洪泽区第三高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洪泽区第三高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ()﹣f (x )>0的解集为( )
A .(0,1)
B .(1,2)
C .(1,+∞)
D .(2,+∞)
2. 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )
A .20+2π
B .20+3π
C .24+3π
D .24+3π
3. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
4. 已知在数轴上0和3之间任取一实数,则使“2log 1x ”的概率为( ) A .
14 B .18 C .23 D .112
5. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )
A .至少有一个白球;都是白球
B .至少有一个白球;至少有一个红球
C .恰有一个白球;一个白球一个黑球
D .至少有一个白球;红、黑球各一个
6. 若实数x ,y 满足,则(x ﹣3)2+y 2
的最小值是( )
A .
B .8
C .20
D .2
7. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A .
B .
C .
D .
8. 已知定义在R 上的函数f (x )满足f (x )=
,且f (x )=f (x+2),g (x )=

则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )
A .12
B .11
C .10
D .9
9. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )
A .
B .
C .
D .
10.若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( ) A .3 B .6
C .9
D .12
11.已知α是三角形的一个内角,且,则这个三角形是( )
A .钝角三角形
B .锐角三角形
C .不等腰的直角三角形
D .等腰直角三角形
12.棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )
A .=
B .0S =
C .0122S S S =+
D .20122S S S =
二、填空题
13.已知M N 、为抛物线2
4y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,
||||10MF NF +=,则直线MN 的方程为_________.
14.若圆
与双曲线C :
的渐近线相切,则
_____;双曲线C 的渐近线方程是
____.
15.已知点A 的坐标为(﹣1,0),点B 是圆心为C 的圆(x ﹣1)2+y 2=16上一动点,线段AB 的垂直平分线交BC 与点M ,则动点M 的轨迹方程为 .
16.f (x )=x (x ﹣c )2在x=2处有极大值,则常数c 的值为

14.已知集合,若3∈M,5∉M,则实数a的取值范围是.
17.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.
18.设实数x,y满足,向量=(2x﹣y,m),=(﹣1,1).若∥,则实数m的最大值为.
三、解答题
19..已知定义域为R的函数f(x)=是奇函数.
(1)求a的值;
(2)判断f(x)在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);
(3)若对于任意t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.
20.已知复数z=m(m﹣1)+(m2+2m﹣3)i(m∈R)
(1)若z是实数,求m的值;
(2)若z是纯虚数,求m的值;
(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围.
21.根据下列条件,求圆的方程:
(1)过点A(1,1),B(﹣1,3)且面积最小;
(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).
22.设函数f(x)=lnx+,k∈R.
(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;
(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;
(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.
23.已知等差数列{a n}满足a2=0,a6+a8=10.
(1)求数列{a n}的通项公式;
(2)求数列{}的前n项和.
24.已知椭圆C:+=1(a>b>0)的一个长轴顶点为A(2,0),离心率为,直线y=k(x﹣1)与
椭圆C交于不同的两点M,N,
(Ⅰ)求椭圆C的方程;
(Ⅱ)当△AMN的面积为时,求k的值.
洪泽区第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】C
【解析】解:令F(x)=,(x>0),
则F′(x)=,
∵f(x)>xf′(x),∴F′(x)<0,
∴F(x)为定义域上的减函数,
由不等式x2f()﹣f(x)>0,
得:>,
∴<x,∴x>1,
故选:C.
2.【答案】B
【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),
其底面面积S=2×2+=4+,
底面周长C=2×3+=6+π,高为2,
故柱体的侧面积为:(6+π)×2=12+2π,
故柱体的全面积为:12+2π+2(4+)=20+3π,
故选:B
【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.
3.【答案】B
【解析】解:∵(﹣4+5i)i=﹣5﹣4i,
∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,
∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.
故选:B.
4. 【答案】C 【解析】
试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202
303
-=-.故本题答案选C. 考点:几何概型.
5. 【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:
2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况, 所以至少有一个白球,至多有一个白球不互斥;
至少有一个白球,至少有一个红球不互斥; 至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,
故选:D
【点评】本题考查了互斥事件和对立事件,是基础的概念题.
6. 【答案】A
【解析】解:画出满足条件的平面区域,如图示:

由图象得P (3,0)到平面区域的最短距离d min =

∴(x ﹣3)2+y 2
的最小值是:

故选:A .
【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.
7. 【答案】B
【解析】【知识点】函数的奇偶性
【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。

故答案为:B
8.【答案】B
【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,
函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)
对称,
函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,
设A,B,C,D的横坐标分别为a,b,c,d,
则a+d=4,b+c=4,由图象知另一交点横坐标为3,
故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,
即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.
故选:B.
【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.
9.【答案】D
【解析】
考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.
【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.
10.【答案】A
【解析】解:复数z===.
由条件复数z=(其中a∈R,i是虚数单位)的实部与虚部相等,得,18﹣a=3a+6,
解得a=3.
故选:A.
【点评】本题考查复数的代数形式的混合运算,考查计算能力.
11.【答案】A
【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,
∵α是三角形的一个内角,则sinα>0,
∴cosα<0,
∴α为钝角,∴这个三角形为钝角三角形.
故选A.
【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.
12.【答案】A
【解析】
试题分析:不妨设棱台为三棱台,设棱台的高为2h上部三棱锥的高为,根据相似比的性质可得:
220()2()a S a h
S a S a h
S '⎧=⎪+⎪⎨'⎪=+⎪⎩
,解得=A . 考点:棱台的结构特征.
二、填空题
13.【答案】20x y --=
【解析】解析: 设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的
中点坐标为(4,2).由2114y x =,2
224y x =两式相减得121212()()4()y y y y x x +-=-,而
12
22
y y +=,∴12
12
1y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=.
14.【答案】

