初三数学试题卷

合集下载

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.的倒数是( ) A .B .C .2D .2.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .163.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是( ) A . B . C . D .4.(2011•淮安)如图,反比例函数的图象经过点A (﹣1,﹣2).则当x >1时,函数值y 的取值范围是( )A .y >1B .0<y <lC .y >2D .0<y <25.学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,下面所列方程正确的是( ). A .B .C .D .6.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 1 7.下列运算正确的是 ……………………………………………( ) A .B .C .D .8.如图,已知∠ABC =∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A =∠DB .AB =DC C .∠ACB =∠DBCD .AC =BD 9.矩形具有而菱形不一定具有的性质是 ( ) A .两组对边分别平行 B .对角线相等C.对角线互相平分D.两组对角分别相等10.菱形ABCD一条对角线长为6,边AB长为方程y2﹣7y+10=0的一个根,则菱形ABCD周长为()A.8 B.20 C.8或20 D.10二、判断题11.某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.(1)请把三个图表中的空缺部分都补充完整;(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).12.一商店1月份的利润是2500元,3月份的利润达到3025元,这两个月的利润平均月增长的百分率是多少?13.为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面与通道平行),通道水平宽度为8米,,通道斜面的长为6米,通道斜面的坡度.(1)求通道斜面的长为米;(2)为增加市民行走的舒适度,拟将设计图中的通道斜面的坡度变缓,修改后的通道斜面的坡角为30°,求此时的长.(结果保留根号)14.计算15.如图,以线段AB为直径的⊙O交线段AC于点E,点M是 AE 的中点,OM交AC于点D,BC=2∠BOE=60°,∠C=60°.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.评卷人得分三、填空题16.对于实数a,b,定义运算“﹡”:a﹡b=例如4﹡2,因为4>2,所以4﹡2.若是一元二次方程的两个根,则﹡=17.如图,光源P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,若PA=2cm,PC="6" cm ,AB=3cm,那么CD=_______cm.18.分解因式:2x2-2=___________________。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m,n上,测得=120°,则的度数是A.45° B.55° C.65° D.75°2.化简的结果是A. B. C. D.3.下列计算正确的是()A.2a+3b="5ab" B.(x+2)2=x2+4 C.(ab3)2=ab6 D.(-1)0=14.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是A.x=. B.x=2. C.x=4. D.x=3.5.﹣3的倒数是()A.3 B. C.﹣ D.﹣36.在实数,,0.101001,中,无理数的个数是A.0个 B.1个 C.2个 D.3个7.下列各选项中,既不是正数也不是负数的是()A. 1 B.0 C.1 D.8.已知⊙O1和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是A.外切 B.内切 C.相交 D.相离9.与在平面直角坐标系中的位置如图所示,它们关于点成中心对称,其中点,则点的坐标是()A. B. C. D.10.下列命题中正确的为__________.[ ]A.三点确定一个圆B.圆有且只有一个内接三角形C.三角形的外心是三角形任意两边的垂直平分线的交点D.面积相等的三角形的外接圆是等圆二、判断题11.画出下面立体图的三视图12.已知抛物线经过点E(1,0)和F(5,0),并交y轴于D(0,-5);抛物线:(a≠0),(1)试求抛物线的函数解析式;(2)求证:抛物线与x轴一定有两个不同的交点;(3)若a=1①抛物线、顶点分别为(,)、(,);当x的取值范围是_________ 时,抛物线、上的点的纵坐标同时随横坐标增大而增大;②已知直线MN分别与x轴、、分别交于点P(m,0)、M、N,且MN∥y轴,当1≤m≤5时,求线段MN的最大值。

初三数学试题及答案人教版

初三数学试题及答案人教版

初三数学试题及答案人教版初三数学试题及答案(人教版)一、选择题(每题2分,共10分)1. 若a,b,c为实数,且满足a+b+c=3,abc=1,则下列选项中正确的是:A. a^2+b^2+c^2=5B. a^2+b^2+c^2=7C. a^2+b^2+c^2=9D. a^2+b^2+c^2=112. 下列哪个不等式是正确的?A. |x-2| > |x+3|B. |x-2| < |x+3|C. |x-2| ≥ |x+3|D. |x-2| ≤ |x+3|3. 一个圆的半径为5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π4. 函数y=2x^2+3x+1的顶点坐标是:A. (-1,0)B. (-1,1)C. (1,0)D. (1,1)5. 如果一个三角形的三边长分别为a,b,c,且满足a^2+b^2=c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题(每题2分,共10分)6. 若一个数的平方根等于它本身,那么这个数是________。

7. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。

8. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长为________。

9. 函数y=x^3-6x^2+11x-6的零点是________。

10. 一个圆的面积为25π,那么它的半径是________。

三、解答题(每题10分,共30分)11. 解一元二次方程:x^2-5x+6=0。

12. 证明:若a,b,c是三角形的三边,且满足a^2+b^2=c^2,那么这个三角形是直角三角形。

13. 求函数y=x^2-2x+1在x=2时的值。

四、证明题(每题15分,共30分)14. 证明:勾股定理。

15. 证明:若a,b,c是三角形的三边,且满足a+b>c,那么这个三角形是存在的。

五、综合题(每题20分,共20分)16. 一个长方形的长为10cm,宽为5cm,求其对角线的长度。

初三数学考试题型及答案

初三数学考试题型及答案

初三数学考试题型及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式的基本性质?A. 不等式两边同时乘以一个负数,不等号方向不变B. 不等式两边同时乘以一个正数,不等号方向不变C. 不等式两边同时加上同一个数,不等号方向不变D. 不等式两边同时除以一个正数,不等号方向不变答案:B2. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的直径是10cm,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A5. 一个等腰三角形的两个底角相等,那么这个三角形的顶角是:A. 90度B. 60度C. 30度D. 无法确定答案:D6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. -10答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是:A. 24cm³B. 12cm³C. 8cm³D. 6cm³答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 一个二次函数y=ax²+bx+c的图象开口向上,那么a的值是:A. 正数B. 负数C. 0D. 无法确定答案:A10. 一个等差数列的前三项是2,5,8,那么这个数列的公差是:A. 3B. 2C. 1D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的立方是27,那么这个数是________。

