备战中考数学反比例函数综合练习题含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)
1.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= 的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.
【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,
∴y= .
OA= =5,
∵OA=OB,
∴OB=5,
∴点B的坐标为(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:
解得:
∴y=2x﹣5.
(2)解:∵点M在一次函数y=2x﹣5上,
∴设点M的坐标为(x,2x﹣5),
∵MB=MC,

解得:x=2.5,
∴点M的坐标为(2.5,0).
【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .
2.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)
(1)试确定上述比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?
(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.
【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,
∴反比例函数解析式为y= ,正比例函数解析式为y= x;
(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;
(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,
∴OE= OA= ,点D(,2),
∴点B(3,4),
又∵点F在正比例函数y= x图象上,
∴F(,),
∴DF= 、BC=3、EA= ,
∴四边形DFCB的面积为 ×( +3)× = .
【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.
3.如图,点P( +1,﹣1)在双曲线y= (x>0)上.
(1)求k的值;
(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.
【答案】(1)解:点P(,)在双曲线上,
将x= ,y= 代入解析式可得:
k=2;
(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,
∵四边形ABCD是正方形,
∴AB=AD=BC,∠CBA=90°,
∴∠FBC+∠OBA=90°,
∵∠CFB=∠BOA=90°,
∴∠FCB+∠FBC=90°,
∴∠FBC=∠OAB,
在△CFB和△AOB中,

∴△CFB≌△AOB(AAS),
同理可得:△BOA≌△AED≌△CFB,
∴CF=OB=AE=b,BF=OA=DE=a,
设A(a,0),B(0,b),
则D(a+b,a)C(b,a+b),
可得:b(a+b)=2,a(a+b)=2,
解得:a=b=1.
所以点C的坐标为:(1,2).
【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.
4.如图,已知直线y= x与双曲线y=交于A、B两点,且点A的横坐标为 .
(1)求k的值;
(2)若双曲线y=上点C的纵坐标为3,求△AOC的面积;
(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.
【答案】(1)解:把x= 代入,得y= ,
∴A(,1),
把点代入,解得:;
(2)解:∵把y=3代入函数,得x= ,
∴C ,
设过,两点的直线方程为:,
把点,,代入得:

解得:,
∴,
设与轴交点为,
则点坐标为,
∴;
(3)解:设点坐标,由直线解析式可知,直线与轴正半轴夹角为,
∵以、、、为顶点的四边形是有一组对角为的菱形,在直线上,∴点只能在轴上,
∴点的横坐标为,代入,解得纵坐标为:,
根据,即得:,
解得: .
故点坐标为:或 .
【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C 点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根
据求解即可;(3)设点坐标,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得,求出a的值即可.
5.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。

对于任意正实数a、b,可作如下变形a+b= = - + = + ,
又∵≥0,∴ + ≥0+ ,即≥ .
(1)根据上述内容,回答下列问题:在≥ (a、b均为正实数)中,若ab为定值p,则a+b≥ ,当且仅当a、b满足________时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a, DB=2b, 试根据图形验证≥ 成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
【答案】(1)a=b
(2)解:有已知得CO=a+b,CD=2 ,CO≥CD,即≥2 .
当D与O重合时或a=b时,等式成立.
(3)解: ,
当DE最小时S四边形ADFE最小.
过A作AH⊥x轴,由(2)知:当DH=EH时,DE最小,
所以DE最小值为8,此时S四边形ADFE= (4+3)=28.
【解析】【分析】(1)根据题中的例子即可直接得出结论。

(2)根据直角三角形的性质得出CO=a+b,CD=,再由(1)中的结论即可得出等号成立时的条件。

(3)过点A作AH⊥x轴于点H,根据S四边形ADFE=S△ADE+S△FDE,可知当DH=EH时DE最小,由此可证得结论。

6.如图,一次函数的图象与反比例函数的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).
(1)利用图中条件,求反比例函数的解析式和m的值;
(2)求△DOC的面积.
(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.
【答案】(1)解:将C(1,4)代入反比例函数解析式可得:k=4,则反比例函数解析式为:

