潍坊市七年级下册数学期末试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潍坊市七年级下册数学期末试卷
一、选择题
1.下列等式由左边到右边的变形中,属于因式分解的是( )
A .(a ﹣2)(a+2)=a 2﹣4
B .8x 2y =8×x 2y
C .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2
D .x 2+2x ﹣3=(x ﹣1)(x+3)
2.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )
A .10cm 的木棒
B .40cm 的木棒
C .90cm 的木棒
D .100cm 的木棒 3.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为
( )
A .65°
B .70°
C .75°
D .80° 4.若(x-2y)2 =(x+2y)2+M,则M= ( )
A .4xy
B .- 4xy
C .8xy
D .-8xy 5.下列图形中,不能通过其中一个四边形平移得到的是( )
A .
B .
C .
D .
6.下列四个等式从左到右的变形是因式分解的是 ( )
A .22()()a b a b a b +-=-
B .2()ab a a b a -=-
C .25(1)5x x x x +-=+-
D .21()x x x x x
+=+ 7.若关于x 的不等式组2034x x a x
-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236
x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .6
8.计算a 10÷a 2(a≠0)的结果是( )
A .5a
B .5a -
C .8a
D .8a - 9.如图,将△ABC 纸片沿D
E 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2
等于( )
A .40°
B .60°
C .80°
D .140°
10.关于x 的不等式组0233(2)
x m x x ->⎧⎨-≥-⎩恰有三个整数解,那么m 的取值范围为( ) A .10m -<≤ B .10m -≤< C .01m ≤< D .01m <≤
二、填空题
11.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.
12.已知:()
521x x ++=,则x =______________. 13.计算:20202019120192019⎛⎫⨯- ⎪⎝⎭=________.
14.等式01a =成立的条件是________.
15.已知()4432234464a b a a b a b ab b +=++++,则()4
a b -=__________. 16.如果9-mx +x 2是一个完全平方式,则m 的值为__________.
17.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.
18.若29x kx -+是完全平方式,则k =_____.
19.计算:23()a =____________.
20.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.
三、解答题
21.已知a+b=2,ab=-1,求下面代数式的值:
(1)a 2+b 2;(2)(a-b )2.
22.(类比学习)
小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方
法:
15 16240
1 6
80
80
2
2
2
132
22
22
x
x x x
x x
x
x
+
+++
+
+
+
即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).
(初步应用)
小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:
2
2
26
2
(2)6
2
x
x x x
x x
x
x
+
+++
+
-+
+
☆
☆☆
得出□=___________,☆=_________.
(深入研究)
小明用这种方法对多项式x2+2x2-x-2进行因式分解,进行到了:x3+2x2-x-2=(x+2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2-x-2因式分解.23.如图,已知:点A C
、、B不在同一条直线,AD BE.
(1)求证:180
B C A
∠+∠-∠=︒.
(2)如图②,AQ BQ
、分别为DAC EBC
∠∠
、的平分线所在直线,试探究C
∠与AQB
∠的数量关系;
(3)如图③,在(2)的前提下,且有AC QB,直线AQ BC
、交于点P,
QP PB
⊥,请直接写出::
DAC ACB CBE
∠∠∠=______________.
24.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
已知3辆大货车与2辆小货车可以一次运货21吨,5辆大货车与4辆小货车可以一次运货37吨.
(1)每辆大货车和每辆小货车一次各可以运货多少吨?
(2)某公司现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)
25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分
析发现∠BOC=90º+1
2
∠A,(请补齐空白处
......)
理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=1
2
∠ABC,_________________,
在ΔABC中,∠A+∠ABC+∠ACB=180º.
∴∠1+∠2=1
2
(∠ABC+∠ACB)=
1
2
(180º-∠A)=90º-
1
2
∠A,
∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+1
2
∠A.
(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则
∠BOC与∠A有怎样的关系?请说明理由.
(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是
∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则
∠E=_______;
(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则
∠ABO=______.
26.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.
