题共6 小题,每小题4 分,共24 分)11.因式分解:8a2-2= .12.方程2�+2−1=0 的解是.�13.如图,△ABO 是关于x 轴对称的轴对称图形,若点A 的坐标为(1,-2),则点B 的坐标为.14.如图,已知∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,若以“SAS”为依据,还要添加的条件为.15.如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°,则∠DAC 的度数等于.16. 如图,∠1 是五边形 ABCDE 的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.三、解答题(本大题共 8 小题,共 66 分)17.(6 分)化简:(�+�)2−2��+(a 2+b 2)0.�2+�2 �2+�218.(6 分)先化简,再求值:(2x+y )2+(x-y )(x+y )-5x (x-y ),其中 x= 2+1,y= 2-1.19.(6 分)已知:线段 a ,∠α.求作:等腰三角形 ABC ,使其腰长 AB 为 a ,底角∠B 为∠α.要求:用尺规作图,不写作法和证明,但要清楚地保留作图痕迹.20.(8 分)如图,已知 AC 平分∠BAD ,∠1=∠2.求证:AB=AD.21.(8 分)先化简,再求值:1-��2+�÷ 1-�-� + 1 ,其中,a= 2-1.�22.(8 分)如图,在△ABC 中,AB=AC,AB 的垂直平分线交AB 于点N,交BC 的延长线于点M,若∠A=40°.(1)∠NMB= ;(2)如果将题中∠A 的度数改为70°,其余条件不变,那么∠NMB= ;(3)你发现有什么样的规律性?试证明;(4)若将题中的∠A 改为钝角,你对这个规律性的认识是否需要加以修改?23.(12 分)如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开, 分成三角形和四边形两部分,求四边形中最大角的度数.24.(12 分)某校原有600 张旧课桌急需维修,经过A,B,C 三个工程队的竞标得知,A,B 两个工程队的工作效率相同,且都为C 工程队的2 倍,若由一个工程队单独完成,C 工程队比A 工程队要多用10 天.学校决定由三个工程队一起施工,要求至多6 天完成维修任务.三个工程队都按原来的工作效率施工2 天时,学校又清理出需要维修的课桌360 张,为了不超过6 天时限,工程队决定从第3 天开始,各自都提高工作效率,A,B 两个工程队提高的工作效率仍然都是C 工程队提高的2 倍.这样他们至少还需要3 天才能完成整个维修任务.(1)求A 工程队原来平均每天维修课桌的张数;(2)求A 工程队提高工作效率后平均每天多维修课桌张数的取值范围.答案与解析一、选择题1.C2.C3.B 选项B 中, �-2,得x=1,但x=1 使分母为0.等式两边同减去�-14.A5.B6.C7.A8.B9.B10.B 1 = �1+�2 , 1 = �1-�2,�1 �1�2 �2 �1�2则s1=�1�2 ,s2= �1�2 .�1+�2 �1-�2�1 =�1�2 ·�1-�2 = �1-�22 1+�2 1 2 1+�2二、填空题11.2(2a+1)(2a-1) 12.x=2 13.(1,2)14.BC=EF(或BE=CF) 15.70°16.425三、解答题所以2 17. 解 (�+�)2 − 2�� +1=�2+2��+�2-2��+1=�2+�2+1=2.�2+�2�2+�2 �2+�2 �2+�218.解 原式=4x 2+4xy+y 2+x 2-y 2-5x 2+5xy=9xy.当 x= 2+1,y= 2-1 时,原式=9xy=9( 2+1)( 2-1)=9.19. 解20. 证明 ∵AC 平分∠BAD ,∴∠BAC=∠DAC.∵∠1=∠2,∴∠ABC=∠ADC.∠B � = ∠B �,在△ABC 和△ADC 中, ∠��� = ∠���, �� = ��,∴△ABC ≌△ADC (AAS).∴AB=AD.21.解 原式= 1-� ÷ 1-� -�2-��(�+1) � �= 1-� ÷1-�-�2+� �(�+1) �= 1-� ÷1-�2 �(�+1) �= 1-� ·��(�+1)= 1 ,(�+1)(1-�)(1+�)当 a= 2-1 时,原式=1= 1.( 2-1+1)2222.解 (1)20° (2)35°(3)∠NMB=1A. : , A 作 AD ⊥BC 于点 D.∠ 证明 如图过点2�� =在Rt △ABD 与Rt △ACD 中, �� = ��,∴Rt △ABD ≌Rt △ACD (HL).∴∠BAD=∠CAD ,∴∠BAD=1 BAC. ∠2∵AD ⊥BC ,∴∠B+∠BAD=90°.∵MN ⊥AB ,∴∠B+∠NMB=90°,∴∠BAD=∠NMB ,∴∠NMB=1BAC. ∠2(4)需要修改.此时上述规律应改为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.23.解 如图,在△ABC 中,∠B=∠C=35°,则∠A=110°.过底边上的点 D 作 DE ⊥BC 交 AB 于点 E ,则∠EDC=90°.所以∠AED=360°-90°-35°-110°=125°,即分成的四边形中最大角的度数为 125°.24.解 (1)设C 工程队原来平均每天维修课桌 x 张, 则A 工程队,B 工程队原来平均每天维修课桌 2x 张. 根据题意, 600 − 600得 � 2� =10.解方程得 x=30.经检验,x=30 是原方程的解,且符合题意, 则 2x=60.故A 工程队原来平均每天维修课桌 60 张.(2)设C 工程队提高工作效率后平均每天多维修课桌 x 张,施工 2 天时,已维修(60+60+30)×2=300(张),从第 3 天起还需维修的课桌应为 300+360=660(张). 根据题意,得 3(2x+2x+x+150)≤660≤4(2x+2x+x+150).解得3≤x≤14,即6≤2x≤28.故A 工程队提高工作效率后平均每天多维修的课桌张数的取值范围是不少于6 张且不多于28 张.。
人教版八年级数学第一学期期末综合复习测试题(含答案)

人教版八年级数学第一学期期末综合复习测试题(含答案)一.选择题(共12小题,满分36分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A.B.C.D.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.74.若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或225.如果一个正多边形的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形6.已知等腰三角形一腰上的高线与另一腰的夹角为40°,那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°7.下列各式正确的是()A.B.C.D.8.下列计算正确的是()A.a m a n=a mn B.(﹣a2)3=a6C.(a﹣1)2=D.a3÷2a=2a29.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为()A.1B.2C.3D.410.甲乙两个码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时,则船一次往返两个码头所需的时间为()小时.A.B.C.D.+11.如图所示,在直角三角形ABC中,已知∠ACB=90°,点E是AB的中点,且DE⊥AB,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.212.已知△ABC是边长为10的等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交BC的延长线于F.若AE=4BE,则CF的长为()A.1B.2C.3D.4二.填空题(共6小题,满分18分)13.当x=时,分式无意义.14.如图,自行车是人们日常代步的工具.你发现了没有,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.15.分解因式:2x2﹣8x+8=.16.已知:a﹣b=1,a2+b2=25,则(a+b)2的值为.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.18.已知一张三角形纸片ABC(如图甲),其中AB=AC=10,BC=6.将纸片沿DE折叠,使点A与点B重合(如图乙)时,CE=a;再将纸片沿EF折叠,使得点C恰好与BE边上的G点重合,折痕为EF(如图丙),则△BFG的周长为(用含a的式子表示).三.解答题(共8小题,满分66分)19.计算:(1)(﹣a3)2•(ab)2.(2)(﹣0.25)2020×42021.20.先化简再求值,选择一个你喜欢的x的值代入其中并求值.21.如图,在△ABC中,AB=AC.(1)用尺规完成以下基本作图:作△ABC的边AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若∠A=40°,求∠CBE的度数.22.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,CE,BD相交于O.(1)若∠1=∠2,求证:OB=OC;(2)若OB=OC,求证:∠1=∠2.23.受疫情影响,洗手液需求量猛增,某商场用4000元购进一批洗手液后,供不应求,商场用8800元购进第二批这种洗手液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.25.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).26.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB 上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD∥BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.