将D(4,m)代入反比例函数解析式可得:m=1
(2)解:根据点C和点D的坐标得出一次函数的解析式为:y=-x+5
则点A的坐标为(0,5),点B的坐标为(5,0)
∴S△DOC=5×5÷2-5×1÷2-5×1÷2=7.5
(3)解:双曲线上存在点P(2,2),使得S△POC=S△POD,理由如下:
∵C点坐标为:(1,4),D点坐标为:(4,1),
∴OD=OC=,
∴当点P在∠COD的平分线上时,∠COP=∠POD,又OP=OP,
∴△POC≌△POD,
∴S△POC=S△POD.
∵C点坐标为:(1,4),D点坐标为:(4,1),
可得∠COB=∠DOA,
又∵这个点是∠COD的平分线与双曲线的y=交点,
∴∠BOP=∠POA,
∴P点横纵坐标坐标相等,
即xy=4,x2=4,
∴x=±2,
∵x>0,
∴x=2,y=2,
故P点坐标为(2,2),使得△POC和△POD的面积相等
利用点CD关于直线y=x对称,P(2,2)或P(−2,−2).
答:存在,P(2,2)或P(-2,-2)
【解析】【分析】(1)观察图像,根据点C的坐标可求出函数解析式及m的值。

(2)利用待定系数法,由点D、C的坐标求出直线CD的函数解析式,再求出直线CD与两坐标轴的交点A、B的坐标,然后利用S△DOC=S△AOB-S△BOC-S△AOD,利用三角形的面积公式计算可解答。

(3)双曲线上存在点P,使得S△POC=S△POD,这个点就是∠COD的平分线与双曲线的y=交点,易证△POC≌△POD,则S△POC=S△POD,可得出点P点横纵坐标坐标相等,利用反比例函数解析式,建立关于x的方程,就可得出点P的坐标,利用对称性,可得出点P的另一个坐标,即可得出答案。

