工程热力学,锅炉原理,汽轮机原理基础知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,那么它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

如工程上常用测压仪表测定系统中工质的压
力即为相对压力。

比容:单位质量工质所具有的容积,称为工质的比容。

密度:单位容积的工质所具有的质量,称为工质的密度。

强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。

在热力过程中,强度性参数起着推动力作用,称为广义力或势。

广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。

在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。

准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。

可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。

膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。

热量:通过热力系边界所传递的除功之外的能量。

热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。

第二章气体的热力性质
理想气体:气体分子是由一些弹性的、忽略分子之间相互作用力(引力和斥力)、不占有体积的质点所构成。

比热:单位物量的物体,温度升高或降低1K(1℃)所吸收或放出的热量,称为该物体的比热。

定容比热:在定容情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定容比热。

定压比热:在定压情况下,单位物量的物体,温度变化1K(1℃)所吸收或放出的热量,称为该物体的定压比热。

定压质量比热:在定压过程中,单位质量的物体,当其温度变化1K(1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。

定压容积比热:在定压过程中,单位容积的物体,当其温度变化1K(1℃)时,物体和
外界交换的热量,称为该物体的定压容积比热。

定压摩尔比热:在定压过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压摩尔比热。

定容质量比热:在定容过程中,单位质量的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容质量比热。

定容容积比热:在定容过程中,单位容积的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容容积比热。

定容摩尔比热:在定容过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容摩尔比热。

混合气体的分压力:维持混合气体的温度和容积不变时,各组成气体所具有的压力。

道尔顿分压定律:混合气体的总压力P 等于各组成气体分压力P i 之和。

混合气体的分容积:维持混合气体的温度和压力不变时,各组成气体所具有的容积。

阿密盖特分容积定律:混合气体的总容积V 等于各组成气体分容积V i 之和。

混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值称为混合气体的质量成分。

混合气体的容积成分:混合气体中某组元气体的容积与混合气体总容积的比值称为混合气体的容积成分。

混合气体的摩尔成分:混合气体中某组元气体的摩尔数与混合气体总摩尔数的比值称为混合气体的摩尔成分。

对比参数:各状态参数与临界状态的同名参数的比值。

对比态定律:对于满足同一对比态方程式的各种气体,对比参数r p 、r T 和r v 中若有两个相等,那么第三个对比参数就一定相等,物质也就处于对应状态中。

第三章 热力学第一定律
热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定,这一自然界普遍规律称为能量守恒与转换定律。

把这一定律应用于伴有热现象的能量和转移过程,即为热力学第一定律。

第一类永动机:不消耗任何能量而能连续不断作功的循环发动机,称为第一类永动机。

热力学能:热力系处于宏观静止状态时系统内所有微观粒子所具有的能量之和。

外储存能:也是系统储存能的一部分,取决于系统工质与外力场的相互作用(如重力位能)及以外界为参考坐标的系统宏观运动所具有的能量(宏观动能)。

这两种能量统称
为外储存能。

轴功:系统通过机械轴与外界传递的机械功称为轴功。

流动功(或推动功):当工质在流进和流出控制体界面时,后面的流体推开前面的流体而前进,这样后面的流体对前面的流体必须作推动功。

因此,流动功是为维持流体通过控制体界面而传递的机械功,它是维持流体正常流动所必须传递的能量。

焓:流动工质向流动前方传递的总能量中取决于热力状态的那部分能量。

对于流动工质,焓=内能+流动功,即焓具有能量意义;对于不流动工质,焓只是一个复合状态参数。

稳态稳流工况:工质以恒定的流量连续不断地进出系统,系统内部及界面上各点工质的状态参数和宏观运动参数都保持一定,不随时间变化,称稳态稳流工况。

技术功:在热力过程中可被直接利用来作功的能量,称为技术功。

动力机:动力机是利用工质在机器中膨胀获得机械功的设备。

压气机:消耗轴功使气体压缩以升高其压力的设备称为压气机。

节流:流体在管道内流动,遇到突然变窄的断面,由于存在阻力使流体压力降低的现象。

第四章 理想气体的热力过程及气体压缩
分析热力过程的一般步骤:1.依据热力过程特性建立过程方程式,p=f(v);
2.确定初、终状态的基本状态参数;
—s 图上,使过程直观,便于分析讨论。