【解析】【知识点】圆的标准方程与一般方程双曲线 【试题解析】双曲线的渐近线方程为:

的圆心为(2,0),半径为1.
因为相切,所以
所以双曲线C 的渐近线方程是:
故答案为:,
15.
【答案】
=1
【解析】解:由题意得,圆心C (1,0),半径等于4,
连接MA ,则|MA|=|MB|,
∴|MC|+|MA|=|MC|+|MB|=|BC|=4>|AC|=2,
故点M 的轨迹是:以A 、C 为焦点的椭圆,2a=4,即有a=2,c=1, ∴
b=


椭圆的方程为
=1.
故答案为:=1.
【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题.16.【答案】6.
【解析】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,
f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,
令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,
故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,
∴x=2是极小值点.故c=2不合题意,c=6.
故答案为6
【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.17.【答案】2n﹣1.
【解析】解:∵a1=1,a n+1=a n+2n,
∴a2﹣a1=2,
a3﹣a2=22,

a n﹣a n﹣1=2n﹣1,
相加得:a n﹣a1=2+22+23+2…+2n﹣1,
a n=2n﹣1,
故答案为:2n﹣1,
18.【答案】6.
【解析】解:∵=(2x﹣y,m),=(﹣1,1).
若∥,
∴2x﹣y+m=0,
即y=2x+m,
作出不等式组对应的平面区域如图:
平移直线y=2x+m,
由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.
由,
解得,代入2x﹣y+m=0得m=6.
即m的最大值为6.
故答案为:6
【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(1)因为f(x)为R上的奇函数
所以f(0)=0即=0,
∴a=1 …
(2)f(x)==﹣1+,在(﹣∞,+∞)上单调递减…
(3)f(t2﹣2t)+f(2t2﹣k)<0⇔f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k),
又f(x)=在(﹣∞,+∞)上单调递减,
∴t2﹣2t>﹣2t2+k,
即3t2﹣2t﹣k>0恒成立,
∴△=4+12k<0,
∴k<﹣.…(利用分离参数也可).
20.【答案】
【解析】解:(1)z为实数⇔m2+2m﹣3=0,解得:m=﹣3或m=1;
(2)z为纯虚数⇔,解得:m=0;
(3)z所对应的点在第四象限⇔,解得:﹣3<m<0.
21.【答案】
【解析】解:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,
∴圆心坐标为(0,2),半径r=|AB|==×=,
∴所求圆的方程为x2+(y﹣2)2=2;
(2)由圆与y轴交于点A(0,﹣4),B(0,﹣2)可知,圆心在直线y=﹣3上,
由,解得,
∴圆心坐标为(2,﹣3),半径r=,
∴所求圆的方程为(x﹣2)2+(y+3)2=5.
22.【答案】
【解析】解:(Ⅰ)由条件得f′(x)=﹣(x>0),
∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,
∴此切线的斜率为0,
即f′(e)=0,有﹣=0,得k=e;
(Ⅱ)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2恒成立…(*)
设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.
由h′(x)=﹣﹣1≤00在(0,+∞)上恒成立,得k≥﹣x2+x=(﹣x﹣)2+(x>0)恒成立,
∴k≥(对k=,h′(x)=0仅在x=时成立),
故k的取值范围是[,+∞);
(Ⅲ)由题可得k=e,
因为M∩P≠∅,所以f(x)<在[e,3]上有解,
即∃x∈[e,3],使f(x)<成立,
即∃x∈[e,3],使m>xlnx+e成立,所以m>(xlnx+e)min,
令g(x)=xlnx+e,g′(x)=1+lnx>0,所以g(x)在[e,3]上单调递增,
g(x)min=g(e)=2e,
所以m>2e.
【点评】本题考查导数的运用:求切线的斜率和单调区间,主要考查函数的单调性的运用,考查不等式存在性和恒成立问题的解决方法,考查运算能力,属于中档题.
23.【答案】
【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.
∴,解得,
∴a n﹣1+(n﹣1)=n﹣2.
(2)=.
∴数列{}的前n项和S n=﹣1+0+++…+,
=+0++…++,
∴=﹣1++…+﹣=﹣2+﹣=,
∴S n=.
24.【答案】
【解析】解:(Ⅰ)∵椭圆一个顶点为A (2,0),离心率为,

∴b=
∴椭圆C的方程为;
(Ⅱ)直线y=k(x﹣1)与椭圆C联立,消元可得(1+2k2)x2﹣4k2x+2k2﹣4=0
设M(x1,y1),N(x2,y2),则x1+x2=,
∴|MN|==
∵A(2,0)到直线y=k(x﹣1)的距离为
∴△AMN的面积S=
∵△AMN的面积为,

∴k=±1.
【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|.。

相关文档
最新文档