(1)画出△ABC向右平移4个单位后得到的△A1B1C1;
(2)图中AC与A1C1的关系是:_____.
(3)画出△ABC 的AB 边上的高CD ;垂足是D ;
(4)图中△ABC
的面积是_____.
27.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .
(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .
(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△
ABC 的面积的2倍.
28.仔细阅读下列解题过程:
若2222690a ab b b ++-+=,求a b 、的值.
解:2222690a ab b b ++-+=
222222690
()(3)0
030
33a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,
根据以上解题过程,试探究下列问题:
(1)已知2222210x xy y y -+-+=,求2x y +的值;
(2)已知2254210a b ab b +--+=,求a b 、的值;
(3)若248200m n mn t t =++-+=,,求2m t n -的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.
【详解】
解:A.不是乘积的形式,错误;
B.等号左边的式子不是多项式,不符合因式分解的定义,错误;
C.不是乘积的形式,错误;
D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;
故选:D.
【点睛】
本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.
2.B
解析:B
【解析】
试题解析:已知三角形的两边是40cm和50cm,则
10<第三边<90.
故选40cm的木棒.
故选B.
点睛:三角形的三边关系:三角形任意两边之和大于第三边.
3.B
解析:B
【分析】
先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.
【详解】
解:如图,延BA,CD交于点E.
∵直尺为矩形,两组对边分别平行
∴∠1+∠4=180°,∠1=115°
∴∠4=180°-∠1=180°-115°=65°
∵∠EDA与∠4互为对顶角
∴∠EDA=∠4=65°
∵△EBC为等腰直角三角形
∴∠E=45°
∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°
∵∠2与∠EAD互为对顶角
∴∠2=∠EAD =70°
故选:B.
【点睛】
此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.
4.D
解析:D
【分析】
根据完全平方公式的运算法则即可求解.
【详解】
∵(x-2y)2 =(x+2y)2+M
∴M=(x-2y)2 -(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy
故选D.
【点睛】
此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.
5.D
解析:D
【详解】
解:A、能通过其中一个四边形平移得到,不符合题意;
B、能通过其中一个四边形平移得到,不符合题意;
C、能通过其中一个四边形平移得到,不符合题意;
D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.
故选D.
6.B
解析:B
【分析】
根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.
【详解】
解:根据因式分解的概念,
A选项属于整式的乘法,错误;
B选项符合因式分解的概念,正确;
C 选项不符合因式分解的概念,错误;
D 选项因式分解错误,应为2(1)x x x x +=+,错误.
故选B .
【点睛】
本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.
7.C
解析:C
【分析】
先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.
【详解】
解:解不等式2034x x a x -<⎧⎨+>-⎩
得: 44
a -<x <2, ∵不等式组恰好只有2个整数解,
∴-1≤
44
a -<0, ∴0≤a <4; 解方程
21236x a a x +++=+得: x=52
a -, ∵方程的解为非负整数, ∴
52
a -≥0, ∴a ≤5,
又∵0≤a <4,
∴a=1, 3,
∴1+3=4, ∴所有满足条件的整数a 的值之和为4.
故选:C .
【点睛】
本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.
8.C
解析:C
【解析】
【分析】
根据同底数幂的除法法则即可得.
【详解】
1021028(0)a a a a a -÷==≠
故选:C.
【点睛】
本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.
9.C
解析:C
【分析】
根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.
【详解】
解:根据平角的定义和折叠的性质,得
123602(34)∠+∠=︒-∠+∠.
又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,
346080140B C ∴∠+∠=∠+∠=︒+︒=︒,
∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,
故选:C .
【点睛】
此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.
10.C
解析:C
【分析】
首先解不等式组求得不等式组的解集,然后根据不等式组有三个整数解,即可确定整数解,然后得到关于m 的不等式,求得m 的范围.
【详解】
解:0233(2)x m x x ->⎧⎨-≥-⎩
①② 解不等式①,得x>m.
解不等式②,得x ≤3.
∴不等式组得解集为m<x ≤3.