参考答案一.选择题(共12小题,满分36分)1.B.2.B.3.A.4.D.5.A.6.A.7.D.8.C.9.D.10.D.11.B.12.C.二.填空题(共6小题,满分18分)13.﹣3.14.稳定性.15.2(x﹣2)2.16.49.17.﹣=30.18.16﹣2a.三.解答题(共8小题,满分66分)19.解:(1)(﹣a3)2•(ab)2=a6•a2b2=a8b2.(2)(﹣0.25)2020×42021=(﹣)2020×42020×4=(﹣×4)2020×4=1×4=4.20.解:原式=[﹣]÷=()•=•=,由题意得:x≠±1,当x=2时,原式==1.21.解:(1)如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵DE为线段AB的垂直平分线,∴∠A=∠ABE=40°,∴∠CBE=∠ABC﹣∠ABE=70°﹣40°=30°.22.证明:如图所示:(1)∵CE⊥AB,BD⊥AC,∴∠BEO=∠CDO=90°,又∵∠EOB=∠DOC,∠BEO+∠EOB+∠B=180°,∠CDO+∠DOC+∠C=180°,∴∠B=∠C.在△ABO和△ACO中,,∴△ABO≌△ACO(AAS),∴OB=OC.(2)∵CE⊥AB,BD⊥AC,∴∠OEB=∠ODC=90°,在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OE=OD,∴AO是∠BAC的角平分线,∴∠1=∠2.23.解:(1)设该商场购进的第一批洗手液的单价为x元/瓶,依题意得:2×=,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:该商场购进的第一批洗手液的单价为10元;(2)共获利:(+﹣200)×13+200×13×0.9﹣(4000+8800)=2540(元).答:在这两笔生意中商场共获得2540元.24.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.25.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.26.证明:(1)①∵∠BAC=∠EDF=60°,AB=AC,DE=DF,∴△ABC,△DEF为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD∥BC;(2)如图2,在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC和△DAM中,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。
下列各题,每小题只有一个选项符合题意。
)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。
人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。
人教版八年级数学上册期末综合测试卷(附有参考答案)

人教版八年级数学上册期末测试卷(附有参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若三角形的两条边的长度是4cm 和7cm ,则第三条边的长度可能是( )A .2cmB .5cmC .11cmD .12cm2.如图所示,点D ,E 分别是△ABC 的边BC ,AB 上的点,分别连结AD ,DE ,则图中的三角形一共有( )A .3个B .4个C .5个D .6个3.下列各题的计算,正确的是( )A .()3515=a aB .5210a a a ⋅=C .32242a a a -=-D .()3236ab a b -=4.下列等式中不成立的是( )A .()222396x y x xy y -=-+.B .()()22a b c c a b +-=--. C .2221124⎛⎫-=-+ ⎪⎝⎭m n m mn n . D .()22244x y x y -=-. 5.在学校“文明学生”表彰会上,6名获奖者每两位都相互握手祝贺,则他们一共握了多少次手( )A .6B .8C .13D .156.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,内错角相等D .如果两个角都是30°,那么这两个角相等 7.已知实数x 、y 满足33x ?y 27=-,当x 1>时,y 的取值范围是( )A .y 3<-B .3y 0-<<C .y 3<-或y 0>D .3y 0-<<或y 0>8.下列计算中,(1) m n mn a a a ⋅=; (2) ()22m n m n a a ++= ; (3) ()311211263n n n n a b ab a b -++⎛⎫⋅-=- ⎪⎝⎭;(4)633a a a ÷=;正确的有( )A .0个B .1个C .2个D .3个9.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D . 10.要使分式21x x +-有意义,x 必须满足的条件是( ) A .1x ≠ B .0x ≠ C .2x ≠- D .2x ≠-且1x ≠11.《居室内空气中甲醛的卫生标准》(GB /T 16127-1995)规定:居室内空气中甲醛的最高容许浓度为0.00008g /m 3.将0.00008用科学记数法可表示为( )A .40.810-⨯B .4810-⨯C .50.810-⨯D .5810-⨯12.如图,AO ⊥OM ,OA=8,点B 为射线OM 上的一个动点,分别以OB 、AB 为直角边,B 为直角顶点,在OM 两侧作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交OM 于P 点,当点B 在射线OM 上移动时,PB 的长度是 ( )A .3.6B .4C .4.8D .PB 的长度随B 点的运动而变化二、填空题13.已知3x y -=,则代数式()()2122x x y y x +-+-的值为 .14.计算:(1)202220241(4)4⎛⎫-⨯-= ⎪⎝⎭ .(2)10298⨯= .15.在螳螂的示意图中AB DE ∥,ABC 是等腰三角形12672ABC CDE ∠=︒∠=︒,,则ACD ∠的度数是 .16.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF),先在BF 上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,且使A ,C ,E 三点在同一条直线上,如图,可以得△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是 .17.若()22224x k x x k +=++,则k = .18.一个多边形截去一个角后,形成一个新的多边形内角和为360°,那么原来的多边形的边数为19.如图,在ABC 中,AD 为BC 边上的高线,且AD BC =,点M 为直线BC 上方的一个动点,且ABC 面积为MBC 的面积2倍,则当MB MC +最小时,MBC ∠的度数为 °.20.计算()22x xy x -÷的结果是 .21.如图,用大小相等的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,拼第3个正方形需要16个小正方形……按照这样的方法拼成的第n 个正方形比第(n )1-个正方形多 个小正方形.22.在等边△ABC 中,E 是∠B 的平分线上一点,∠AEB =105°,点P 在△ABC 上,若AE =EP ,则∠AEP 的度数为 .三、解答题23.化简:231124a a a -⎛⎫-÷⎪+-⎝⎭ 24.计算:(1)860.10.1÷;(2)741133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3)()()3a b a b -÷-;(4)()()53xy xy ÷;25.我们知道多项式的乘法可以利用图形的面积进行解释,例如,(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: .(2)试画出一个图形,使它的面积能表示成(a+b )(a+3b )=a 2+4ab+3b 2.26.有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦12000kg 和14000kg ,已知第一块试验田每公顷的产量比第二块少1500kg .如果设第一块试验田每公顷的产量为xkg ,那么x 满足怎样的分式方程?27.春笋含有丰富的营养成分,是春天的重要食材.今年4月初,某蔬菜批发市场一店主张先生用2000元购进一批春笋,很快售完;张先生又用3200元购进第二批春笋,所购春笋的重量是第一批的2倍,由于进货量增加,第二批春笋的进价比第一批每千克少2元,求第一批春笋每千克进价多少元?28.下表为抄录某运动会票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图如图所示.比赛项目票价(张/元)足球1000男篮800乒乓球x依据上述图表,回答下列问题:(1)其中观看足球比赛的门票有______张,观看乒乓球比赛的门票占全部门票的______%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是______;(3)若购买乒乓球门票的总款数占全部门票总款数的542,求每张乒乓球门票的价格.29.某高速路修建项目中有一项挖土工程,招标时接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完成.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完成,你将选择哪一种方案?说明理由.30.如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.的边BC,CD上,∠EAF=12(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.线上,∠EAF=12(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.答案: 1.B 2.C 3.A 4.D 5.D 6.C 7.B 8.C 9.A 10.A 11.D 12.B 13.414.16 999615.45︒/45度16.ASA17.1218.5或4或3.19.4520.2x y -21.21n +/1+2n22.90︒或120︒23.2-a24.(1)0.01(2)127-(3)222a ab b -+(4)22x y 25.(1)(a +2b )(2a +b )=2a 2+5ab +2b 226.12000140001500x x =+. 27.第一批春笋每千克进价10元28.(1)50,20;(2)310;(3)每张乒乓球门票的价格为500元. 29.(1)20天(2)方案三30.(1)EF =BE +DF ;(2)EF =DF−BE ;(3)5.。