4.计算过程中传递的热量和功量。

绝热过程:系统与外界没有热量交换情况下所进行的状态变化过程,即0=q δ或0=q 称为绝热过程。

定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。

多变过程:凡过程方程为=n pv 常数的过程,称为多变过程。

定容过程:定量工质容积保持不变时的热力过程称为定容过程。

定压过程:定量工质压力保持不变时的热力过程称为定压过程。

定温过程:定量工质温度保持不变时的热力过程称为定温过程。

单级活塞式压气机工作原理:吸气过程、压缩过程、排气过程,活塞每往返一次,完成以上三个过程。

活塞式压气机的容积效率:活塞式压气机的有效容积和活塞排量之比,称为容积效率。

活塞式压气机的余隙:为了安置进、排气阀以及避免活塞与汽缸端盖间的碰撞,在汽缸端盖与活塞行程终点间留有一定的余隙,称为余隙容积,简称余隙。

最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比称为最佳增压比。

压气机的效率:在相同的初态及增压比条件下,可逆压缩过程中压气机所消耗的功与实际不可逆压缩过程中压气机所消耗的功之比,称为压气机的效率。

热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,那么此循环称为热机循环。

第五章热力学第二定律
热力学第二定律:
开尔文说法:只冷却一个热源而连续不断作功的循环发动机是造不成功的。

克劳修斯说法:热不可能自发地、不付代价地从低温物体传到高温物体。

第二类永动机:从单一热源取得热量,并使之完全转变为机械能而不引起其他变化的循环发动机,称为第二类永动机。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

孤立系统熵增原理:任何实际过程都是不可逆过程,只能沿着使孤立系统熵增加的方向进行。

定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。

热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,那么此循环称为热机循环。

制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温称为制冷。

制冷机:从低温冷藏室吸取热量排向大气所用的机械称为制冷机。

热泵:将从低温热源吸取的热量传送至高温暖室所用的机械装置称为热泵。

理想热机:热机内发生的一切热力过程都是可逆过程,那么该热机称为理想热机。

卡诺循环:在两个恒温热源间,由两个可逆定温过程和两个可逆绝热过程组成的循环,称为卡诺循环。

卡诺定理:
1.所有工作于同温热源与同温冷源之间的一切可逆循环,其热效率都相等,与采用哪种工质无关。

2.在同温热源与同温冷源之间的一切不可逆循环,其热效率必小于可逆循环。

自由膨胀:气体向没有阻力空间的膨胀过程,称为自由膨胀过程。

第七章水蒸气
1.基本概念
未饱和水:水温低于饱和温度的水称为未饱和水(也称过冷水).
饱和水: 当水温达到压力P 所对应的饱和温度s t 时,水将开始沸腾,这时的水称为饱和水。

湿饱和蒸汽:把预热到t s 的饱和水继续加热,饱和水开始沸腾,在定温下产生蒸汽而形成饱和液体和饱和蒸汽的混合物,这种混合物称为湿饱和蒸汽,简称湿蒸汽。

干饱和蒸汽:湿蒸汽的体积随着蒸汽的不断产生而逐渐加大,直至水全部变为蒸汽,这时的蒸汽称为干饱和蒸汽(即不含饱和水的饱和蒸汽)。

第八章 湿空气
湿空气:干空气和水蒸气所组成的混合气体。

饱和空气:干空气和饱和水蒸气所组成的混合气体。

未饱和空气:干空气和过热水蒸气所组成的混合气体。

绝对湿度:每立方米湿空气中所含有的水蒸气质量。

饱和绝对湿度:在一定温度下饱和空气的绝对湿度达到最大值,称为饱和绝对湿度 相对湿度:湿空气的绝对湿度v ρ与同温度下饱和空气的饱和绝对湿度s ρ的比值
含湿量(比湿度):在含有1kg 干空气的湿空气中,所混有的水蒸气质量
饱和度:湿空气的含湿量d 与同温下饱和空气的含湿量d s 的比值
湿空气的比体积:在一定温度T 和总压力p 下,1kg d 水蒸气所占有的体积湿空气的焓: 1kg d kg 水蒸气的焓的总和
第九章 气体和蒸汽的流动
1.基本概念
稳态稳流:稳态稳流是指开口系统内每一点的热力学和力学参数都不随时间而变化的流动,但在系统内不同点上,参数值可以不同。