7.如图1,已知双曲线y= (k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:
(1)若点A的坐标为(3,1),则点B的坐标为________;当x满足:________时,≤k′x;
(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第一象限.
四边形APBQ一定是________;
(3)若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.
(4)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.
【答案】(1)(﹣3,﹣1)
;﹣3≤x<0或x≥3
(2)平行四边形
(3)∵点A的坐标为(3,1),
∴k=3×1=3,∴反比例函数的解析式为y= ,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),
由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,
则四边形CDEF是矩形,
CD=6,DE=6,DB=DP=4,CP=CA=2,
则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积
=36﹣2﹣8﹣2﹣8=16.
(4)解:mn=k时,四边形APBQ是矩形,不可能是正方形,理由:当AB⊥PQ时四边形
APBQ是正方形,此时点A、P在坐标轴上,由于点A,P可能达到坐标轴故不可能是正方形,即∠POA≠90°.因为mn=k,易知P、A关于直线y=x对称,所以PO=OA=OB=OQ,所以四边形APBQ是矩形.
【解析】【解答】解:(1)∵A、B关于原点对称,A(3,1),
∴点B的坐标为(﹣3,﹣1).由图象可知,当﹣3≤x<0或x≥3时,≤k′x.
故答案为(﹣3,﹣1),﹣3≤x<0或x≥3;(2)∵A、B关于原点对称,P、Q关于原点对称,
∴OA=OB,OP=OQ,∴四边形APBQ是平行四边形.故答案为:平行四边形;
=36﹣2﹣8﹣2﹣8=16.
【分析】(1)根据正比例函数与反比例函数的图象的交点关于原点对称,即可解决问题,利用图象根据正比例函数的图象在反比例函数的图象的上方,即可确定自变量x的范围.(2)利用对角线互相平分的四边形是平行四边形证明即可.(3)利用分割法求面积即可.(3)根据矩形的性质、正方形的性质即可判定.
8.如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,
且S△AOE=3S△OBE.
(1)求k的值;
(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长
OF交反比例函数y= (x<0)的图象于点N,求N点坐标.
【答案】(1)解:∵S△AOE=3S△OBE,∴AE=3BE,
∴AE=3,
∴E(﹣3,4)
反比例函数y= (k≠0,且k为常数)的图象过点E,
∴4= ,即k=﹣12
(2)解:∵正方形AOCB的边长为4,∴点D的横坐标为﹣4,点F的纵坐标为4.
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(﹣4,3).
∵点D在直线y= x+b上,
∴3= ×(﹣4)+b,解得b=5.
∴直线DF为y= x+5,
将y=4代入y= x+5,得4= x+5,解得x=﹣2.
∴点F的坐标为(﹣2,4),
设直线OF的解析式为y=mx,
代入F的坐标得,4=﹣2m,
解得m=﹣2,
∴直线OF的解析式为y=﹣2x,
解,得.
∴N(﹣,2 )
【解析】【分析】(1)根据题意求得E的坐标,把点E(﹣3,4)代入利用待定系数法即可求出k的值;(2)由正方形AOCB的边长为4,故可知点D的横坐标为﹣4,点F的纵坐标为4.由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(﹣4,3),
由点D在直线y= x+b上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标,然后根据待定系数法求得直线OF的解析式,然后联立方程解方程组即可求得.
9.已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2.
(1)求一次函数的函数表达式;
(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面
积.
【答案】(1)解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,
代入反比例函数解析式,=y,
解得y=6,
∴点A的坐标为(1,6),
又∵点A在一次函数图象上,
∴1+m=6,
解得m=5,
∴一次函数的解析式为y1=x+5
(2)解:∵第一象限内点C到x轴的距离为2,∴点C的纵坐标为2,
∴2= ,解得x=3,
∴点C的坐标为(3,2),
过点C作CD∥x轴交直线AB于D,
则点D的纵坐标为2,
∴x+5=2,
解得x=﹣3,
∴点D的坐标为(﹣3,2),
∴CD=3﹣(﹣3)=3+3=6,
点A到CD的距离为6﹣2=4,
联立,
解得(舍去),,
∴点B的坐标为(﹣6,﹣1),
∴点B到CD的距离为2﹣(﹣1)=2+1=3,
S△ABC=S△ACD+S△BCD= ×6×4+ ×6×3=12+9=21.
【解析】【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到x轴的距离判断出点C的纵坐标,代入反比例函数解析式求出横坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D 的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.
10.如图,在平面直角坐标系中,直线AB与x轴交于点B、与y轴交于点A,与反比例函
数y= 的图象在第二象限交于C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限内的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.
(3)若动点D在反比例函数图象的第四象限上运动,当线段DC与线段DB之差达到最大时,求点D的坐标.
【答案】(1)解:∵tan∠ABO= ,
∴ = ,且OB=4,
∴OA=2,
∵CE⊥x轴,即CE∥AO,
∴△AOB∽△CEB,
∴ = ,即 = ,解得CE=3,
∴C(﹣2,3),
∴m=﹣2×3=﹣6,
∴反比例函数解析式为y=﹣
(2)解:设D(x,﹣),
∵D在第四象限,
∴DF=x,OF= ,
∴S△DFO= DF•OF= x× =3,
由(1)可知OA=2,
∴AF=x+ ,
∴S△BAF= AF•OB= (x+ )×4=2(x+ ),∵S△BAF=4S△DFO,
∴2(x+ )=4×3,解得x=3+ 或x=3﹣,当x=3+ 时,﹣的值为3﹣,
当x=3﹣时,﹣的值为3+ ,
∵D在第四象限,
∴x=3﹣不合题意,舍去,
∴D(3+ ,3﹣)
(3)解:∵D在第四象限,
∴在△BCD中,由三角形三边关系可知CD﹣CB≤BC,即当B、C、D三点共线时,其差最大,
设直线AB解析式为y=kx+b,
由题意可得,解得,
∴直线AB解析式为y=﹣ x+2,
联立直线AB和反比例函数解析式可得,解得或
(舍去),
∴D(6,﹣1),