2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷(附参考答案)

2022-2023学年新人教版初中数学八年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•江津区校级月考)下列各组三条线段中,不能构成三角形的是()A.2cm,2cm,3cm B.3cm,8cm,10cmC.三条线段之比为1:2:3D.3a,5a,4a(a>0)2.(2分)(2022秋•望花区月考)在△ABC中,∠C=90°,∠B=2∠A,则∠A=()A.15°B.30°C.45°D.60°3.(2分)(2022秋•越秀区期中)已知一个正n边形的一个外角为40°,则n =()A.10B.9C.8D.74.(2分)(2022秋•天山区校级期中)如图,在△ABC≌△DEF,且AB=3,AE =1,则BD的长为()A.4B.5C.6D.75.(2分)(2022秋•天门期中)如图为轴对称图形的是()A.B.C.D.6.(2分)(2022秋•兴宁区校级期中)如图,过边长为2的等边三角形ABC的顶点C作直线l⊥BC,然后作△ABC关于直线l对称的△A'B′C,P为线段A'C上一动点,连接AP,PB,则AP+PB的最小值是()A.4B.3C.2D.17.(2分)(2022秋•广安区校级期中)点P(5,﹣2)关于y轴的对称的点的坐标是()A.(﹣5,﹣2)B.(﹣5,2)C.(5,﹣2)D.(5,2)8.(2分)(2022秋•任城区期中)下列从左到右的变形属于因式分解的是()A.a2+a+14=(a+12)2B.6a3b=3a2•2abC.a2﹣b2+1=(a+b)(a﹣b)+1D.(x+3)(x﹣3)=x2﹣99.(2分)(2022秋•朝阳区校级期中)下列运算正确的是()A.a3+a6=a9B.a6•a2=a12C.(a3)2=a5D.a4•a2+(a3)2=2a610.(2分)(2022秋•张店区校级月考)分式2x−6x+8的值是零,则x的值为()A.﹣3B.3C.8D.﹣811.(2分)(2022秋•岳阳楼区月考)根据分式的基本性质,分式a−b−x可变形为()A.−a−bx B.a+bxC.−a−bxD.−a+bx12.(2分)(2022秋•冷水滩区校级月考)若1m +1n=2,则代数式5m−2mn+5n−m−n的值为()A.﹣4B.﹣3C.3D.4二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•海淀区校级期中)如图,D是△ABC的边CA延长线上一点,∠1=°,∠2=°.14.(3分)(2022•菏泽)如果正n边形的一个内角与一个外角的比是3:2,则n=.15.(3分)(2022秋•江阴市期中)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=4,BC=9,则BE的长为.16.(3分)(2022秋•大埔县期中)在平面直角坐标系中,A(2022,2023)和B (2022,﹣2023),则A与B关于对称.17.(3分)(2022春•沙坪坝区校级月考)若x+y=3,x2+y2=132,则x﹣y的值为.18.(3分)(2022•秦都区校级开学)关于x的方程x−2x+4=ax+4有增根,则a的值为.三、解答题(共9小题,满分78分)19.(8分)(2022秋•任城区期中)因式分解:(1)x3+10x2+25x;(2)a4﹣8a2b2+16b4.20.(8分)(2022秋•西城区校级月考)计算:(1)(x2y )2⋅xyx2−xy2xy2÷2x;(2)a2b3•(a2b﹣2)﹣2.21.(8分)(2021秋•德江县期末)据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘2000毫克所需的银杏树叶的片数与一年滞尘1100毫克所需的槐树叶的片数相同,求一片槐树叶一年的平均滞尘量.22.(9分)(2022秋•谷城县期中)如图,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=80°,∠C=60°,求∠DAE和∠BOA的度数.23.(9分)(2022秋•汕尾校级月考)如图,在四边形ABCD中,∠B=∠D=90°,AE,CF分别是∠DAB及∠DCB的平分线.(1)求证:AE∥FC.(2)若∠BCD=56°,求∠DAE.24.(9分)(2022•姑苏区校级二模)已知:如图,AC=BD,AD=BC,AD,BC 相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.25.(9分)(2021秋•鄞州区期末)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.26.(9分)(2019秋•垦利区期中)如图,直线MN表示一条铁路,A,B是两个城市,它们到铁路的垂直距离分别为AA1=20km,BB1=40km,已知A1B1=80km,现要在A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短,请你设计一种方案确定P点的位置,并求这个最短距离.27.(9分)(2021秋•寻乌县期末)如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)求证:△BDE是等腰三角形;(2)若∠A=35°,∠C=70°,求∠BDE的度数.参考答案一、选择题(共12小题,满分24分,每小题2分)1.C;2.B;3.B;4.B;5.A;6.A;7.A;8.A;9.D;10.B;11.C;12.A;二、填空题(共6小题,满分18分,每小题3分)13.110;7014.515.316.x17.±218.﹣6;三、解答题(共9小题,满分78分)19.解:(1)原式=x(x2+10x+25)=x(x+5)2;(2)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.20.解:(1)原式=x24y2•xyx2−12y•x2=x4y −x4y=0.(2)原式=a2b3•(a﹣4b4)=a﹣2b7=b7a2.21.解:设一片槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,依题意得:20002x−4=1100x,解得:x=22,经检验,x=22是原方程的解,且符合题意.答:一片槐树叶一年的平均滞尘量为22毫克.22.解:∵AE 平分∠CAB ,∠CAB =80°, ∴∠BAE =∠CAE =12∠CAB =40°, ∵AD 是△ABC 的高, ∴∠ADC =90°,∴∠CAD =90°﹣∠C =90°﹣60°=30°, ∴∠DAE =∠CAE ﹣∠CAD =40°﹣30°=10°, ∵∠CAB =80°,∠C =60°,∴∠ABC =180°﹣(∠CAB +∠C )=180°﹣(80°+60°)=40°, ∵BF 平分∠ABC , ∴∠ABO =12∠ABC =20°,∴∠BOA =180°﹣(∠ABO +∠BAE )=180°﹣(20°+40°)=120°. 23.(1)证明:∵四边形的内角和是360°, ∴∠DAB +∠DCB =360°﹣∠B ﹣∠D =180°, ∵AE ,CF 分别是∠DAB 和∠DCB 的平分线. ∴∠FCB =12∠DCB ,∠BAE =12∠DAB , ∴∠FCB +∠BAE =12(∠DAB +∠DCB )=90°, ∵∠AEB +∠BAE =90°, ∴∠FCB =∠AEB , ∴AE ∥FC ;(2)解:∵CF 是∠DCB 的平分线. ∴∠DCF =12∠DCB =28°, ∴∠DFC =90°﹣∠DCF =62°, ∵AE ∥FC ,∴∠DAE =∠DFC =62°. 24.证明(1)在ABC 和△BAD 中, {AC =BD BC =AD AB =BA,∴△ABC ≌△BAD (SSS );(2)∵△ABC ≌△BAD , ∴∠CBA =∠DAB , ∴OA =OB , ∵OE ⊥AB , ∴AE =BE .25.(1)证明:∵CE ∥AB , ∴∠B =∠DCE , 在△ABC 与△DCE 中, {BC =CE∠ABC =∠DCE BA =CD, ∴△ABC ≌△DCE (SAS );(2)解:∵△ABC ≌△DCE ,∠B =50°,∠D =22°, ∴∠ECD =∠B =50°,∠A =∠D =22°, ∵CE ∥AB ,∴∠ACE =∠A =22°,∵∠CED =180°﹣∠D ﹣∠ECD =180°﹣22°﹣50°=108°, ∴∠AFG =∠DFC =∠CED ﹣∠ACE =108°﹣22°=86°. 26.解:如图,延长AA 1到D 使A 1D =AA 1,连接BD 交MN 于P , 则P A +PB 的最小值=BD , 过D 作DE ⊥BB 1交BB 1于E ,∵AA 1=20km ,BB 1=40km ,A 1B 1=80km , ∴DE =80km ,BE =60km , ∴BD =√602+802=100km , ∴这个最短距离是100km .27.(1)证明:∵BE平分∠ABC,∴∠DBE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠DBE=∠DEB,∴DB=DE,∴△BDE是等腰三角形;(2)解:∵∠A=35°,∠C=70°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣35°﹣70°=75°,∵DE∥BC,∴∠BDE+∠DBC=180°,∴∠BDE=180°﹣75°=105°.。