为了简化起见,可认为管道内垂直于轴向的任一截面上的各种参数都均匀一致,流体参数只沿管道轴向或流动方向发生变化。

定熵滞止参数:将具有一定速度的流体在定熵条件下扩压,使其流速降低为零,这时气体的参数称为定熵滞止参数。

减缩喷管:当进入喷管的气体是M < 1的亚音速气流时,这种沿着气体流动方向喷管截面积逐渐缩小的喷管称为渐缩喷管。

渐扩喷管:当进入喷管的气体是M > 1的超音速气流时,这种沿气流方向喷管截面积逐渐扩大的喷管称为渐扩喷管。

缩放喷管:如需要将M < 1的亚音速气流增大到M > 1的超音速气流,那么喷管截面积应由d f < 0逐渐转变为d f > 0,即喷管截面积应由逐渐缩小转变为逐渐扩大,这种喷管称为渐缩渐扩喷管,或简称缩放喷管,也称拉伐尔(Laval)喷管。

节流:节流过程是指流体(液体、气体)在管道中流经阀门、孔板或多孔堵塞物等设备时,由于局部阻力,使流体压力降低的一种特殊流动过程。

这些阀门、孔板或多孔堵塞物称为节流元件。

若节流过程中流体与外界没有热量交换,称为绝热节流,常常简称为节流。

在热力设备中,压力调节、流量调节或测量流量以及获得低温流体等领域经常利用节流过程,而且由于流体与节流元件换热极少,可以认为是绝热节流。

冷效应区:在转回曲线与温度纵轴围成的区域内所有等焓线上的点恒有j > 0,发生在这个区域内的绝热节流过程总是使流体温度降低,称为冷效应区。

热效应区:在转回曲线之外所有等焓线上的点,其j < 0,发生在这个区域的微分绝热节流总是使流体温度升高,即压力降低d p,温度增高d T,称为热效应区。

喷管效率:是指实际过程气体出口动能与定熵过程气体出口动能的比值。

第十章动力循环
1.基本概念
热机:将热能转化为机械能的设备叫做热力原动机,简称热机。

动力循环:热机的工作循环称为动力循环。

根据热机所用工质的不同,动力循环可分为蒸汽动力循环和燃气动力循环两大类。

奥托循环:定容加热理想循环是汽油机实际工作循环的理想化,又称为奥托循环。

狄塞尔(Diesel)循环:定压加热理想循环是柴油机实际工作循环的理想化。

燃气轮机:燃气轮机装置是一种以空气和燃气为工质、旋转式的热力发动机。

燃气轮机装置主要由三部分组成,即燃气轮机、压气机和燃烧室。

第十一章制冷循环
1.基本概念
制冷:对物体进行冷却,使其温度低于周围环境的温度,并维持这个低温称为。

空气压缩式制冷:将常温下较高压力的空气进行绝热膨胀,获得低温低压的空气。

蒸汽喷射制冷循环:用引射器代替压缩机来压缩制冷剂,以消耗蒸汽的热能作为补偿来实现制冷的目的。

蒸汽喷射制冷装置:由锅炉、引射器(或喷射器)、冷凝器、节流阀、蒸发器和水泵等组成。

吸收式制冷:利用制冷剂液体气化吸热实现制冷,它是直接利用热能驱动,以消耗热能为补偿将热量从低温物体转移到环境中去。

吸收式制冷采用的工质是两种沸点相差较大的物质组成的二元溶液,其中沸点低的物质为制冷剂,沸点高的物质为吸收剂。

热泵:是一种能源提升装置,以消耗一部分高位能(机械能、电能或高温热能等)为补偿,通
过热力循环,把环境介质(水、空气、土壤)中贮存的不能直接利用的低位能量转换为可以利用的高位能。