答案:32. 一个直角三角形的两条直角边长分别是3cm和4cm,那么这个三角形的斜边长是________。

答案:5cm3. 一个数的倒数是1/2,那么这个数是________。

答案:24. 一个三角形的内角和是________度。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在Rt △ABC 中,∠C=90°,若sinA=,则cosB 的值是( )A .B .C .D .2.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( ) A .54-x=20%×108B .54-x=20%(108+x )C .54+x=20%×162D .108-x=20%(54+x )3.(2014湖北武汉)如图,线段AB 两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 4.(本题8分) 先化简,再求值:,其中a=-2.5.方程的根为( )A .3B .4C .4或3D .或36. 如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠C=,则∠BOC 的度数是( )A.B.C.D.7.如图,直线a∥b,c是截线,∠1的度数是()A.55° B.75° C.110° D.125°8.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是学生姓名小丽小明小颖小华小乐小恩学习时间(小时)463458A.4小时和4.5小时B.4.5小时和4小时C.4小时和3.5小时D.3.5小时和4小时9.下面各角能成为某多边形的内角和是()A.4300° B.4343° C.4320° D.4360°10.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A. B. C. D.二、判断题11.为支援灾区,某学校爱心活动小组准备和筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?12.提出问题在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.探究问题(1)如图①,在中,,,,请你过点画出的一条“等分积周线”,与交于点,并求出的长;(2)如图②,在中,,且,过点画一条直线,其中点为上一点,你觉得可能是的“等分积周线”吗?请说明理由;解决问题(3)西安市区的环境越来越美,随处可见的街心花园成为人们休闲的好去处.在某地的街心花园中有一块如图③所示的空地,其中,,,,现要在这块空地上修建一条笔直的水渠(渠宽不计),使这条水渠所在的直线既平分四边形的周长,又平分四边形的面积,且要求这条水渠必须经过边.请你画出所有满足条件的水渠,说明理由,并求出该水渠与边的交点到点的距离.13.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.14.如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF.(1)求证:AF∥CE;(2)探究线段AF,EF,EC之间的数量关系,并说明理由;(3)若BC=6,BG=8,求AF的长.15.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?三、填空题16.下列说法中,正确的是_____(填序号).①一年有365天,如果你随便说出一天,恰好是我的生日,这是绝对不可能的.②一个自然数不是偶数便是奇数,这是必然的.③有理数中不是正数,就一定是负数.④在一个袋子里装有形状和大小都相同的5个红球和3个黑球,从中随机摸出一个,那么摸出红球的可能性要比摸出黑球的可能性大. ⑤若每500000张彩票有一个特等奖,小明前去买了1张,那么他是不可能中特等奖的.17.在Rt △ABC 的直角边AC 边上有一动点P (点P 与点A ,C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有 _条.18.点A(2,y 1)、B(3,y 2)是二次函数y =x 2-2x +1的图象上两点,则y 1与y 2的大小关系为y 1________y 2(填“>”、“<”、“=”).19.如图,等腰Rt △ABC 中,∠ACB=90°,AC=BC=1,且AC 边在直线a 上,将△ABC 绕点A 顺时针旋转到位置①可得到点P 1,此时AP 1=;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=1+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=2+;…,按此规律继续旋转,直至得到点P 2014为止.则AP2014= .20.若代数式有意义,则x 的取值范围是________. 四、计算题21.计算:;22.某学校课程安排中,各班每天下午只安排三节课.(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果). 五、解答题23.在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).问题:(1)求∠ABC的度数;(2)求证:△AEB≌△ADC;(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.24.已知抛物线y=x2+bx+c过点(-6,-2),与y轴交于点C,且对称轴与x轴交于点B(-2,0),顶点为A.(1)求该抛物线的解析式和A点坐标;(2)若点D是该抛物线上的一个动点,且使△DBC是以B为直角顶点BC为腰的等腰直角三角形,求点D坐标;(3)若点M是第二象限内该抛物线上的一个动点,经过点M的直线MN与y轴交于点N,是否存在以O、M、N为顶点的三角形与△OMB全等?若存在,请求出直线MN的解析式;若不存在,请说明理由.参考答案1 .【解析】试题分析:在Rt△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cosB=sinA,∵sinA=,∴cosB=.故选:B.考点:1、同角三角函数的关系;2、互余两角三角函数的关系2 .B.【解析】试题解析:设把x公顷旱地改为林地,根据题意可得方程:54-x=20%(108+x).故选B.考点:一元一次方程的应用.3 .A 【解析】∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为(3,3).故选A.4 .见解析【解析】原式=--------------------3分==a-1----------------------------------------------5分∵a≠0,a≠1,a≠-2,---------------------------------7分∴当a=-2时,原分式无意义。