人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.下列四个图形中,不是轴对称图形的是()A .B .C .D .2.要使分式5x 1-有意义,则x 的取值范围是()A .x1≠B .x 1>C .x 1<D .x 1≠-3.下列运算正确的是()A .a+a=a 2B .a 6÷a 3=a 2C .(a+b)2=a2+b2D .(a b3)2=a2b64.将多项式32x xy -分解因式,结果正确的是()A .22()x x y -B .2()x x y -C .2()x x y +D .()()x x y x y +-5.已知m x =6,n x =3,则2-m n x 的值为()A .9B .34C .12D .436.下列运算中正确的是()A .623m m m=B .1x yx y-+=-+C .22222a ab b a b a b a b+++=--D .11+=+p pq q7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为A .5B .7C .5或7D .68.若22(3)16xm x +-+是完全平方式,则m 的值等于()A .1或5B .5C .7D .7或1-9.如图,在ABC 中,AB AC =,120A ∠=︒,6BC =cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为()A .4cmB .3cmC .2cmD .1cm10.如图所示,在直角三角形ACB 中,已知∠ACB=90°,点E 是AB 的中点,且DE AB ⊥,DE 交AC 的延长线于点D 、交BC 于点F ,若∠D=30°,EF=2,则DF 的长是()A .5B .4C .3D .211.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS12.如图所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC 和正CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①ACD BCE ≅ ;②AD BE =;③60AOB ∠=︒;④CPQ 是等边三角形.其中正确的是()A .①②③④B .②③④C .①③④D .①②③二、填空题13.因式分解:3269a a a -+=______.14.在平面直角坐标系中,(2,0)A ,(0,3)B ,若ABC ∆的面积为6,且点C 在坐标轴上,则符合条件的点C 的坐标为__________.15.若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.16.计算:0120201(2020)((1)2--+--=______.17.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度.18.如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为__________(答案不唯一,只需填一个)三、解答题19.(1)计算题:①(a 2)3•(a 2)4÷(a 2)5②(x ﹣y+9)(x+y ﹣9)(2)因式分解①﹣2a 3+12a 2﹣18a ②(x 2+1)2﹣4x 2.20.计算题(1)先化简,再求值:22121222a a a a a a ⎛⎫-+-÷ ⎪---⎝⎭其中a=3.(2)解方程:212xx x +=+21.如图所示,AB//DC ,AD ⊥CD ,BE 平分∠ABC ,且点E 是AD 的中点,试探求AB 、CD 与BC 的数量关系,并说明你的理由.22.如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断 BCD的形状;(2)求该船从A处航行至D处所用的时间.23.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)24.已知等腰△ABC一腰上的中线BD把三角形的周长分成21cm和12cm两部分,求底边BC的长.25.某农资公司购进甲、乙两种农药,乙种农药的单价是甲种农药单价的3倍,购买250元甲种农药的数量比购买300元乙种农药的数量多15,求两种农药单价各为多少元?26.已知如图,AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .求证:AD 垂直平分EF .27.已知:如图,已知△ABC (1)点A 关于x 轴对称的点A 1的坐标是,点A 关于y 轴对称的点A 2的坐标是;(2)画出与△ABC 关于x 轴对称的△A 1B 1C 1;(3)画出与△ABC 关于y 轴对称的△A 2B 2C 2.参考答案1.C【分析】根据轴对称图形的定义即可进行解答.【详解】解:由图形可知A、B、D为轴对称图形,C不是轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形的定义,解题的关键是掌握把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形.2.A【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得:x-1≠0,解得:x≠1,故选:A.3.D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(a b3)2=a2b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.4.D【详解】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选:D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5.C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【详解】解:∵x m =6,x n =3,∴x 2m-n =(x m )2÷x n =62÷3=12.故选:C .【点睛】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(x m )2÷x n 是解题的关键.6.C【分析】根据分式的约分可直接进行排除选项.【详解】解:A 、633m m m=,原式计算错误,故不符合题意;B 、x yx y-++分子分母没有公因式,不能约分,故不符合题意;C 、()()()222222a b a ab b a b a b a b a b a b++++==-+--,正确,故符合题意;D 、11p q ++分子分母没有公因式,不能约分,故不符合题意;故选C .【点睛】本题主要考查分式的约分,熟练掌握分式的约分是解题的关键.7.B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选:B .【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.8.D【分析】根据完全平方公式,首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【详解】解:∵多项式22(3)16x m x +-+是完全平方式,∴222(3)16(4)x m x =x +-+±,∴2(3)8m =-±34-±m=解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【详解】解:连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为2cm.故选:C.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.10.B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.11.D【分析】根据作图过程可知:OC=OD,PC=PD,又OP=OP,从而利用SSS判断出△OCP≌△ODP,根据全等三角形的对应角相等得出∠COP=∠DOP,即OP平分∠AOB,从而得出答案.【详解】解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.12.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】解:ABC ∆ 和CDE ∆是正三角形,AC BC ∴=,CD CE =,60ACB DCE ︒∠=∠=,ACD ACB BCD ∠=∠+∠ ,BCE DCE BCD ∠=∠+∠,ACD BCE ∠∠∴=,()ADC BEC SAS ∴∆≅∆,故①正确,AD BE ∴=,故②正确;ADC BEC ∆≅∆ ,ADC BEC ∠∠∴=,60AOB DAE AEO DAE ADC DCE ∴∠=∠+∠=∠+∠=∠=︒,故③正确;CD CE = ,60DCP ECQ ∠=∠=︒,ADC BEC ∠∠=,()CDP CEQ ASA ∴∆≅∆.CP CQ ∴=,60CPQ CQP ∴∠=∠=︒,CPQ ∴∆是等边三角形,故④正确;故选:A .【点睛】此题主要考查等边三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.13.2(3)a a -【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =-+=-,故答案为:2(3)a a -.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.14.()2,0-或()6,0或()0,3-或()0,9【分析】根据C 点在坐标轴上分类讨论即可.