即当线段DC与线段DB之差达到最大时求点D的坐标为(6,﹣1)
【解析】【分析】(1)由条件可求得OA,由△AOB∽△CEB可求得CE,则可求得C点坐标,代入反比例函数解析式可求得m的值,可求得反比例函数解析式;(2)设出D的坐标,从而可分别表示出△BAF和△DFO的面积,由条件可列出方程,从而可求得D点坐标;(3)在△BCD中,由三角形三边关系可知CD﹣CB≤BC,当B、C、D三点共线时,其差最大,联立直线BC与反比例函数解析式可求得D点坐标.
11.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).
(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;
(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;
(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.
【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,
∵直线l经过点C(1,0),
∴0=+b,
∴b=,
∴直线l的解析式为y=x−
(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),
∵C(1,0),
∴AC=,
②如图1中,作CE∥OA,
∴∠ACE=∠OAC,
∵tan∠OAC=,
∴∠OAC=30°,
∴∠ACE=30°,
∴α=30°
(3)解:①如图2中,
当α=15°时,
∵CE∥OD,
∴∠ODC=15°,
∵∠OAC=30°,
∴∠ACD=∠ADC=15°,
∴AD=AC=AB,
∴△ADB,△ADC是等腰三角形,
∵OD垂直平分BC,
∴DB=DC,
∴△DBC是等腰三角形;
②当α=60°时,易知∠DAC=∠DCA=30°,
∴DA=DC=DB,
∴△ABD、△ACD、△BCD均为等腰三角形;
③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;
④当α=150°时,易知△BDC是等边三角形,
∴AB=BD=DC=AC,
∴△ABD、△ACD、△BCD均为等腰三角形,
综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由
CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.
12.已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B 点,与y轴交于C点,△ABC的外接圆恰好经过原点O.
(1)求B点的坐标及二次函数的解析式;
(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;
(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.
【答案】(1)解:如图,过点A作AD⊥y轴于点D,AE⊥x轴于点E,
∴∠ADC=∠AEB=90°
∵二次函数与y轴交于点C,
点C坐标为(0,2)
∵点A坐标(3,3)
∴DA=AE=3
∵∠DAC+∠CAE=90°
∠EAB+∠CAE=90°
∴∠DAC=∠EAB
∴△ACD≌△ABE
∴EB=CD=3-2=1
OB=3+1=4
∴点B的坐标为(4,0)
将A(3,3)B(4,0)代入二次函数中得:
解得:
二次函数的解析式为:
(2)解:将点Q(m,m+3)代入二次函数解析式得:
m1=1;m2= (舍)
∴m=1
∴点Q坐标为(1,4)
由勾股定理得:BC=2
设圆的圆心为N
∵圆经过点O,且∠COB=90°
∴BC是圆N的直径,
∴圆N的半径为,N的坐标为(2,1)
由勾股定理得,QN=
半径r= ,则≤QM≤
(3)解:当点A的对称点,点O的对称点在抛物线上时,如图
设点的横坐标为m,则点的横坐标为m-3
得:
解得:
∴的坐标为()
∴旋转中心P的坐标为
当点A的对称点,点C的对称点在抛物线上时,如图
设点的横坐标为m,则点的横坐标为m-3
得:
解得:
∴的坐标为()
∴旋转中心P的坐标为
综上所述,旋转中心P的坐标为或
【解析】【分析】(1)过点A作AD⊥y轴于点D,AE⊥x轴于点E,求证△ACD≌△ABE,进而求得点B坐标,再将A、B两点坐标代入二次函数解析式,即可解答;(2)将点Q (m,m+3)代入二次函数解析式,求得m的值,进而且得点Q坐标,根据圆的性质得到BC是圆N的直径,利用勾股定理即可求得BC,进而求得N的坐标,再利用勾股定理求得QN的长,确定取值范围即可;(3)分两种情况:当点A的对称点,点O的对称点
在抛物线上时,利用旋转180°可知,∥,设点的横坐标为m,则点的横坐标为m-3,利用列出式子,即可求得m的值,利用旋转中心和线段中点的特点,即可求得旋转中心P的坐标;当点A的对称点,点C的对称点在抛物线上时,设点的横坐标为m,则点的横坐标为m-3,同理可求得m的值以及旋转中心P 的坐标.
13.如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.
(1)求证:MC=MQ
(2)当BQ=1时,求DM的长;
(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.
【答案】(1)解:证明:∵四边形ABCD是矩形,
∴DC AB
即∠MCQ=∠CQB,
∵△BQC沿CQ所在的直线对折得到△CQN
∴∠CQN=∠CQB,
即∠MCQ=∠MQC,
∴MC=MQ.
(2)解:∵四边形ABCD是矩形,△BQC沿CQ所在的直线对折得到△CQN,
∴∠CNM=∠B=90°,
设DM=x,则MQ=MC=6+x,MN=5+x,
在Rt△CNM中,MB2=BN2+MN2,
即(x+6)2=42+(x+5)2,
解得:x= ,
∴DM= ,
∴DM的长2.5.
(3)解:解:分两种情况:
①当点M在CD延长线上时,如图所示:
由(1)得∠MCQ=∠MQC,
∵DE⊥CQ,
∴∠CDE=∠F,
又∵∠CDE=∠FDM,
∴∠FDM=∠F,
∴MD=MF.
过M点作MH⊥DF于H,则DF=2DH,
又,
∴,
∵DE⊥CQ MH⊥DF,
∴∠MHD=∠DEC=90°,
∴△MHD∽△DEC
∴,
∴DM=1,MC=MQ=7,
∴MN=
∴BQ=NQ=
②当点M在CD边上时,如图所示,类似可求得BQ=2.
综上所述,BQ的长为或2.
【解析】【分析】(1)由矩形的性质得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折叠的性质得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,证出MC=MQ.(2)设DM=x,则MQ=MC=6+x,MN=5+x,在Rt△CNM中,由勾股定理得出方程,解方程即
可.(3)分两种情况:①当点M在CD延长线上时,由(1)得:∠MCQ=∠CQM,证出∠FDM=∠F,得出MD=MF,过M作MH⊥DF于H,则DF=2DH,证明△MHD∽△CED,得
出,求出MD= CD=1,MC=MQ=7,由勾股定理得出MN即可解决问题.
②当点M在CD边上时,同①得出BQ=2即可.
14.如图,正方形、等腰的顶点在对角线上(点与、不重合),
与交于,延长线与交于点,连接 .
(1)求证: .
(2)求证:
(3)若,求的值.
【答案】(1)解:∵是正方形,
∴,,
∵是等腰三角形,
∴,,
∴,
∴,