影响制冷系数的主要因素:降低制冷剂的冷凝温度(即热源温度)和提高蒸发温度(冷源温度),都可使制冷系数增高。

第一章锅炉基本知识
2.什么是能源?什么是一次能源与二次能源?
能源是指自然界中能够转换成热能、光能、电能和机械能等能量的物质资源。

一次能源:自然界中现成存在,可直接取用的能源,如煤、水力、太阳能等等。

二次能源:经过加工或形式转换的能源,如焦炭、汽油、电力、蒸汽等等。

3.说明锅炉在国民经济中的重要地位。

火力发电量在总发电量中的比重,在近十几年来一直保持在80%以上,其中煤电在总火电的比重保持在90%以上。

“九五”期间,煤电在火力发电中的比重更上升到95%以上,油电的比重那么不到5%,气电的比重微乎其微。

预计在今后相当长时期内,我国发电能源构成将继续保持以煤电为主的格局。

锅炉是火力发电厂三大主机之一,火力发电的发展要求锅炉工业以相应的速度发展。

在各种工业企业的动力设备中,锅炉也是重要的组成部分。

这些锅炉用户使用锅炉主要是作为热源或动力源。

大多数工矿企业用蒸汽或高温热水对其产品进行加热、焙烘、消毒、保温或作为冬季采暖、夏季空调制冷的热源等等,也有少数的工矿企业用蒸汽作为动力,驱动汽轮机来拖动风机、水泵,油田和炼油厂或特殊部门都有这样需要。