【详解】解:①如图所示,若点C 在x 轴上,且在点A 的左侧时,∵(0,3)B ∴OB=3∴S △ABC =12AC·OB=6解得:AC=4∵(2,0)A ∴此时点C 的坐标为:()2,0-;②如图所示,若点C 在x 轴上,且在点A 的右侧时,同理可得:AC=4∴此时点C 的坐标为:()6,0;③如图所示,若点C 在y 轴上,且在点B 的下方时,∵(2,0)A ∴AO=2∴S △ABC =12BC·AO=6解得:BC=6∵(0,3)B ∴此时点C 的坐标为:()0,3-;④如图所示,若点C 在y 轴上,且在点B 的上方时,同理可得:BC=6∴此时点C 的坐标为:()0,9.故答案为()2,0-或()6,0或()0,3-或()0,9.【点睛】此题考查的是平面直角坐标系中已知面积求点的坐标,根据C 点的位置分类讨论是解决此题的关键.15.8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n 边形的边数【详解】解:∵一个n边形的每个内角都等于135°,︒-︒=︒∴则这个n边形的每个外角等于18013545÷=360458∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.16.2【分析】直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.【详解】解:原式1212=+-=.故答案为:2.【点睛】本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.17.80【分析】先根据折叠的性质可得AD DF∠=∠,再根=,根据等边对等角的性质可得B BFD据三角形的内角和定理列式计算即可求解.【详解】解:DEF是DEA△沿直线DE翻折变换而来,∴=,AD DFD是AB边的中点,∴=,AD BD∴=,BD DFB BFD∴∠=∠,,∠=︒B50∴∠=︒-∠-∠=︒-︒-︒=︒.180180505080BDF B BFD故答案为:80.【点睛】本题考查的是折叠的性质,以及等边对等角、三角形内角和定理,熟知折叠的性质是解答此题的关键.18.AC=DC(答案不唯一)【详解】根据∠1=∠2可得∠BCA=∠ECD,添加AC=DC可以利用SAS来进行判定;添加∠B=∠E可以利用ASA来进行判定;添加∠A=∠D可以利用AAS来进行判定.故答案为:AC=DC(答案不唯一)19.(1)①4a ②x 2﹣y 2+18y ﹣81(2)①﹣2a (a ﹣3)2②(x+1)2(x ﹣1)2【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;②原式利用平方差公式变形,再利用完全平方公式展开即可;(2)①原式提取公因式,再利用完全平方公式分解即可;②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a 14÷a 10=a 4;②原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)①原式=﹣2a (a ﹣3)2;②原式=(x 2+1+2x )(x 2+1-2x )=(x+1)2(x ﹣1)2.20.(1)11a a +-,2;(2)x=-1【分析】(1)先计算括号里面的,再因式分解,然后将除法转化为乘法,约分即可.(2)去掉分母,将分式方程转化为整式方程,求出解后再检验.【详解】解:(1)22121222a a a a a a ⎛⎫-+-÷ ⎪---⎝⎭=()222112a a a a -⎛⎫÷ ⎪---⎝⎭=()()()211221a a a a a +--⨯--=11a a +-,将a=3代入,原式=2;(2)212xx x +=+去分母得:()()2222x x x x +++=,去括号得:22242x x x x +++=,移项合并得:44x =-,系数化为1得:x=-1.经检验:x=-1是原方程的解.【点睛】本题考查了分式的化简求值和解分式方程,解题的关键是掌握运算法则和解法.21.BC=AB+CD,理由见解析【分析】过点E作EF⊥BC于点F,只要证明△ABE≌△FBE(AAS),Rt△CDE≌Rt△CFE (HL)即可解决问题;【详解】解:证明:∵AB//DC,AD CD,∴∠A=∠D=90°,过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.22.(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,∴∠BCD=∠BDC=60°,∴BC=BD,∴△BCD是等边三角形;(2)∵△BCD是等边三角形,∴CD=BD=BC=60海里,∵∠BAC=90°-60°=30°,∴∠ABC=∠BCD-∠BAC=30°,∴∠BAC=∠ABC,∴AC=BC=60海里,∴AD=AC+CD=120海里,∴该船从A处航行至D处所用的时间为:120÷15=8(小时);23.答案作图见解析【分析】根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.【详解】解:连接A,B两点,作AB的垂直平分线,作两直线交角的角平分线,交点有两个.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.考点:作图-应用与设计作图24.5cm【分析】根据图形和题意可知,有AB+AD=21,CD+BC=12或AB+AD=12,CD+BC=21两种情况,据此即可求出BC的长,然后再结合三角形的三边关系进行判断即可.【详解】解:∵△ABC是等腰三角形,∴AB=AC,∵BD是AC边上的中线,∴AD=CD设AB=AC=xcm,BC=ycm,∵BD把三角形的周长分成21cm和12cm两部分,∴有AB+AD=21cm,CD+BC=12cm或AB+AD=12cm,CD+BC=21cm两种情况,则有:①21212 2xxx y⎧+=⎪⎪⎨⎪+=⎪⎩解得:145 xy=⎧⎨=⎩即AB=AC=14cm,BC=5cm,根据三角形构成的条件可知,能够成三角形;②12221 2xxx y⎧+=⎪⎪⎨⎪+=⎪⎩解得:817 xy=⎧⎨=⎩即AB=AC=8cm,BC=17cm,根据三角形构成的条件可知,不能够成三角形,不符合题意;综上所述,等腰三角形底边BC为5cm.25.10元、30元.【分析】设甲农药的单价为x元,乙农药的单价为3x元,根据购买250元甲农药的数量比购买300元乙农药的数量多15件列出方程,求出方程的解即可得到结果;【详解】解:设甲农药的单价为x元,乙农药的单价为3x元,根据题意得,250360-=15x3x,解得x=10,经检验,x=10是所列方程的根,∴3x=3×10=30(元),答:甲、乙两种农药品的单价分别为10元、30元.26.见解析【分析】根据角平分线的性质可得DE DF =,易证AE AF =,即△AEF 为等腰三角形,根据三线合一可证结论.【详解】证明:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∴12∠=∠,∵90AED AFD ∠=∠=︒,∴3=4∠∠,∴AE AF =,∵AD 是等腰三角形AEF 的顶角平分线,∴AD 垂直平分EF (三线合一)27.(1)(-4,-2),(4,2);(2)图形见解析(3)图形见解析【分析】(1)分别利用关于x 轴以及y 轴对称点的性质得出对应点坐标即可;(2)直接利用关于x 轴对称点的性质得出对应点坐标即可;(3)直接利用关于y 轴对称点的性质得出对应点坐标即可.【详解】解:(1)(-4,-2),(4,2);(2)如图所示:△A 1B 1C 1,即为所求;(3)如图所示:△A 2B 2C 2,即为所求.。
人教版八年级(上)数学期末综合测评卷(含答案)

八年级上学期期末综合测评卷时间:100分钟 满分:120分一、选择题(本大题共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.钢架雪车是2022年北京冬奥会的比赛项目之一,下面这些钢架雪车运动标志的图形是轴对称图形的是( ) A B C D2.在物联网时代的所有芯片中,14 nm芯片成为需求的焦点.已知1 nm=1×10-9 m.将14 nm用科学记数法表示正确的是( )A.1.4×10-8 mB.1.4×10-9 mC.14×10-9 mD.1.4×10-10 m3.下列各式运算正确的是( )A.a2·a4=a12B.(a2)3=a3C.a6÷a2=a3D.(2ab)-2=14a2b24.下列三角形与如图所示的三角形全等的是( )A. B. C. D.5.若a,b是等腰三角形ABC的两边长,且满足|a-3|+(b-7)2=0,则此等腰三角形的周长是( )A.13B.13或17C.17D.206.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.5B.7C.10D.37.如图,正六边形与正五边形的公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条水平直线上,则∠COF的度数是( )A.74°B.76°C.84°D.86°8.在正数范围内定义一种运算“※”,其运算法则为a※b=1a +1b,如2※4=12+14=34.根据这个法则,方程3※(x+1)=1的解为( )A.12B.1C.-1 D.-129.已知25a·52b=56,4b÷4c=4,则式子a2+ab+3c的值是( )A.3B.6C.7D.810.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC+PE的和最小时,∠CPE=( )A.30°B.45°C.60°D.90°二、填空题(共5小题,每小题3分,共15分)11.若分式x-2x+3的值等于零,则实数x的值是 .12.当a= 时,多项式x2-2(a-1)x+25是一个完全平方式.13.如图,在△ABC中,∠CAD=∠EAD,∠ADC=∠ADE,CB=5 cm,BD=3 cm,则ED的长为 cm.(第13题) (第14题)14.如图,在平面直角坐标系xOy内有一点A(2,-1),P是x轴上的一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为 .15.如图,D为△ABC内一点,AD⊥CD,AD平分∠CAB,且∠DCB=∠B.如果AB=10,AC=6,那么CD= .三、解答题(共8小题,共75分)16.(共2小题,每小题3分,共6分)解答下列各题.(1)计算:(12a3-6a2+3a)÷3a-1.(2)因式分解:16x2-2x3-32x.17.