(2)解:∵是正方形,
∴,,
∵是等腰三角形,
∴,
∵,
∵,
∴,
∴,
∴,
∴,
∴,
(3)解:由(1)得,,,
∴,
由(2) ,
∴,
∵,
∴,
在中,


【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;
(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;
(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已
知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.
15.如图,抛物线y= x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m, 0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.
【答案】(1)解:∵点A(-1,0)在抛物线y= x2 +bx-2上
∴× (-1 )2 +b× (-1) –2 = 0
解得b =
∴抛物线的解析式为y= x2- x-2.
y= x2- x-2 = (x2 -3x- 4 ) = (x- )2- ,
∴顶点D的坐标为 ( , - ).
(2)解:当x = 0时y = -2,
∴C(0,-2),OC = 2。

当y = 0时,x2- x-2 = 0,∴x1 = -1, x2 = 4
∴B (4,0)
∴OA =1, OB = 4, AB = 5.
∵AB2 = 25, AC2 =OA2 +OC2 = 5, BC2 =OC2 +OB2 = 20,
∴AC2 +BC2 =AB2.
∴△ABC是直角三角形.
(3)解:作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC +MD的值最小。

解法一:设抛物线的对称轴交x轴于点E.
∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM
∴△C′OM∽△DEM.

∴,∴m= .
解法二:设直线C′D的解析式为y =kx +n ,
则,解得n = 2,.
∴.
∴当y = 0时,,
∴.
【解析】【分析】(1)把点A坐标代入抛物线即可得解析式,从而求得顶点坐标;(2)分别计算出三条边的长度,符合勾股定理可知其是直角三角形;(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小。

相关文档
最新文档