∵不等式组有三个整数解,
∴01m ≤<.
故选C.
【点睛】
本题考查了不等式组的整数解,解不等式组应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
二、填空题
11.115°.
【分析】
根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC 的度数.
【详解】
解;∵∠A=5
解析:115°.
【分析】
根据三角形的内角和定理得出∠ABC +∠ACB =130°,然后根据角平分线的概念得出∠OBC +∠OCB ,再根据三角形的内角和定理即可得出∠BOC 的度数.
【详解】
解;∵∠A =50°,
∴∠ABC +∠ACB =180°﹣50°=130°,
∵∠B 和∠C 的平分线交于点O ,
∴∠OBC =12∠ABC ,∠OCB =12
∠ACB , ∴∠OBC +∠OCB =
12×(∠ABC +∠ACB )=12×130°=65°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=115°,
故答案为:115°.
【点睛】
本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数.
12.-5或-1或-3
【分析】
根据零指数幂和1的任何次幂都等于1分情况讨论求解.
【详解】
解:根据0指数的意义,得:
当x+2≠0时,x+5=0,解得:x=﹣5.
当x+2=1时,x=﹣1,当x+2
解析:-5或-1或-3
【分析】
根据零指数幂和1的任何次幂都等于1分情况讨论求解.
【详解】
解:根据0指数的意义,得:
当x +2≠0时,x +5=0,解得:x =﹣5.
当x +2=1时,x =﹣1,当x +2=﹣1时,x =﹣3,x +5=2,指数为偶数,符合题意. 故答案为:﹣5或﹣1或﹣3.
【点睛】
本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.
13.【分析】
先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.
【详解】
=
故答案为.
【点睛】
此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则. 解析:12019
【分析】
先利用幂的乘方进行分解,再根据同底数幂相乘,进行计算即可.
【详解】
20202019201920191112019=2019201920192019⎛⎫⨯-⨯⨯ ⎪⎝⎭=12019 故答案为
12019
. 【点睛】 此题考查幂的乘方,同底数幂相乘,解题关键在于掌握运算法则.
14..
【分析】
根据零指数幂有意义的条件作答即可.
【详解】
由题意得:.
故答案为:.
【点睛】
本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.
a≠.
解析:0
【分析】
根据零指数幂有意义的条件作答即可.
【详解】
a≠.
由题意得:0
a≠.
故答案为:0
【点睛】
本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.
15.a4-4a3b+6a2b2-4ab3+b4
【分析】
原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.
【详解】
解:根据题意得:(a-b)4=
解析:a4-4a3b+6a2b2-4ab3+b4
【分析】
原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.
【详解】
解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,
故答案为:a4-4a3b+6a2b2-4ab3+b4
【点睛】
此题考查了完全平方公式,熟练掌握公式是解本题的关键.
16.±6
【分析】
如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.
【详解】
解:∵9-mx+x2是一个完全平方式,
∴方程9-mx
解析:±6
【分析】
如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.
【详解】
解:∵9-mx+x2是一个完全平方式,
∴方程9-mx+x2=0对应的判别式△=0,
因此得到:m2-36=0,
解得:m=±6,
故答案为:±6.
【点睛】
本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.
17.5×10-6
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解析:5×10-6
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.0000025=2.5×10-6,
故答案为2.5×10-6.
【点睛】
本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.
18.【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .
【详解】
解:∵是完全平方式,即
.
故答案为:.
【点睛】
此题考查了完全平方式, 熟练掌握完全平方公式
解析:6±
【分析】
根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .
【详解】
解:∵29x kx -+是完全平方式,即()2
293x kx x -+=± 236k ∴=±⨯=±.
故答案为:6±.
此题考查了完全平方式,熟练掌握完全平方公式的结构特点是解本题的关键
19..
【分析】
直接根据积的乘方运算法则进行计算即可.
【详解】
.
故答案为:.
【点睛】
此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.
解析:6a
【分析】
直接根据积的乘方运算法则进行计算即可.