(7分)如图,已知△ABC.利用直尺和圆规,按照下列要求作图(保留作图痕迹,不要求写作法):(1)作∠ABC 的平分线BD 交AC 于点D ;(2)作线段BD 的垂直平分线,分别交AB ,BC 于点E ,F.18.(8分)先化简式子a 2-2a +1a 2-4÷(1-3a +2),再从2,-2,1,-1四个数中选择一个你喜欢的数代入求值.19.(9分)如图,在△ABC 中,∠B=40°,AD 平分∠BAC 交BC 于点D ,线段AD 的垂直平分线交AB 于点E ,交BC 的延长线于点F ,连接AF.(1)求∠CAF 的度数;(2)若AB=BF ,求∠DAC 的度数.20.(9分)如图,△ABC 是等边三角形,BD 是AC 边上的中线,延长BC 至点E ,使CE=CD.(1)求证:DB=DE.(2)过点D作DF⊥BE交BE于点F,若CF=4,求△ABC的周长.21.(10分)在某城市美化工程招标时,有甲、乙两个工程队投标,经测算,甲队单独完成这项工程需要60天,若由甲队先做20天,则剩下的工程由甲、乙两队合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成这项工程省钱,还是由甲、乙两队全程合作完成这项工程省钱.22.(12分)如图(1),有A,B,C三种不同型号的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图(2)所示的大正方形.(1)观察图(2),请你用两种方法表示出图(2)的面积.方法1: ;方法2: .请利用图(2)的面积表示方法,写出一个关于a,b的等式: . (2)已知图(2)总面积为49,一张A型纸板和一张B型纸板的面积之和为25,求ab 的值.(3)用一张A型纸板和一张B型纸板,拼成如图(3)所示的图形,若a+b=8,ab=15,求图(3)中阴影部分的面积.图(1) 图(2) 图(3) 23.(14分)如图(1),△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)请你写出AB与AP所满足的数量关系和位置关系(不必证明);(2)将△EFP沿直线l向左平移到如图(2)的位置时,EP交AC于点O,连接AP,BO,请你写出BO与AP所满足的数量关系和位置关系,并说明理由;(3)将△EFP沿直线l继续向左平移到如图(3)的位置时,EP的延长线交AC的延长线于点O,连接AP,BO.此时,BO与AP还具有(2)中的数量关系和位置关系吗?请说明理由.图(1) 图(2) 图(3)八年级上学期期末综合测评卷选择填空题答案速查12345678910D A D C C A C A B C11.212.-4或613.214.415.21.D2.A. 3.D a2·a4=a6,(a2)3=a6,a6÷a2=a4,(2ab)-2=14a2b24.C 180°-51°-49°=80°,A选项只有两边相等,不能推出两三角形全等;B,D选项两边相等,但夹角不相等,不能推出两三角形全等;C选项符合全等三角形的判定定理SAS,能推出两三角形全等.5.C (分类讨论思想)由题意可得a=3,b=7.当腰长为3时,等腰三角形的三边长为3,3,7,不能构成三角形;当腰长为7时,等腰三角形的三边长为【注意】需根据三角形的三边关系验证是否能组成三角形3,7,7,此时三角形的周长为3+7+7=17.6.A 如图,过点E 作EF ⊥BC 于点F ,∵BE 平分∠ABC ,ED ⊥AB ,∴EF=DE=2,∴△BCE 的面积=12BC ·EF=5.【提示】角平分线上的点到角两边的距离相等7.C 由题意得∠EOF=∠OED=108°,∠BOC=∠OBA=120°,∴∠OEB=72°,∠OBE=60°,∴∠BOE=180°-72°-60°=48°,∴∠COF=360°-108°-48°-120°=84°.8.A 由题意得,3※(x+1)=13+1x +1.∵3※(x+1)=1,∴13+1x +1=1,∴x+1+3=3(x+1),解得x=12.∵当x=12时,3(x+1)≠0,∴这个方程的解为x=12.9.B (整体思想)∵25a ·52b =56,4b ÷4c =4,∴52a ·52b =56,4b-c =4,∴2a+2b=6,b-c=1,∴a+b=3,b-1=c ,∴a 2+ab+3c=a (a+b )+3(b-1)=3a+3b-3=3(a+b )-3=3×3-3=9-3=6.10.C 如图,连接BE ,与AD 交于点P ,此时PC+PE 的和最小.∵△ABC 是等边三角形,∴∠BCE=60°.∵BA=BC ,AE=EC ,∴BE ⊥AC ,∴∠BEC=90°,∴∠EBC=30°.∵AD ⊥BC ,AB=AC ,∴BD=CD ,∴PB=PC ,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.11.210.-4或6 因为x 2-2(a-1)x+25=x 2-2(a-1)x+52是完全平方式,所以-2(a-1)=±2×1×5,解得a=-4或6.【注意】一次项系数的正负都要考虑13.2 在△ACD 和△AED 中,∠CAD =∠EAD ,AD =AD ,∠ADC =∠ADE ,∴△ACD ≌△AED (ASA),∴CD=DE.∵CB=5 cm,BD=3 cm,∴CD=BC-BD=5-3=2(cm),∴DE=CD=2 cm .14.4 连接OA.当OA 为等腰三角形的底边时,符合条件的动点P 有1个;当OA 为等腰三角形的一腰时,符合条件的动点P 有3个.故符合条件的点P 共有4个.15.2 如图,延长CD 交AB 于点E ,∵CD ⊥AD ,∴∠ADE=∠ADC=90°.∵AD 平分∠CAB ,∴∠EAD=∠CAD ,∴∠AED=∠ACD ,∴AE=AC=6,∴DE=CD.∵AB=10,∴BE=10-6=4.∵∠B=∠BCD ,∴CE=BE=4,∴CD=12CE=2.【关键】等腰三角形“三线合一”16.【参考答案 】(1)原式=4a 2-2a+1-1(2分)=4a 2-2a.(3分)(2)原式=2x (8x-x 2-16)=-2x (x 2-8x+16)=-2x (x-4)2.(3分)17.【参考答案】(1)(2)作图如图所示.(7分)18.【参考答案】原式=(a -1)2(a +2)(a -2)÷a +2―3a +2=(a -1)2(a +2)(a -2)·a +2a -1=a -1a -2.(4分)∵a+2≠0,a-2≠0,a-1≠0,∴a只能取-1.(6分)当a=-1时,原式=-1-1-1-2=23.(8分)19.【参考答案】(1)∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ADF=∠B+∠BAD=40°+∠BAD.∵EF垂直平分AD,∴AF=DF,∴∠DAF=∠ADF=40°+∠BAD.∵∠DAF=∠CAD+∠CAF∴∠CAF=40°.(5分)【关键】等量代换(2)∵∠B=40°,AB=BF,∴∠BAF=∠BFA=12(180°-40°)=70°.由(1)知,∠CAF=40°,∴∠BAC=∠BAF-∠CAF=70°-40°=30°.∵AD平分∠BAC,∴∠DAC=12∠BAC=15°.(9分) 20.思路导图(1)等边三角形的性质 ↓∠DEC=∠DBC结论(2)DF ⊥BE ,∠ACB=60°→∠CDF=30°→CD=2CF →AC=2CD →C △ABC =3AC 【参考答案】(1)证明:∵△ABC 是等边三角形,BD 是AC 边上的中线,∴∠ABC=∠ACB=60°,∠DBC=30°.(1分)∵CE=CD ,∴∠CDE=∠CED.又∠BCD=∠CDE+∠CED ,∴∠CDE=∠CED=12∠BCD=30°,(3分)∴∠DBC=∠DEC ,∴DB=DE.(5分)(2)∵DF ⊥BE ,∠ACB=60°,∴∠CDF=30°.(7分)∵CF=4,∴DC=8.∵AD=CD ,∴AC=16,∴△ABC 的周长=3AC=48.(9分)21.【参考答案】(1)设乙队单独完成这项工程需要x 天.根据题意,得160×20+(1x +160)×24=1.解得x=90.经检验,x=90是原分式方程的解.答:乙队单独完成这项工程需要90天.(4分)(2)设甲、乙合作完成需y 天,则有(160+190)×y=1,解得y=36.(7分)①甲队单独完成需付工程款为3.5×60=210(万元);②乙队单独完成超过计划天数不符合题意;③甲、乙两队全程合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙两队全程合作完成这项工程省钱.(10分)22.【参考答案】(1)(a+b)2(或a2+2ab+b2) a2+2ab+b2[或(a+b)2](a+b)2=a2+2ab+b2(3分) (2)由题意得,(a+b)2=a2+2ab+b2=49,a2+b2=25,(5分)∴ab=(a+b)2-(a2+b2)2=49―252=242=12.(7分) (3)由题意得,题图(3)中阴影部分的面积为b2 2+a2-a(a+b)2=b2+2a2-a2-ab2=(a+b)2-3ab2.当a+b=8,ab=15时,(10分) (a+b)2-3ab2=82-3×152=64―452=192.∴题图(3)中阴影部分的面积为192.(12分) 23.【解题思路】(1)由已知条件可得△ABC与△EPF是全等的等腰直角三角形,根据全等三角形及等腰直角三角形的性质即可得解;(2)延长BO交AP于点M,根据“SAS”可证明△BCO≌△ACP,得到BO=AP,∠CBO=∠CAP,等量代换可得∠AMO=90°,即AP⊥BO;(3)同(2)的思路分析即可.【参考答案】(1)AB=AP,AB⊥AP.(2分) (2)BO=AP,BO⊥AP.(3分)理由如下:图(1)如图(1),延长BO交AP于点M.由已知得,EF=FP,EF⊥FP,∴∠EPF=45°.∵AC⊥BC,∴∠COP=∠CPO=45°,∴CO=CP.在△BCO和△ACP中,BC=AC,∠BCO=∠ACP=90°,CO=CP,∴△BCO≌△ACP(SAS).∴BO=AP,∠OBC=∠PAC.(6分)在Rt△BCO中,∠OBC+∠BOC=90°.又∠BOC=∠AOM,∴∠PAC+∠AOM=∠OBC+∠BOC=90°.∴∠OMA=90°.∴BO⊥AP.(8分) (3)BO与AP还具有(2)中的数量关系和位置关系,即BO=AP,BO⊥AP.(9分)理由:如图(2),延长OB交AP于点N.图(2)∵∠EPF=45°,∴∠CPO=45°.又AC⊥BC,∴∠COP=∠CPO=45°,∴CO=CP.在△BCO和△ACP中,BC=AC,∠BCO=∠ACP,CO=CP,∴△BCO≌△ACP(SAS).∴BO=AP,∠BOC=∠APC.(12分)在Rt△BCO中,∠BOC+∠CBO=90°,又∠PBN=∠CBO,∴∠APC+∠PBN=90°,∴∠PNB=90°,∴OB⊥AP.(14分)。
