祁县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祁县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 设函数f (x )
=,则f (1)=( )
A .0
B .1
C .2
D .3
2. 在下列区间中,函数f (x )=
()x ﹣x 的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3 )
D .(3,4)
3. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )
A .
B .
C .
D . 4. 已知{}n a 是等比数列,251
24
a a ==,,则公比q =( ) A .12-
B .-2
C .2
D .12
5. 已知实数y x ,满足不等式组⎪⎩

⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等.
6. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列
{}n a 的前n 项和为( )
A .22n
- B .1
2
2n +- C .21n - D .121n +-
7.设
n
S是等差数列{}
n
a的前项和,若5
3
5
9
a
a
=,则9
5
S
S
=()
A.1 B.2 C.3 D.4
8.在等比数列{a n}中,已知a1=3,公比q=2,则a2和a8的等比中项为()
A.48 B.±48 C.96 D.±96
9.方程x=所表示的曲线是()
A.双曲线B.椭圆
C.双曲线的一部分D.椭圆的一部分
10.下列各组函数为同一函数的是()
A.f(x)=1;g(x)=B.f(x)=x﹣2;g(x)=
C.f(x)=|x|;g(x)=D.f(x)=•;g(x)=
11.已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()
A.3个B.2个C.1个D.无穷多个
12.已知集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则实数a的范围是()
A.[3,+∞)B.(3,+∞)C.[﹣∞,3] D.[﹣∞,3)
二、填空题
13.已知||=1,||=2,与的夹角为,那么|+||﹣|=.
14.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.15.(本小题满分12分)点M(2pt,2pt2)(t为常数,且t≠0)是拋物线C:x2=2py(p>0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.
(1)求证:直线PQ的斜率为-2t;
(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值.
16.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是.17.命题“若1
x≥,则2421
x x
-+≥-”的否命题为.
18.正方体ABCD﹣A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为.
三、解答题
19.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
20.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,求直线l的方程.
21.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)
(Ⅰ)求f(x)的最小值;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.
22.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0
(1)若a=1,且q ∧p 为真,求实数x 的取值范围; (2)若p 是q 必要不充分条件,求实数a 的取值范围.
23.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分别记为,,,,A B C D E ,其频率分布直方图如下图所示.
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
(Ⅱ)该团导游首先在,,C D E 三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中
随机选出2名团员为主要协调负责人,求选出的2名团员均来自C 组的概率.
24.已知函数f(x)=e﹣x(x2+ax)在点(0,f(0))处的切线斜率为2.
(Ⅰ)求实数a的值;
(Ⅱ)设g(x)=﹣x(x﹣t﹣)(t∈R),若g(x)≥f(x)对x∈[0,1]恒成立,求t的取值范围;
(Ⅲ)已知数列{a n}满足a1=1,a n+1=(1+)a n,
求证:当n≥2,n∈N时f()+f()+L+f()<n•()(e为自然对数的底数,e≈2.71828).
祁县第三高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】D
【解析】解:∵f (x )=,
f (1)=f[f (7)]=f (5)=3. 故选:D .
2. 【答案】A
【解析】解:函数f (x )=()x
﹣x ,
可得f (0)=1>0,f (1)=﹣<0.f (2)=﹣<0, 函数的零点在(0,1). 故选:A .
3. 【答案】C 【解析】
考点:三视图. 4. 【答案】D 【解析】
试题分析:∵在等比数列}{a n 中,41,2a 52==a ,2
1,81q 253
=∴==∴q a a . 考点:等比数列的性质. 5. 【答案】C
【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.
6. 【答案】C
【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n
-,选C .
7. 【答案】A 【解析】1111]
试题分析:19951553
9()9215()52
a a S a a a S a +===+.故选A .111] 考点:等差数列的前项和. 8. 【答案】B
【解析】解:∵在等比数列{a n }中,a 1=3,公比q=2, ∴a 2=3×2=6,
=384,
∴a 2和a 8
的等比中项为=±48.
故选:B .
9. 【答案】C
【解析】解:
x=两边平方,可变为3y 2﹣x 2
=1(x ≥0),
表示的曲线为双曲线的一部分;
故选C .
【点评】本题主要考查了曲线与方程.解题的过程中注意x 的范围,注意数形结合的思想.
10.【答案】C
【解析】解:A 、函数f (x )的定义域为R ,函数g (x )的定义域为{x|x ≠0},定义域不同,故不是相同函数;
B 、函数f (x )的定义域为R ,g (x )的定义域为{x|x ≠﹣2},定义域不同,故不是相同函数;
C、因为,故两函数相同;
D、函数f(x)的定义域为{x|x≥1},函数g(x)的定义域为{x|x≤1或x≥1},定义域不同,故不是相同函数.综上可得,C项正确.
故选:C.
11.【答案】B
【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,
又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,
即M={x|﹣1≤x≤3},
在此范围内的奇数有1和3.
所以集合M∩N={1,3}共有2个元素,
故选B.
12.【答案】B
【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},
若A⊆B,则a>3,
故选:B.
【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.
二、填空题
13.【答案】.
【解析】解:∵||=1,||=2,与的夹角为,
∴==1×=1.
∴|+||﹣|====.
故答案为:.
【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.
14.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=, ∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值,
∴cos2α=
=

∵α为锐角,sin (α+)>0,
∴sin (α+

=
===

故答案为:.
15.【答案】
【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,
解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).
由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =
2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )
=-2t ,
即直线PQ 的斜率为-2t .
(2)由y =x 22p 得y ′=x
p

∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2pt
p =2t .
其切线方程为y -2pt 2=2t (x -2pt ), 又C 的准线与y 轴的交点T 的坐标为(0, -p
2). ∴-p
2
-2pt 2=2t (-2pt ).
解得t =±12,即t 的值为±1
2.
16.【答案】 {a|

} .
【解析】解:∵二次函数f (x )=x 2
﹣(2a ﹣1)x+a+1 的对称轴为 x=a ﹣,
f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,∴区间(1,2)在对称轴的左侧或者右侧,
∴a ﹣≥2,或a ﹣≤1,∴a ≥,或 a ≤,
故答案为:{a|a ≥,或 a ≤}.
【点评】本题考查二次函数的性质,体现了分类讨论的数学思想.
17.【答案】若1x <,则2421x x -+<- 【解析】
试题分析:若1x <,则2421x x -+<-,否命题要求条件和结论都否定. 考点:否命题.
18.【答案】 平行 .
【解析】解:∵AB 1∥C 1D ,AD 1∥BC 1,
AB 1⊂平面AB 1D 1,AD 1⊂平面AB 1D 1,AB 1∩AD 1=A C 1D ⊂平面BC 1D ,BC 1⊂平面BC 1D ,C 1D ∩BC 1=C 1 由面面平行的判定理我们易得平面AB 1D 1∥平面BC 1D
故答案为:平行.
【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.
三、解答题
19.【答案】
【解析】解:(1)y=﹣2x 2+40x ﹣98,x ∈N *

(2)由﹣2x 2
+40x ﹣98>0解得,
,且x ∈N *

所以x=3,4,,17,故从第三年开始盈利.
(3)由
,当且仅当x=7时“=”号成立,
所以按第一方案处理总利润为﹣2×72
+40×7﹣98+30=114(万元).
由y=﹣2x 2+40x ﹣98=﹣2(x ﹣10)2
+102≤102,
所以按第二方案处理总利润为102+12=114(万元). ∴由于第一方案使用时间短,则选第一方案较合理.
20.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;
(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;
【解答】解:(1)已知圆C:(x﹣1)2+y2=9的圆心为C(1,0),因为直线l过点P,C,所以直线l的斜率为2,所以直线l的方程为y=2(x﹣1),即2x﹣y﹣2=0.
(2)当弦AB被点P平分时,l⊥PC,直线l的方程为,即x+2y﹣6=0.
21.【答案】
【解析】解:(Ⅰ)f(x)=ax++b≥2+b=b+2
当且仅当ax=1(x=)时,f(x)的最小值为b+2
(Ⅱ)由题意,曲线y=f(x)在点(1,f(1))处的切线方程为y=,可得:
f(1)=,∴a++b=①
f'(x)=a﹣,∴f′(1)=a﹣=②
由①②得:a=2,b=﹣1
22.【答案】
【解析】解:(1)p:实数x满足x2﹣4ax+3a2<0,其中a>0
⇔(x﹣3a)(x﹣a)<0,∵a>0为,所以a<x<3a;
当a=1时,p:1<x<3;
命题q:实数x满足x2﹣5x+6≤0⇔2≤x≤3;若p∧q为真,则p真且q真,∴2≤x<3;
故x的取值范围是[2,3)
(2)p是q的必要不充分条件,即由p得不到q,而由q能得到p;
∴(a,3a)⊃[2,3]⇔,1<a<2
∴实数a的取值范围是(1,2).
【点评】考查解一元二次不等式,p∧q的真假和p,q真假的关系,以及充分条件、必要条件、必要不充分条件的概念.属于基础题.
23.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
24.【答案】
【解析】解:(Ⅰ)∵f(x)=e﹣x(x2+ax),
∴f′(x)=﹣e﹣x(x2+ax)+e﹣x(2x+a)=﹣e﹣x(x2+ax﹣2x﹣a);
则由题意得f′(0)=﹣(﹣a)=2,
故a=2.
(Ⅱ)由(Ⅰ)知,f(x)=e﹣x(x2+2x),
由g(x)≥f(x)得,
﹣x(x﹣t﹣)≥e﹣x(x2+2x),x∈[0,1];
当x=0时,该不等式成立;
当x∈(0,1]时,不等式﹣x+t+≥e﹣x(x+2)在(0,1]上恒成立,
即t≥[e﹣x(x+2)+x﹣]max.
设h(x)=e﹣x(x+2)+x﹣,x∈(0,1],
h′(x)=﹣e﹣x(x+1)+1,
h″(x)=x•e﹣x>0,
∴h′(x)在(0,1]单调递增,
∴h′(x)>h′(0)=0,
∴h(x)在(0,1]单调递增,
∴h(x)max=h(1)=1,
∴t≥1.
(Ⅲ)证明:∵a n+1=(1+)a n,
∴=,又a1=1,
∴n≥2时,a n=a1••…•=1••…•=n;
对n=1也成立,
∴a n=n.
∵当x∈(0,1]时,f′(x)=﹣e﹣x(x2﹣2)>0,
∴f(x)在[0,1]上单调递增,且f(x)≥f(0)=0.
又∵f()(1≤i≤n﹣1,i∈N)表示长为f(),宽为的小矩形的面积,
∴f()<f(x)dx,(1≤i≤n﹣1,i∈N),
∴[f()+f()+…+f()]=[f()+f()+…+f()]
<f(x)dx.
又由(Ⅱ),取t=1得f(x)≤g(x)=﹣x2+(1+)x,
∴f(x)dx≤g(x)dx=+,
∴[f()+f()+…+f()]<+,
∴f()+f()+…+f()<n(+).
【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.。

相关文档
最新文档