【详解】
233236
()=(1)()
a a a.
-.
故答案为:6a
【点睛】
此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.
20.10cm
【分析】
依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB的周长多2cm,即可得到AC的长.
【详解】
解:∵AE是△ABC的边BC上的中线,
解析:10cm
【分析】
依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE的周长比△AEB 的周长多2cm,即可得到AC的长.
【详解】
解:∵AE是△ABC的边BC上的中线,
∴CE=BE,
又∵AE=AE,△ACE的周长比△AEB的周长多2cm,
∴AC−AB=2cm,即AC−8cm=2cm,
∴AC=10cm,
故答案为10cm.
【点睛】
本题考查了三角形中线的有关计算,分析得到两个三角形的周长的差等于两边的差是解题
三、解答题
21.(1)6;(2)8.
【分析】
(1)先将原式转化为(a+b )2-2ab ,再将已知代入计算可得;
(2)先将原式转化为(a+b )2-4ab ,再将已知代入计算计算可得.
【详解】
解:(1)当a+b=2,ab=-1时,
原式=(a+b )2-2ab
=22-2×(-1)
=4+2
=6;
(2)当a+b=2,ab=-1时,
原式=(a+b )2-4ab
=22-4×(-1)
=4+4
=8.
【点睛】
本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.
22.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;
【分析】
[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.
[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.
【详解】
[初步应用]∵多项式x 2+□x +6能被x +2整除,
∴2☆-6=0,2-=☆,
∴☆= 3,□=5,
故答案为:5,3;
[深入研究]∵232321
222
2 2
2 0
x x x x x x x x x -++--+----, ∴()()
()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】
本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.
23.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2
【分析】
(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2
AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12
CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.
【详解】
解:(1)过点C 作CF AD ,则//BE CF ,
∵//CF AD BE
∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠
∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒
(2)过点Q 作QM AD ,则//BE QM ,
∵QM AD ,//BE QM
∴,AQM NAD BQM EBQ ∠=∠∠=∠
∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线
∴11,22
NAD CAD EBQ CBE ∠=∠∠=∠
∴1()2
ABQ BQM AQM CBE CAD ∠=∠-∠=
∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒
(3)∵//AC QB ∴11,22
AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-
∠ ∵2180C AQB ∠+∠=︒ ∴12
CAD CBE ∠=∠ ∵QP PB ⊥
∴180CBE CAD ∠+∠=︒
∴60,120CAD CBE ∠=︒∠=︒ ∴11801202
ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.
故答案为:1:2:2.
【点睛】
本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.
24.(1)每辆大货车一次可以运货5吨,每辆小货车一次可以运货3吨;(2)大货车至少需要3辆.
【分析】
(1)设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,根据“3辆大货车运货量+2辆小货车运货量=21吨,5辆大货车运货量+4辆小货车运货量=37吨”即可列出方程组,解方程组即可求出x 、y 的值,进而可得结果;
(2)设大货车需要m 辆,根据题意可得关于m 的不等式,解不等式即可求出m 的范围,进一步即可求出m 的最小整数值.
【详解】
解:(1)设每辆大货车一次可以运货x 吨,每辆小货车一次可以运货y 吨,根据题意, 得32215437x y x y +=⎧⎨+=⎩,解得:53x y =⎧⎨=⎩
, 答:每辆大货车一次可以运货5吨,每辆小货车一次可以运货3吨.
(2)设大货车需要m 辆,则小货车需要(10-m )辆,依题意,
得()531035m m +-≥,解得:52
m ≥,
因为m为整数,所以m最少是3,
即大货车至少需要3辆.
【点睛】
本题考查了二元一次方程组和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系与不等关系是解题的关键.