中考数学试卷含答案初三九年级数学试题

中考数学试卷含答案初三九年级数学试题

中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a =+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.7.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.9.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.【分析】根据题意列出方程组,根据一元二次方程解的情况判断..【解答】解:ax﹣2a=﹣,则x﹣2=﹣,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a与反比例函数y=﹣只有一个公共点,故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的图象和性质,函数图象的交点的求法是解题的关键.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为 3.25×105克.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的每一个外角都是18°,这个多边形的边数为二十.【分析】根据多边形的外角和为360°,求出多边形的边数即可.【解答】解:设正多边形的边数为n,由题意得,n×18°=360°,解得:n=20.故答案为:二十.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为52°.【分析】依据∠E=30°,AC∥EF,即可得到∠AGH=∠E=30°,再根据∠1是△AGH的外角,即可得出∠1=∠A+∠AGH=52°.【解答】解:如图,∵∠E=30°,AC∥EF,∴∠AGH=∠E=30°,又∵∠1是△AGH的外角,∴∠1=∠A+∠AGH=22°+30°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为5cm.【分析】根据垂径定理求得AC=4cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.求出点C坐标即可判断;④错误.求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,CH===2.4,∴AH==3.2,∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有=3.2,m=1.4,=2.4,n=4.8,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AF x,BG=x,∴DE=FG=5﹣x﹣x=5﹣x,∵S矩形DEGF=x(5﹣x)=﹣x2+5x,∵﹣<0,∴S的最大值==3,故⑤正确,综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.【分析】根据零指数幂的意义、负整数指数幂的意义以及特殊角锐角三角函数的值即可求出答案.【解答】解:原式=2+1﹣(﹣3)2﹣4×=2+1﹣9﹣2=﹣8【点评】本题考查实数的运算,解题的关键是熟练运用有关运算性质,本题属于基础题型.17.(7分)先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:÷(﹣),=÷,=÷,=•,=.当a =+2时,原式==1+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为50人;(2)由表中的数据可知:a=16,b=24%;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a的值,用羽毛球的人数除以总人数可得b的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人),故答案为:50;(2)a=50﹣(12+8+4+10)=16,则b=×100%=20%,故答案为:16,24%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?【分析】(1)设甲、乙两种报纸的单价分别是x元、y元,根据购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元列出方程组,解方程组即可;(2)设该销售处每天购进甲种报纸a份,根据销售这两种报纸的总利润不低于300元列出不等式,求解即可.【解答】解:(1)设甲、乙两种报纸的单价分别是x元、y元,根据题意得,解得.答:甲、乙两种报纸的单价分别是0.6元、0.8元;(2)设该销售处每天购进甲种报纸a份,根据题意,得(1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300,解得a≤400.答:该销售处每天最多购进甲种报纸400份.【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系与不等关系.21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.【分析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;【解答】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点评】本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.【分析】(1)把C点的坐标代入,即可求出反比例函数的解析式,再求出E点的坐标即可;(2)求出B、F的坐标,再求出解析式即可;(3)先求出两函数的交点坐标,即可得出答案.)【解答】解:(1)∵反比例函数y1=(x>0)图象经过点C,C点的坐标为(6,2),∴k=6×2=12,即反比例函数的解析式是y1=,∵矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),∴点E的纵坐标是2+1=3,把y=3代入y1=得:x=4,即点E的坐标为(4,3);(2)∵过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4,把y=4代入y1=得:4=,解得:x=3,即F点的坐标为(3,4),∵E(4,3),C(6,2),E为矩形ABCD的边AD的中点,∴AE=DE=6﹣4=2,∴B点的横坐标为4﹣2=2,即点B的坐标为(2,2),把B、F点的坐标代入直线y2=ax+b得:,解得:a=2,b=﹣2,即直线BF的解析式是y=2x﹣2;(3)∵反比例函数在第一象限,F(3,4),∴当y1>y2时,自变量x的取值范围是0<x<3.【点评】本题考查了一次函数与反比例函数的交点问题、函数的图象、用待定系数法求出一次函数与反比例函数的解析式、矩形的性质等知识点,能正确求出两函数的解析式是解此题的关键.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,=.②当△CDH∽△MFB时,=,分别构建方程即可解决问题;【解答】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CDM=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=DM=,∴OD=OC﹣CD=4﹣,∴AD=OA+OD=8+4﹣=12﹣,在Rt△ADP中,DP=AD•tan30°=(12﹣)×=4﹣1,∴PM=PD﹣DM=4﹣2.(3)如图2中,由(2)可知:BF=BC=4,FM=BF=4,CM=2DM=2,CD=,∴FM=FC﹣CM=4﹣2,①当△CDH∽△BFM时,=,∴=,∴DH=②当△CDH∽△MFB时,=,∴=,∴DH=,∵DN==,∴DH<DN,符合题意,综上所述,满足条件的DH的值为或.【点评】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l 的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当PA=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=PA时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.给出四个数0,,1,﹣2,其中最大的数是()A.0B.C.1D.﹣22.下列各数中,能使有意义的是()A.0B.2C.4D.63.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1044.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.下列各式计算正确的是()A.a3+2a2=3a5B.3+4=7C.(a6)2÷(a4)3=0D.(a3)2•a4=a96.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1C.y=x2D.y=8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.下列图形中,属于轴对称图形的是()A.B.C.D.。

初三数学试卷的试题及答案

初三数学试卷的试题及答案

一、选择题(每题4分,共40分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a² + b²的值为:A. 1B. 4C. 5D. 62. 在直角坐标系中,点A(2,3)关于x轴的对称点为:A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)3. 若sinθ = 0.8,且θ在第二象限,则cosθ的值为:A. -0.6B. 0.6C. -0.9D. 0.94. 下列函数中,y = x² - 4x + 4的图像是:A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 圆5. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数为:A. 40°B. 50°C. 60°D. 70°6. 若x + y = 5,xy = 6,则x² + y²的值为:A. 17B. 25C. 26D. 357. 下列不等式中,正确的是:A. 3x > 2xB. 2x < 3xC. 3x ≥ 2xD. 2x ≤ 3x8. 若a、b、c是等差数列,且a + b + c = 15,a² + b² + c² = 45,则ab + bc + ca的值为:A. 15B. 25C. 35D. 459. 在△ABC中,若a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 一般三角形10. 若x² - 2x - 3 = 0,则x² - 5x + 6的值为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若sinα = 0.6,cosα = 0.8,则tanα = _______。