人教版八年级数学上册期末综合复习测试题(含答案)

八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。
人教版八年级上册数学 期末综合测试卷

人教版八年级上册数学期末综合测试卷(时间:90分钟 满分:150分)一、选择题(每小题5分,共50分)1. 4-的值是( ) A.4 B.2 C. -2 D. ±22. 已知a m =4,则a 2m 的值为( )A.2B.4C.8D. 163. 人字梯中间一般会设计一“拉杆”,这样做的道理是( )A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性4. 下列图书馆的标志中,是轴对称图形的是( )A BC D 5.下列式子一定是二次根式的是( )A. 2--xB.xC.22-xD.22+x6.如图,已知点B 、E 、C 、F 在- -条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC ≌△DFE 的是( )A. BE=CFB. AB= DFC.∠ACB=∠DEFD. AC= DE7. 若点P(2a-1,3)关于y 轴对称的点为Q(3,b),则点M(a,b)关于x 轴对称的点的坐标为( )A. (1,3)B. ( -1,3)C. (-1,-3)D. (1,-3)8. 若分式方程4241-+=-+x a x x 无解,则a 的值为( ) A.5 B.4 C.3 D.09.如图,将三角形ABC 纸片沿MN 折叠,使点A 落在点A'处,若∠AMN=50°,∠A'MB 的度数是( )A.20°B.120°C.70°D.80°10.熊大熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍的速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为( )A. 22.1300300=+-x xB. 22.1300300=-x xC. 23002.1300=--xx D.23002.1300=-+x x 二、填空题(每小题5分,共25分)11. 计算:=⨯6312. 如图,已知△ABE ≌△14CD,∠A =60°,∠B=25° ,则∠DOE 的度数为13. 代数式(x-2)0÷1-x x 有意义,则x 的取值范围是 14. 一个三角形的两边长为3cm 和2cm,第三边长为奇数,则第三边的长为 cm.15.如图,已知BD 是△ABC 的中线,AB=5, BC=3,且△ABD 的周长为11,则△BCD 的周长是_ ___三、解答题(共75分)16. (8分)解方程: (1);123+=x x (2)144222=---+x x x17. (8分)因式分解:(1)4x 3-x ’ (2)(2x+y)2= -6(2x+y) +9.18. (9分)已知多项式x 3+ax 2 +bx +c 能被x 2 +3x-4整除.(1)求4a +c 的值; (2)求2a-2b-c 的值; (3)若a,b,c 均为整数,且c ≥a>1,试求a,b,c 的值.19. (10分) 某文具店购进A,B 两种款式的笔袋,其中A 种笔袋的单价比B 种袋的单价低10%.已知.店主购进A 种笔袋用了810元,购进B 种笔袋用了600元,且所购进的A 种笔袋的数量比B 种笔袋多20个.请问:文具店购进A, B 两种款式的笔袋各多少个?20.(10分) 下面的方格图是由边长为1的42个小正方形拼成的, △ABC 的顶点A 、B 、C 均在小正方形的顶点上.(1)作出△ABC 关于直线m 对称的△A'B'C'; (2)求△ABC 的面积21.(10分) 定义:任意两个数a,b,按规则c=b2 +ab-a+7扩充得到一个新数c, 称所得的新数c为“如意数".(1)若a=2,b= -1,直接写出a,b的“如意数"c;(2)如果a=3+m,b=m-2,试说明“如意数”c为非负数.22.(10分) 已知:如图, BC//EF,点C和点F在AD上,AF = DC, BC = EF.求证: △ABC≌△DEF.23.(10分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:琪琪发现这三种方案都能验证公式:a2 +2ab +b2 =(a +b)2,对于方案一,琪琪是这样验证的:a2 +ab +ab +b2 =a2 +2ab+b2=(a +b)2请你根据方案二方案三,写出公式的验证过程.方案二:方案三:。
人教版八年级上册数学 期末综合考试卷

人教版八年级上册数学期末综合考试卷一、选择题(每题3分,共24分)1.把分式2232yx y x -+中的x,y 同时扩大到原来的10倍,则分式的值( ) A.变为原分式值的101 B.变为原分式值的1001 C.变为原分式值的10 D.不变 2.已知点P (0,m )在y 轴的负半轴上,则点M (﹣m ,1)在( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列各式从左到右的变形中,属于因式分解的是( )A .﹣12x 3y =﹣3x 3•4yB .m (mn ﹣1)=m 2n ﹣mC .y 2﹣4y ﹣1=y (y ﹣4)﹣1D .ax+ay =a (x ﹣y ) 4.若3x =4,9y =7,则3x ﹣2y 的值为( ) A . B .C .﹣3D . 5.化简+的结果为( )A .1B .﹣1C .D .6.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A.(a+b )(a ﹣b )=a 2﹣b 2B.(a+b )2=a 2+2ab+b 2C. a (a ﹣b )=a 2﹣abD. (a ﹣b )2=a 2﹣2ab+b 27.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠ABC =∠DCB B .AC =DB C .∠ABD =∠DCA D .AB =DC8.如图,在△ABC 中,AB =AC ,AD 、CE 是△ABC 的两条中线,点P 是AD 上一个动点,则BP+EP 的最小值等于线段( )的长度.A .BCB .CEC .AD D .AC二、填空题(每题3分,共24分)9. 若分式的值为0,则x 的值为11. 若使分式2-1x 有意义,则x 的取值范围为 . 10. 若多项式142++mx x 是一个完全平方式,则m 的值为 .12. 已知a+b =3,则a 2﹣b 2+6b 的值为 .13.当x = ______ 时,分式3x 2−3(x−1)(x−3)的值为0.14.把多项式1422122--x x 进行分解因式,结果为 .15.9x 2+mx +16是一个完全平方式,那么m = ______ 或 ______ .16. 已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为 .三、解答题17.计算(10分)(1)()()()()x y y x xy xy y x y x -+--÷--2324263223(2) 4(a ﹣b )2﹣(2a+b )(2a ﹣b ).18. (6分)先化简(1﹣)•,再在1,2,3中选取一个适当的数代入求值.19.(6分)先化简,再求值(a+2﹣)÷,其中a=120.(10分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的 1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?21. (10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上求作一点P,使△PAC的周长最小,并直接写出P的坐标.22. (10分)某体育用品商场预测某品牌运动服能够畅销,用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场第一次购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%).23. (10分)如图,在等边△ABC中,点D,E分別在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.24.(10分)如图(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).。
人教版八年级上册数学 期末综合考试卷