25.【探究1】∠2=1
2
∠ACB,90º-
1
2
∠A;【探究2】∠BOC=90°﹣
1
2
∠A,理由见解
析;【应用】22.5°;【拓展】45°或36°.【分析】
【探究1】根据角平分线的定义可得∠1=1
2
∠ABC,∠2=
1
2
∠ACB,根据三角形的内角和
定理可得∠1+∠2=90º-1
2
∠A,再根据三角形的内角和定理即可得出结论;
【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=1 2
(∠A+∠ACB),∠OCB=1
2
(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结
论;
【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;
【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若
∠EAF=4∠E,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E,于是可得结果;若∠EAF=4∠F,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E即可求出结果,进而可得答案.
【详解】
解:【探究1】理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,
∴∠1=1
2
∠ABC,∠2=
1
2
∠ACB,
在ΔABC中,∠A+∠ABC+∠ACB=180º.
∴∠1+∠2=1
2
(∠ABC+∠ACB)=
1
2
(180º-∠A)=90º-
1
2
∠A,
∴∠BOC=180º-(∠1+∠2)=180º-(90º-1
2
∠A)=90º+
1
2
∠A;
故答案为:∠2=1
2
∠ACB,90º-
1
2
∠A;
【探究2】∠BOC =90°﹣12∠A ;理由如下: 如图2,由三角形的外角性质和角平分线的定义,∠OBC =
12(∠A +∠ACB ),∠OCB =12
(∠A +∠ABC ), 在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB
=180°﹣
12(∠A +∠ACB )﹣12(∠A +∠ABC ), =180°﹣
12(∠A +∠ACB +∠A +∠ABC ), =180°﹣
12(180°+∠A ), =90°﹣12
∠A ;
【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:
∠G=1901352
O ︒+
∠=︒, ∴∠GCD+∠GDC=45°, ∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,
∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802
GDC ︒-∠, ∴∠1+∠2=
()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒, ∴()1801222.5E ∠=︒-∠+∠=︒;
故答案为:22.5°;
【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,
∴∠EAQ+∠FAQ=()111809022
BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°,
在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,
∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,
∴∠BOQ=2∠E+∠BAO ,
又∠BOQ=∠BAO+∠ABO ,
∴∠ABO=2∠E=45°;
若∠EAF=4∠F ,则∠F=22.5°,
则由【探究2】知:19022.52
F ABO ∠=︒-
∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;
若∠F=4∠E ,则∠E=18°,
由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;
综上,∠ABO=45°或36°;
故答案为:45°或36°.
【点睛】 本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.
26.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8
【分析】
(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;
(2)根据平移的性质解答;
(3)延长AB,作出AB的高CD即可;
(4)利用△ABC所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】
解:(1)如图所示,
(2)根据平移的性质得出,AC与A1C1的关系是:平行且相等;
(3)如图所示,
(4)△ABC的面积=5×7-1
2
×7×5-
1
2
×7×2-
1
2
×5×1=8.
27.(1)见解析;(2)见解析;(3)见解析.
【分析】
(1)根据三角形高的定义求解可得;
(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;
(3)计算得出格点△ABC的面积是3,得出格点△ABP的面积为6,据此画出格点△ABP 即可.
【详解】
解:(1)如图所示,
(2)如图所示;
(3)S△ABC=1
323 2
⨯⨯=
S△ABP=2S△ABC=6
画格点△ABP如图所示,(答案不唯一).【点睛】
本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.
28.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.
【分析】
(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的
性质求得x y 、代入求得数值;
(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;
(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)
(2)题.
【详解】
解:(1)2222210x xy y y -+-+=
2222210x xy y y y ∴-++-+=
22()(1)0x y y ∴-+-=
010x y y ∴-=-=,,
11x y ∴==,,
23x y ∴+=;
(2)2254210a b ab b +--+=
22244210a b ab b b ∴+-+-+=
22(2)(1)0a b b ∴-+-=
2010a b b ∴-=-=,
21a b ∴==,;
(3)4m n =+,
2(4)8200n n t t ∴++-+=
22448160n n t t ∴+++-+=
22(2)(4)0n t ∴++-=
2040n t ∴+=-=,
24n t ∴=-=,
42m n ∴=+=
20(2)1m t n -∴=-=
【点睛】
本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.。