12. 若等差数列{an}中,a1 = 3,公差d = 2,则第10项an = _______。

初三考试题目数学及答案

初三考试题目数学及答案

初三考试题目数学及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. √4答案:B2. 一个数的平方根是3,那么这个数是:A. 9B. 6C. -9D. -6答案:A3. 计算 (-2)^3 的结果是:A. 8B. -8C. 6D. -6答案:B4. 一个三角形的三个内角分别是30°,60°,90°,这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形答案:B5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 计算 3x - 5 = 10 的解是:A. x = 3B. x = 5C. x = 7D. x = 2答案:C7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C8. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. -2D. -1/2答案:A9. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 2或-2D. 0答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的立方根是-2,那么这个数是______。

答案:-83. 一个数的相反数是-7,那么这个数是______。

答案:74. 一个数的倒数是2,那么这个数是______。

答案:1/25. 一个数的绝对值是3,那么这个数可能是______。

答案:3或-3三、解答题(每题10分,共50分)1. 解方程:2x + 3 = 7。

答案:x = 22. 计算:(-3)^2。

答案:93. 计算:(-2) * (-4)。

答案:84. 计算:(-2)^3。

答案:-85. 计算:√9。

答案:3。

初三数学试卷(含答案)

初三数学试卷(含答案)

九年级数学试题一、选择题1.一元二次方程x 2-4=0的根为 ( )A. x = 2B. x =-2C. x 1= 2,x 2 =-2D. x = 162.用配方法解方程x 2+4x +3=0时,配方后得到的方程为 ( )A .(x +2)2 = 1B .( x +2)2 =3C .(x -2)2 = 3D .( x -2)2 = 13. 如图,点A 、B 、C 是⊙O 上的三点,若∠A =40º,则∠BOC 的度数是( )A .100ºB .80º C.60º D.40º4.下列关于x 的一元二次方程有实数根的是 ( )A .x 2+1=0B .x 2+x -1= 0C .2x 2 -2x +1= 0D .2x 2 -3x +4= 05.如图,在△ABC 中,∠ACB =90°,AC =6,AB =10.以B 为圆心作圆与AC 相切,则该圆的半径为()A .5B .4C .10D .86.已知t 是方程x 2-2x -1=0的一个根,则代数式2t 2-4t 的值等于 ( )A .1B .2C .3D .47.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,4),则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 的⊙O 上C .点P 在⊙O 外D .无法确定8. 如图,以AB 为直径的半圆O 上有两点D 、E ,ED 与BA 的延长线交于点C ,且有DC =OE ,若∠C =20°,则∠EOB 的度数是 ( )A .60° B.80° C.100° D.120°二、填空题9.方程x 2 = 3x 的解是_______________.10.已知扇形的面积为6π,半径为4,则该扇形的弧长为_______ .B OC A ( 第3题 )B AC (第5题) ( 第8题 )11.若关于x的一元二次方程x2 -4x +m = 0有两个相等的实数根,则m =______.12.用半径为30,圆心角为120 º的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为_________.13.若一元二次方程ax2+c=0(ac<0)的一根x1为4,则另一根x2=_________.三、解答题14.解下列方程(1)(x-1)2-5=0 (2)x2 -4x=2(3) 2x2 +5x-2=0(用配方法.....)...) (4) 9x2-(x-1)2=0(用因式分解法15.已知关于x的一元二次方程(a+1)x2-x+a2-2a-2=0有一根是1,求a的值16.已知关于x的一元二次方程x2-6x+a-2=0.(1)如果该方程有实数根,求实数a的取值范围;(2)如果该方程有两个相等的实数根,求出这两个根.21.如图,已知AB是⊙O的直径,弦AC∥OD..(1)求证:BD CD(2)若AC的度数为58 º,求∠AOD的度数.22. 如图,已知四边形ABCD内接于圆O,∠A=105°,BD=CD.(1)求∠DBC的度数;(2)若⊙O的半径为3,求BC的长.23. 如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.九年级数学参考答案一、选择题(本题共8题,每题3分,共24分)1. C2.A3. B4.B5.D6.B7.C8.A二、填空题(每小题3分,共24分)9. 0;310.3π11.412.1013.-4 14.24315.20%16. 2π﹣4三、解答题(共102分)17.解下列方程(每题4分,共8分)(1) 15± (2) 26±18.用指定方法....解下列方程(每题5分,共10分) (1) 5414-±(用配方法...) (2) 112x =-;214x =(用因式分解法.....) 19.解:将x =1代入,得:(a +1)2-1+a 2-2a -2=0解得:a 1=-1,a 2=2.……………………………………………5分∵a +1≠0,∴a ≠-1,∴a =2.………………………………………………………………8分20.(1) 11a ≤…………………………………………………………………………4分(2) 123x x ==……………………………………………………………………8分21.(1)证明:连接OC .∵OA=OC,∴∠OAC=∠ACO.(1分)∵AC∥OD,∴∠OAC=∠BOD.∴∠DOC=∠ACO.∴∠BOD=∠COD.(2分)∴BD CD =.(4分)(2)∵BD CD =,∴CD =0001(18058)612AC CB ==-=,(4分) 000(6158)119ACD =+=,∠AOD=119度(8分)22.解:(1)∵四边形ABCD 内接于圆O ,∴∠DCB+∠BAD=180°,∵∠A=105°,∴∠C=180°﹣105°=75°,∵BD=CD,∴∠DBC=∠C=75°;…………………………………………………………………………4分(2)连接BO 、CO ,∵∠C=∠DBC=75°,∴∠BDC=30°,∴∠BOC=60°,故的长l==π.…………………………………………………………………8分23.证明:(1)连接AD ;∵AB 是⊙O 的直径,∴∠ADB=90°.又∵DC=BD,∴AD 是BC 的中垂线.∴AB=AC.(2)连接OD ;∵OA=OB,CD=BD ,∴OD∥AC.∴∠O DE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE 是⊙O 的切线.24.解:设宽为x m ,则长为(20-2x ) m .…………………………………………2分 由题意,得x ·(20﹣2x ) = 48,4分解得x 1 = 4,x 2 = 6.5分当x = 4时,20-2×4 = 12>9 (舍去),7分当x =6时,20-2×6= 8.9分答:围成矩形的长为8 m 、宽为6 m .10分25.7k =………………4分,43k =………………7分,43k =-,此时根为负值,不符合题意舍去……9分综上,7k =或43k =……………10分26.(1)证明:∵ED 与⊙O 相切于D ,∴OD⊥DE,∵F 为弦AC 中点,∴OD⊥AC,∴AC∥DE.…………………………………4分(2)解:作DM⊥OA 于M ,连接CD ,CO ,AD .∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,……6分∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=1,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=,…………8分∴平行四边形ACDE面积=.……………10分。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图是某几何体的三视图及相关数据,则该几何体的侧面积是 ( )A .B .C .D .2.抛物线y =-2(x -3)2-1的顶点坐标是( )A .(3,1)B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1) 3.如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为( )A .16:9 B.4: 3 C .2:3 D .256:81 4.有下列四个命题: ①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等; ④半径相等的两个半圆是等弧.其中正确的有( )A .4个B .3个C .2个D .1个5.关于x 的方程kx 2+2x -1=0有两个实数根,则k 的取值范围是 A .k≥1B .k≥-1C .k≥1且k≠0D .k≥-1且k≠06.如图,PA、PB分别是⊙O的两条切线,切点是A、B,点C在⊙O上,若∠P=50°,则∠ACB=()A. 40°B. 50°C. 65°D. 130°7.计算(﹣5)+3的结果等于().A.2 B.﹣2 C.﹣8 D.88.不等式2x-6<0的解集是A.x>3. B.x<3. C.x>-3. D.x<-3.9.(3分)如图,▱ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向▱ABCD内部投掷飞镖(每次均落在▱ABCD内,且落在▱ABCD内任何一点的机会均等)恰好落在阴影区域的概率为()A. B. C. D.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A.1个 B.2个 C.3个 D.4个二、判断题11.如果一个函数不是正比例函数,就是反比例函数12.已知y 与x 成反比例,又知当x=2时,y=3,则y与x的函数关系式是y=13.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?14.如图,CD是⊙O的弦,AB是直径,CD⊥AB,垂足为P,求证:PC2=PA·PB15.在形状、大小、质量完全相同且不透明的四张卡片中,分别写有数2、3、5、6,随机抽取一张卡片记下数字后放回,洗匀后,再抽取一张卡片记下数字.(1)请用列表或树状图的方法表示可能出现的所有结果;(2)设第一次取出的数字记为,第二次取出的数字记为,求两次抽到数字组成的点(x,y)在直线上的概率。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则AD长为(◆)A.8 B.5 C. D.2.如图,数轴上A,B两点表示的数分别为-l和,点B关于点A的对称点为点C,则点C所表示的数为A.-2- B.-l- C.-2+ D.1+3.已知函数y=ax2+bx+c的图象如图所示,那么能正确反映函数y=ax+b图象的只可能是4.下列命题是真命题的是【】A.如果|a|=1,那么a=1B.一组对边平行的四边形是平行四边形C.如果a是有理数,那么a是实数D.对角线相等的四边形是矩形5.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球6.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A. πB. πC. πD. π7.某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为A. 165cm,165cmB. 165cm,170cmC. 170cm,165cmD. 170cm,170cm8.如图,A、C分别是x轴、y轴上的点,双曲线y=(x>0)与矩形OABC的边BC、AB分别交于E、F,若AF:BF=1:2,则△OEF的面积为().A.2 B. C.3 D.9.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()。