总之,工业锅炉绝大多数都以产生携带一定量热能的蒸汽和热水为目的,以水作为介质的形式出现。

此外,还有用于生活热水供应、洗浴和采暖的所谓生活锅炉。

用于工业生产和生活的锅炉数量大、分布广。

4. 说明锅炉的一般工作过程。

锅炉的工作过程可归纳为:
(1)燃料的燃烧过程。

在这个过程中,燃料中的化学能被释放出来并转化成为被烟气所携带的热能。

(2)传热过程。

在这个过程中,烟气所携带的热能通过锅炉的各种受热面传递给锅炉的工质。

(3)工质的升温、汽化、过热过程。

在这个过程中,工质吸收热量而被加热到所期望的温度。

5. 请列举锅炉的主要部件和锅炉的辅助设备并说明什么是锅炉机组?
以现代大型自然循环高压锅炉为例,它所具有的主要部件及其作用如下:
(1)炉膛。

保证燃料燃尽并使出口烟气温度冷却到对流受热面能安全工作的数值。

(2)燃烧设备。

将燃料和燃烧所需空气送入炉膛并使燃料着火稳定,燃烧良好。

(3)锅筒。

是自然循环锅炉各受热面的闭合件,将锅炉各受热面联结在一起并和水冷壁,下降管等组成水循环回路。

锅筒内储存汽水,可适应负荷变化,内部设有汽水分离装置等以保证汽水品质,直流锅炉无锅筒。

(4)水冷壁。

是锅炉的主要辐射受热面、吸收炉膛辐射热加热工质, 并用以保护炉墙。

后水冷壁管的拉稀部分称为凝渣管用以防止过热器结渣。

(5)过热器。

将饱和蒸汽加热到额定过热蒸汽温度。

生产饱和蒸汽的蒸汽锅炉和热水锅炉无过热器。

(6)再热器。

将汽轮机高压缸排汽加热到较高温度,然后再送到汽轮机中压缸膨胀作功。

用于大型电站锅炉以提高电站热效率。

(7)省煤器。

利用锅炉尾部烟气的热量加热给水,以降低排烟温度,节约燃料。

(8)空气预热器。

加热燃烧用的空气,以加强着火和燃烧;吸收烟气余热,降低排烟温度,提高锅炉效率;为煤粉锅炉制粉系统提供干燥剂。

(9)炉墙。

是锅炉的保护外壳,起密封和保温作用。

小型锅炉中的重型炉墙也可起支承锅炉部件的作用。

(10)构架。

支承和固定锅炉各部件,并保持其相对位置。

锅炉的辅助设备及其作用如下:
(1)燃料供应设备。

贮存和运输燃料。

(2)磨煤及制粉设备。

将煤磨制成煤粉并输入燃用煤粉的锅炉燃烧设备燃烧。

(3)送风设备。

由送风机将空气送入空气预热器加热后输往炉膛及磨煤装置应用。

(4)引风设备。

由引风机和烟囱将锅炉排出的烟气送往大气。

(5)给水设备。

由给水泵将经过水处理设备处理后的给水送入锅炉。

(6)除灰除渣设备。

从锅炉中除去灰渣并运走。

(7)除尘设备。

除去锅炉烟气中的飞灰,改善环境卫生。

(8)自动控制设备。

自动检测、程序控制、自动保护和自动调节。

“锅炉机组”是指由锅炉本体及配合锅炉本体工作的其它设备或机械构成的成套装置,这些配合锅炉本体工作的其它设备或机械我们统称之为锅炉辅助设备。

6.锅筒、集箱和管束在锅炉中各自起着什么作用?
锅筒然循环锅炉各受热面的闭合件,将锅炉各受热面联结在一起并和水冷壁,下降管等组成水循环回路。

锅筒内储存汽水,可适应负荷变化,内部设有汽水分离装置等以保证汽水品质,直流锅炉无锅筒。

集箱是流体分散和汇集的关键部件,是这些并联管组的联接件。

在电站锅炉中,集箱工作特性的优劣直接影响到连接于其间的受热面工作的安全和可靠,尤其是严重影响到过热器和再热器等高温受热面工作的可靠性。

所谓的锅炉管束就是布置在上、下锅筒之间的密集管束。

锅炉管束为蒸发受热面,吸收水冷壁不能完全吸收的热量。

7.请对比烟管锅炉和水管锅炉的优缺点。

并说明现代锅炉的发展趋势。

烟管锅炉的特点:
(1)炉膛矮小,炉膛温度低,燃烧条件差,难于燃烧劣质煤,常需炉拱。

(2)受热面简单,排烟温度高,效率低,常冒黑烟。

(3)锅筒大,强度低,参数难提高,几乎不用于发电,钢耗大。

(4)水容量大,负荷适应性好,水质要求低,运行、维修方便。

水管锅炉与烟管锅炉的特点正好相反。

现代锅炉的发展趋势:
(1)电站锅炉:高效率(部分减少污染)、大容量、高参数、低污染、自动化、高可靠性、低成本(金属消耗量)
(2)工业锅炉:高效率、低污染、自动化、低成本(金属消耗量)
(3)生活锅炉:低污染、自动化、安全可靠
8.锅炉本体指哪些部件?请列举锅炉的辅助设备。

锅炉本体,主要指由锅筒、集箱、受热面及其间的连接管道、燃烧设备、炉墙和构架等所组成的整体。

辅助设备有:鼓引风设备、运煤、除灰渣设备、制粉设备(煤粉燃烧锅炉)、给水设备、水处理设备及烟气除尘、脱硫及脱硝设备等。

9.需要哪些参数才能描述一台锅炉?
蒸汽锅炉一般需要用如下四个参数才能将锅炉的大小描述清楚:(1)蒸发量,t/h(或kg/s);(2)出口蒸汽压力, MPa;(3)出口蒸汽温度, ℃;(4)给水温度, ℃。

10.锅炉的分类方法有哪些?
锅炉的分类有多种方法。

按用途可分为电站锅炉、工业锅炉、生活锅炉等。

电站锅炉用于发电,工业锅炉用于工业生产,生活锅炉用于采暖和热水供应。

按结构可分为火管锅炉和水管锅炉。

火管锅炉中,烟气在管内流过,水管锅炉中,汽水在管内流过。

相关文档
最新文档