人教版八年级上册数学期末综合考试卷一.单选题(共48分)1.(本题4分)点 A (2,-1)关于 y 轴对称的点 B 的坐标为( )A .(2, 1)B .(-2,1)C .(2,-1)D .(-2,- 1)2.(本题4分)约分:232318x xy y -⋅=( ) A .23x y - B .2x y - C .223x y - D .3x y- 3.(本题4分)化简2111a a a+--的结果是( ) A .a B .a+1 C .a ﹣1 D .a 2﹣1 4.(本题4分)下列运算正确..的是( ) A .246x x x ⋅= B .246()x x = C .3362x x x += D .33(2)6x x -=-5.(本题4分)如图,在ABC ∆中,4AC =,ADE ∆的周长10,ABC ∠和ACB ∠的平分线交于点O ,过点O 作//DE BC 分别交AB 、AC 于D 、E ,则AB 的长为( )A .10B .6C .4D .不确定6.(本题4分)下列说法:①若AC BC =,则C 为AB 的中点②若12AOC AOB ∠=∠,则OC 是AOB ∠的平分线③a b >,则22a b >④若a b =,则||||a b =,其中正确的有( )A .1个B .2个C .3个D .4个7.(本题4分)下列计算正确的是( )A .236236x x x ⋅=B .()4312x x -=-C .()33326xy x y =D .()32622mm m x x x ⋅= 8.(本题4分)如图,BD 是△ABC 的角平分线,AE⊥BD,垂足为M .若∠ABC=30°,∠C=38°,则∠CDE 的度数为( )A .68°B .70°C .71°D .74°9.(本题4分)已知22193()3m m n +÷=,n 的值是( ) A .2- B .2 C .0.5 D .0.5-10.(本题4分)已知29y my ++是完全平方式,则m 的值为( )A .6B .-6C .3D .6或-611.(本题4分)以下四大通讯运营商的企业图标中,是轴对称图形的是( )A .B .C .D .12.(本题4分)如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .8二.填空题(共20分) 13.(本题5分)已知am =10,bm =2,则(ab )m =___.14.(本题5分)现规定一种运算:x y xy x y ⊕=+-,其中,x y 为实数,则()x y y x y ⊕+-⊕=___.15.(本题5分)若一个分数的分子、分母同时加1,得12;若分子、分母同时减2,则得13,这个分数是______.16.(本题5分)如图,BH 是钝角三角形 ABC 的高,AD 是角平分线, 且2∠C=90°-∠ABH,若 CD=4,ΔABC 的面积为 12, 则 AD=_____.三.解答题(共52分)17.(本题6分)先化简,再求值:(3(a 3+a (a ﹣6),其中a 218.(本题6分)计算:(1)a 6÷a 2-2a 3·a (2)2x (x -2y )-(x -y )219.(本题8分)先化简,再求值:22211369x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中x 取不等式组24324x x x -<⎧⎨<+⎩的适当整数解.20.(本题6分)计算:(1)2211310()()24---÷-+. (2)()()222334222a a a a a a ⋅⋅+--÷.21.(本题6分)一个零件形状如图所示,按规定A ∠应等于75°,B 和C ∠应分别是18°和22°,某质检员测得114BDC ∠=︒,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.22.(本题6分)矩形纸片的长和宽分别为a 、b ,在纸片的四个角都剪去一个边长为x 的正方形.(1)请画出图形,并用含有a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当13x a b =--=,剩余部分的面积恰好等于剪去面积的4倍时,求纸片的长与宽.23.(本题6分)如图,在直角坐标系中,ABC 的三个顶点坐标分别为()1,4A ,()4,2B ,()3,5C ,请回答下列问题:(1)作出ABC 关于x 轴的对称图形111A B C △,并直接写出111A B C △的顶点坐标;(2)111A B C △的面积为 .24.(本题8分)现有一装修工程,若甲、乙两队装修队合作,需要12天完成;若甲队先做5天,剩余部分再由甲乙两队合作,还需要9天才能完成.求:(1)甲乙两个装修队单独完成分别需要几天?(2)已知甲队每天施工费用4000元,乙队每天施工费用为2000元,要使该工程施工总费用为70000元,则甲装修队施工多少天?(3)甲装修队有装修工人12人,乙装修队有装修工人10人,该工程需要在13天内(包括13天)完成,该工程由甲乙两队合作完成,两队合作4天后,乙队另有任务需调出部分人员,则乙队最多调走多少人?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级___ ____ 姓名_ ______ 总分__ _____
一.选择题(每小题 3 分,共 30 分) 1.下列各式由左边到右边的变形中,是分解因式的为( ) 。 2 A、a (x + y) =a x + a y B、x -4x+4=x(x-4)+4 2 C、10x -5x=5x(2x-1) D、x2-16+3x=(x-4)(x+4)+3x 2.下列运算中,正确的是( ) 。 A、x3·x3=x6 B、3x2÷2x=x C、(x2)3=x5 D、(x+y2)2=x2+y4 3.下列图形中,不是轴对称图形的是( ) 。
(第 23 题)
第 2 页 共 5 页
24. (10 分)△ABC 为正三角形,点 M 是射线 BC 上任意一点,点 N 是射线 CA 上任意一
点,且 BM=CN,BN 与 AM 相交于 Q 点,∠AQN 等于多少度.
25. (10 分)已知函数 y=(m+1)x+m –1 若这个函数的图象经过原点,求 m 的值;并画出函数的图像。
A
B
22. 分解因式(每题 6 分,共 12 分) (1) a 16
4
(2) x 2 xy y 9
2 2
M
23. 分)作图题(不写作图步骤,保留作图痕迹) (6 . 已知:如图,求作点 P,使点 P 到 A、B 两点的距 离相等,且 P 到∠MON 两边的距离也相等. O
A
.
·B N
3 3 2 2
。 。 。
16.若函数 y=4x+3-k 的图象经过原点,那么 k=
17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是
2
18. 多项式 4a 1 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项 式可以是___________。 (填上一个你认为正确的即可) 19.已知 x+y=1,则
A
B
C
D
4.已知△ABC 的周长是 24,且 AB=AC,又 AD⊥BC,D 为垂足,若△ABD 的周长是 20, 则 AD 的长为( ) 。 A、6 B、8 C、10 D、12 5.8.已知 x 6 , x 3 ,则 x
m
n
2m n
的值为( D、
) 。
A、9
B、
3 4
C、12
4 3
6. 一次函数 y=-3x+5 的图象经过( ) A、第一、三、四象限 B、第二、三、四象限 C、第一、二、三象限 D、第一、二、四象限 7.已知等腰三角形一边长为 4,一边的长为 6,则等腰三角形的周长为( A、14 B、16 C、10 D、14 或 16 8.已知 x 6 , x 3 ,则 x
26. (10 分) 一次函数 y=k1x-4 与正比例函数 y=k2x 的图象经过点(2,-1) , (1) 分别求出这两个函数的表达式; (2) 求这两个函数的图象与 x 轴围成的三角形的面积。
27. (10 分)先化简,再求值: 8m2-5m(-m+3n) +4m(-4m-
5 n),其中 m=2,n=-1 2
D、8 个
第 1 页 共 5 页
11.当 m= _______时,函数 y=(m-3)x2+4x-3 是一次函数。 12.一个汽车牌在水中的倒影为 ,则该车牌照号码____________。 13.设 a 是 9 的平方根,b=( 3 )2,则 a 与 b 的关系是 。
14. 已知点 A(l,-2) ,若 A、B 两点关于 x 轴对称,则 B 点的坐标为________。 15.分解因式 x y 2 x y xy =
第 5 页 共 5 页
第 3 页 共 5 页
28. (10 分)如图,直线 y=kx+6 分别与 x 轴、y 轴相交于点 E 和点 F,点 E 的坐标为 (-8, 0) ,点 A 的坐标为(0,6) 。 (1)求 k 的值; (2)若点 P(x,y)是第二象限内的直线上的一个动点,当点 P 运动过程中,试写出△ OPA 的面积 S 与 x 的函数关系式,并写出自变量 x 的取值范围; (3)探究:当 P 运动到什么位置时,△OPA 的面积为
m
) 。
n
2m n
的值为( D、
) 。
A、9
B、
3 4
C、12
4 3
9.已知正比例函数 y kx (k≠0)的函数值 y 随 x 的增大而减小,则一次函数 y=x+k 的图象大致是(
y x O A
).
y O B x O C y x
y O D x
10.直线与 y x 1 两坐标轴分别交于 A、B 两点,点 C 在坐标轴上,若△ABC 为等腰三 角形,则满足条件的点 C 最多有( ) 。 A、4 个 B、5 个 C、7 个 二.填空题 (每小题 3 分,共 30 分)
2
150 或 750 .18、答案不唯一。19、
三、简答题: 21、解: (1)
1 20、①②③ 2
(2)
(5a 2 2a ) 4(2 2a 2 ) 5a 2 2 a 8 8a 2 3a 2 2a 8
22、解: (1) (2)
5 x 2 ( x 1)( x 1) 5 x 2 ( x 2 1) 5x4 5x2
1 2 1 x xy y 2 = 2 2
。
E 2 M D 1 F N
C
20.如图 EB 交 AC 于 M,交 FC 于 D,AB 交 FC 于 N,∠E=∠F=90°, ∠B=∠C,AE=AF。给出下列结论:①∠1=∠2;②BE=CF; ③△ACN≌△ABM;④CD=DN。其中正确的结论有 三、简答题: (共 6 题,共 90 分) 21.化简(每题 6 分,共 12 分) (1) (5a 2 2a) 4(2 2a 2 ) ; (2) 5 x 2 ( x 1)( x 1) (填序号)
27 ,并说明理由。 8
y F
A E O x
29. (10 分)已知 a,b,c 是△ABC 的三边,且满足关系式 a2+c2=2ab+2bc-2b2,试说明△ ABC 是等边三角形.
第 4 页 共 5 页
参考答案
一、选择: 1、C 2、A 3、B 4、B 5、C 6、D 7、D 8、C 9、A 10、B 二、填空: 11、 y=x+8,(2<x<8).12、 M17936.13、 等边三角形 14、 3, (1, 15、xy ( xy 1) 16、 2) K=3.17、
a 4 16 (a 2 4)(a 2 4) (a 2 4)(a 2)(a 2)
24、解:∠AQN=60º,
x 2 2 xy y 3)( x y 3)
如图,在△ABM 和△BCN 中,易证∠BCN=∠ABM=60º,CN=BM,又∵AB=AC, ∴△ABM≌△BCN,∴∠BAM=∠CBN, 又∵∠AQN=∠BAQ+∠ABQ=∠NBC+∠ABQ=∠ABC=60º. ∴∠AQN =∠ABC=60º