初三数学经典试题及答案

初三数学经典试题及答案

初中数学试例一、填空题:6、已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .答案:(1)-3;(2)-1.7、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________.答案:y =53x -51.8、已知m 2-5m -1=0,则2m 2-5m +1m 2= .答案:28.9、____________________范围内的有理数经过四舍五入得到的近似数3.142.答案:大于或等于3.1415且小于3.1425.10、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 .答案:2.11、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。

现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 . 答案:53. 12、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。

由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。

若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %. 答案:30.13、小明背对小亮按小列四个步骤操作:(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; (2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 . 答案:6.14、某同学在使用计算器求20个数的平均数时,错将88误输入为8,那么由此求出的平均数与实际平均数的差为 . 答案:-4.… ……图1 图2第19题图P N M DCB A15、在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆, (1)当r 时,圆O与坐标轴有1个交点; (2)当r 时,圆O 与坐标轴有2个交点; (3)当r 时,圆O 与坐标轴有3个交点; (4)当r 时,圆O 与坐标轴有4个交点; 答案:(1)r=3; (2)3<r <4; (3)r=4或5; (4)r >4且r ≠5.二、选择题:1、图(二)中有四条互相不平行的直线L 1、L2、L3、L 4所截出的七个角。

初三数学试卷附答案解析

初三数学试卷附答案解析

初三数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底点G 为BC 的中点,则矮建筑物的高CD为A .20米 B .10米 C .15米 D .5米2.如图,△ABC 内接于⊙O ,∠C= 45º,AB=4,则⊙O 的半径为【 】A .2B .4C .2D .3.一次函数y=kx+b 的图象(如图),当x <0时,y 的取值范围是( ▲ )A .y >0B .y <0C .y < 2D .2<y <04.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是().A.2 B.4 C.8 D.105.抛物线的部分图象如图所示,若,则的取值范围是()A.B.C.或D.或6.以下各点在反比例函数图象上的是:()A. B.(1,5) C. D.7.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4) B.(﹣2,﹣4) C.(﹣4,2) D.(4,﹣2)8.-4的倒数是()A.- B. C.-4 D.49.下列运算中,结果正确的是【】A. B. C. D.10.关于关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断二、判断题11.y与x2成反比例时y与x并不成反比例12.如图,操场上有一根旗杆AH,为测量它的高度,在点B和点D处各立一根高1.5米的标杆BC、DE,且BD=30米,测得视线AC与地面HG 的交点为F,视线AE与地面HG的交点为G,且H、B、F、D、G都在同一直线上,测得BF=3米,DG=5米,求旗杆AH的高度.13.已知点A(m,m+1),B(m+3,m-1)是反比例函数与一次函数的交点.(1)求反比例函数与一次函数的解析式;(2)请直接写出当反比例函数的函数值不大于一次函数的函数值时,自变量x的取值范围.14.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE、DE、DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.15.为了减少雾霾,美化环境,小王上班的交通方式由驾车改为骑自行车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑自行车速度的4倍,小王每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑自行车的速度.三、填空题16.某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD=1米,∠A=27°,则跨度AB的长为(精确到0.01米)。

初三数学试题大全

初三数学试题大全

初三数学试题答案及解析1.(本题满分10分)情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是▲,∠CAC′=▲ °.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=" k" AE,AC=" k" AF,试探究HE与HF之间的数量关系,并说明理由.【答案】见解析【解析】情境观察AD(或A′D),90 ------------------------------------------2分问题探究结论:EP=FQ.证明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP. ∴AG=EP.同理AG=FQ. ∴EP="FQ." -----------------------------------6分拓展延伸结论: HE=HF. ------------------------------------------7分理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴ = .同理△ACG∽△FAQ,∴ = .∵AB=" k" AE,AC=" k" AF,∴ = = k,∴ = . ∴EP="FQ."∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH. ∴HE="HF" ------------10分2.如图是小亮制作的风筝,为了平衡做成轴对称图形,已知 OC是对称轴,∠=°,∠=°,那么∠=【答案】 115【解析】略3.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.【1】该顾客至少可得到元购物券,至多可得到元购物券【答案】10、50【2】请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.【答案】树状图或列表正确…………………………………………6分………………………………8分4.已知反比例函数(m为常数)的图象经过点A(-1,6),则m的值为 .【答案】2【解析】略5.在△ABC中,∠C=120°,AC=BC,AB=4,半圆的圆心O在AB上,且与AC,BC分别相切于点D,E.【1】(1)求半圆O的半径;【答案】解:(1)解:连结OD,OC,∵半圆与AC,BC分别相切于点D,E.∴,且.…………………1分∵,∴且O是AB的中点.∴.∵,∴.∴.∴在中,.即半圆的半径为1.【2】(2)求图中阴影部分的面积.【答案】(2)设CO=x,则在中,因为,所以AC=2x,由勾股定理得:即解得(舍去)∴. …………………….4分∵半圆的半径为1,∴半圆的面积为,∴.6.(6分)已知二次函数.(1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标;【答案】(1)顶点坐标(-2,-4.5),对称轴:直线x=-2;最小值-4.5.(2)抛物线与x轴的交点坐标为(-5,0),(1,0).与y轴的交点坐标为(0,)【解析】略7.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是().A.B.C.D.【答案】C【解析】略8.+= 0,则的值为A.B.C.D.【答案】D【解析】分析:先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵+|2y+6|=0,∴,解得,∴x-y=2+3=5.故选D.9.用棋子按下列方式摆图形,依照此规律,第个图形比第个图形多枚棋子.【答案】【解析】略10..【答案】【解析】略11.下列计算正确的是A.a+2a2="3a3"B.a3·a2="a6"C.(a3)2="a6"D.a8-a5=a3【答案】C【解析】略12.如图,在直角三角形ABC中,∠ABC=90°,AC=2,BC=,以点A为圆心,AB为半径画弧,交AC于点D,则阴影部分的面积是.【答案】【解析】略13.如图,在Rt△AOB中,OA=OB=,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.【答案】【解析】连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=,OA=6.∴OP=AB=3.∴PQ===.【考点】1.切线的性质;2.勾股定理.14.据专家分析,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);k=225;(2)不能.【解析】首先将二次函数配方成顶点式,得出最大值;将x=5和y=45代入反比例函数解析式求出k的值;首先求出晚上20:00至第二天早上7:00一共有11小时,讲x=11代入反比例函数解析式求出y的值与20进行比较大小,得出答案.试题解析:(1)①y=﹣200x2+400x=﹣200(x﹣1)2+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=(k>0),∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.【考点】二次函数、反比例函数的实际应用.15.函数y=中自变量的取值范围是()A.x>1B.x ≥1C.x≤1D.【答案】B【解析】根据二次根式有意义的条件,被开方数大于等于零,可直接得到x-1≥0,解得x≥1,因此自变量x的取值范围为x≥1.故选B【考点】二次根式有意义16.如图,O为跷跷板AB的中点,支柱OC与地面MN垂直,垂足为点C,且OC=50cm,当跷跷板的一端B着地时,另一端A离地面的高度为 cm.【答案】100【解析】过点A作AD⊥MN,垂足为D,则OC//AD,∵O为AB中点,∴C为BD中点,∴AD=2OC=100【考点】三角形的中位线.17.将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是()A.45°B.60°C.90°D.180°【答案】C.【解析】利用平行线的性质和对顶角的性质进行解答.试题解析:如图∵a∥b∴∠1=∠3,∠2=∠4,又∵∠3=∠5,∠4=∠6,∠5+∠6=90°∴∠1+∠2=90°故选C.【考点】平行线的性质.18.(3分)某市七天的空气质量指数分别是:28,45,28,45,28,30,53,这组数据的众数是()A.28B.30C.45D.53【答案】A.【解析】28出现了3次,出现的次数最多,所以众数为28;故选A.【考点】众数.19.计算(-)×的结果是.【答案】2.【解析】根据乘法分配率,首先把小括号去掉,然后计算减法,求出算式的结果是多少即可.试题解析:原式===6-4=2.【考点】二次根式的混合运算.20. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.0000025米,把0.0000025用科学记数法表示为()A.2.5×106B.0.25×10-5C.2.5×10-6D.25×10-7【答案】C.【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.此题n<0,n=-6.试题解析:将0.0000025用科学记数法表示为:2.5×10-6.故选C.【考点】科学记数法—表示较小的数.21.如图,点A是5×5网格图形中的一个格点,图中每个小正方形的边长为1,请在网格中按下列要求操作:(1)以点A为其中的一个顶点,在图(1)中画一个面积等于3的格点直角三角形;(2)以点A为其中的一个顶点,在图(2)中画一个面积等于的格点等腰直角三角形.【答案】(1)见解析图;(2)见解析图.【解析】(1)画一个两直角边长为2和3的直角三角形即可;(2)画一个两直角边长为的直角三角形即可.试题解析:(1)如图1所示:(2)如图2所示:【考点】尺规作图—应用与设计.22.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)A.12m B.8m C.6m D.4m【答案】C.【解析】设长臂端点升高x米,根据题意,得,解得x=8.故选C.【考点】相似三角形的应用.23.直角三角形的两边的长分别为6和8,它的外接圆的半径是__ _.【答案】4或5【解析】因为直角三角形的两边的长分别为6和8,所以当6和8是直角边时,由勾股定理可得斜边=10,又因为直角三角形的斜边是它的外接圆的直径,所以半径r=5;当8是直角边时,半径r=5;所以它的外接圆的半径是4或5.【考点】1.勾股定理2.直角三角形外接圆的性质.24.的相反数是()A.B.C.D.【答案】B【解析】根据只有符号不同的两数互为相反数,可知-2015的相反数为2015.故选B【考点】相反数25.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【答案】A【解析】分别把A、B两点的坐标代入解析式,可得m=2,n=,从而判断得m>n,或者根据解析式知k=2>0,此函数在一、三象限,在每个象限内,y随x的增大而减小,故可判断m>n.故选A【考点】反比例函数的图像与性质26.如图,已知A、B是反比例函数y= kx(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C.过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A. B. C. D.【答案】A.【解析】设点P的运动速度为v,①由于点A在直线y=x上,故点P在OA上时,四边形OMPN为正方形,四边形OMPN的面积S=;②点P在反比例函数图象AB时,由反比例函数系数几何意义,四边形OMPN的面积S=k;③点P在BC段时,设点P运动到点C的总路程为a,则四边形OMPN的面积=OC•(a﹣vt)=﹣t+,纵观各选项,只有A选项图形符合.故选A.【考点】1.动点问题的函数图象;2.代数几何综合题.27.在同一平面直角坐标系中,函数y=ax2+bx(a≠0)与y=bx+a(b≠0)的图象可能是()【答案】C.【解析】试题解析:在A中,由一次函数图象可知,a>0,b>0,由二次函数图象可知,a>0,b<0,故选项A错误;在B中,由一次函数图象可知,a<0,b<0,由二次函数图象可知,a>0,b>0,故选项B错误;在C中,由一次函数图象可知,a<0,b>0,由二次函数图象可知,a<0,b>0,故选项C正确;在D中,由一次函数图象可知,a>0,b>0,由二次函数图象可知,a<0,b<0,故选项D错误;故选C.【考点】1.二次函数的图象;2.一次函数的图象.28.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【答案】A.【解析】试题解析:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100-4×=92(米);5a-4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③.故选A.【考点】一次函数的应用.29.如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是.【答案】240πcm2【解析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算这张扇形纸板的面积=×2π×10×24=240π(cm2).【考点】圆锥的计算30.下列命题中,真命题的个数有()①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个【答案】B.【解析】试题解析:①对角线互相平分的四边形是平行四边形,正确,符合题意;②两组对角分别相等的四边形是平行四边形,正确,符合题意;③一组对边平行,另一组对边相等的四边形是平行四边形,说法错误,例如等腰梯形,也符合一组对边平行,另一组对边相等.故选B.【考点】1.命题与定理;2.平行四边形的判定.31.先化简,再求值:,其中x是不等式组的整数解.【答案】,2.【解析】将原式括号中的第一项分母利用平方差公式分解因式,然后找出两分母的最简公分母,通分并利用同分母分式的减法法则计算,分子进行合并整理,同时将除式的分母利用完全平方公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后即可得到结果,分别求出x满足的不等式组两个一元一次不等式的解集,找出两解集的公共部分确定出不等式组的解集,在解集中找出整数解,即为x的值,将x的值代入化简后的式子中计算,即可得到原式的值.试题解析:====,又,由①解得:x>-4,由②解得:x<-2,∴不等式组的解集为-4<x<-2,其整数解为-3,当x=-3时,原式==2.【考点】1.分式的化简求值;2.一元一次不等式组的整数解.32.先化简,再求值:,其中x=﹣1.【答案】,﹣1.【解析】先把分解因式和除法运算化为乘法运算,再约分后进行同分母的减法运算,然后把x的值代入计算即可.试题解析:原式====当x=﹣1时,原式==﹣1.【考点】分式的化简求值.33.如图1,Rt△ABC中,∠ACB=90°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF 经过点C.(1)若∠B=60°.①求∠ADE的度数;②如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1,∠E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(2)将(1)问中的“若∠B=60°”改为“∠B=β(60°<β<90°)”,其余条件不变,判断的值是否为定值,如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.【答案】(1)①∠ADE=30°;②(2)见试题解析.【解析】(1)根据含30°的直角三角形的性质和等边三角形的性质解答即可;(2)根据相似三角形的判定和性质以及直角三角形中的三角函数解答即可;(3)由(2)的推理得出,再利用直角三角形的三角函数解答.试题解析:(1)①∵∠ACB=90°,D为AB的中点,∴CD=DB,∴∠DCB=∠B,∵∠B=60°,∴∠DCB=∠B=∠CDB=60°,∴∠CDA=120°,∵∠EDC=90°,∴∠ADE=30°;②∵∠C=90°,∠MDN=90°,∴∠DMC+∠CND=180°,∵∠DMC+∠PMD=180°,∴∠CND=∠PMD,同理∠CPD=∠DQN,∴△PMD∽△QND,过点D分别做DG⊥AC于G,DH⊥BC于H,可知DG,DH分别为△PMD和△QND的高,∴=,∵DG⊥AC于G,DH⊥BC于H,∴DG∥BC,又∵D为AC中点,∴G为AC中点,∵∠C=90°,∴四边形CGDH 为矩形有CG=DH=AG,Rt△AGD中, =,即=.(2)是定值,定值为tan(90°﹣β),∵=,四边形CGDH 为矩形有CG=DH=AG,∴Rt△AGD中,=tan∠A=tan(90°﹣∠B)=tan(90°﹣β),∴=tan(90°﹣β).【考点】几何变换综合题.34.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm【答案】A【解析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD=6,则BE 可求BE=BC-EC=8-6=2.故选:A.【考点】1、平行四边形的性质;2、等腰三角形的性质35.﹣6的绝对值是()A.﹣6B.6C.D.﹣【答案】B.【解析】根据绝对值的概念可得﹣6的绝对值是数轴上表示﹣6的点与原点的距离.【考点】绝对值.36.九年级某班同学在庆祝2015年元旦晚会上进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号1、2、3.随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.【答案】(1)答案见解析;(2)【解析】(1)、根据题意列出表格即可;(2)、根据概率的计算方法进行求解试题解析:(1)、列表得:(2)、∵取出的两个小球上标号相同有:(1,1),(2,2),(3,3)∴P(中奖的概率为)=【考点】概率的计算37.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【答案】(1)y=20x(0≤x≤30);(2)乙出发后10分钟追上甲,此时乙所走的路程是200米.【解析】(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.试题解析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.【考点】一次函数的应用.38.甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是___ ;(2)随机选取2名同学,求其中有乙同学的概率.【答案】(1)(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.试题解析:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=;(2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率=.【考点】1、列表法与树状图法;2、概率公式39.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.【答案】证明过程见解析【解析】证出∠A=∠ECD,再由∠B=∠D=90°,即可得出△ABC∽△CDE.试题解析:∵∠B=90°,∴∠A+∠ACB=90°,∵C为线段BD上一点,且AC⊥CE,∴∠ACB+∠ECD=90°,∴∠A=∠ECD,∵∠B=∠D=90°,∴△ABC∽△CDE.【考点】相似三角形的判定.40.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为()A.1B.3C.﹣5D.﹣9【答案】C.【解析】∵m、n是方程x2+3x﹣2=0的两个实数根,∴m+n=﹣3,mn=﹣2,m2+3m=2,∴m2+4m+n+2mn=m2+3m+m+n+2mn=2﹣3﹣2×2=﹣5.故选C.【考点】根与系数的关系.41.计算:2(+3)﹣5= .【答案】2+【解析】可根据向量的加法法则进行计算,可得2(+3)﹣5=2+6﹣5=2+,【考点】平面向量42.( 12分)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB使得1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C BB1沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射于F,G是EF中点,连接DG.设点D运动的时间为t秒.线BB1(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.【答案】(1)当t=1时,AD=AB,AE=1;(2)当t=或或或时,△DEG与△ACB相似.【解析】(1)根据勾股定理得出AB=5,要使AD=AB=5,∵动点D每秒5个单位的速度运动,∴t=1;(2)当△DEG与△ACB相似时,要分两种情况讨论,根据相似三角形的性质,列出比例式,求出DE的表达式时,要分AD<AE和AD>AE两种情况讨论.试题解析:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴或,∴t=或t=;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴或,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.点睛:本题第一问比较简单,第二问的讨论较多,关键是要理清头绪,相似三角形的讨论,和线段的大小的选择,做题时要分清,分细.43.如图,四边形ABCD中,∠B=60',∠D=50°,将△CMN沿MN翻折得△EMN,若EM∥AB,EN∥AD,则∠C的度数为A.110°B.115°C.120°D.125°【答案】D【解析】根据折叠前图形全等和平行线,先求出∠CPR和∠CRP,再根据三角形内角和定理即可求出∠C,解:因为折叠前后两个图形全等,故∠CMN=∠B=×60°=30°,∠CNF=∠D=×50°=25°;∴∠C=180°-25°-30°=125°;故选C.“点睛”本题主要考查另外三角形的内角和和外角和之间的关系平行线的性质和翻折变换.(1)三角形外角等于与它不相邻的内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含条件.44.如图,是二次函数y=ax2+bx-c的部分图象,由图象可知关于x的一元二次方程ax2+bx=c的两个根可能是________.(精确到0.1)【答案】x1=0.8 x2=3.2合理即可【解析】试题解析:依题意得二次函数y=ax2+bx+c的部分图象的对称轴为x=2,而对称轴左侧图象与x轴交点与原点的距离,约为0.8,∴x1=0.8;又∵对称轴为x=2,则,∴x2=2×2-0.8=3.2.【点睛】解答本题首先需要估计图象估计出一个解,再根据对称性计算出另一个解,估计值的精确程度,直接关系到计算的准确性,必须估计尽量准确.45.函数y=﹣的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>0【答案】D【解析】分析:本题考查的是反比例函数的性质.解析:因为反比例函数y=﹣,在每一支上y随x的增大而增大,∵x1<x2<0,∴y2>y1>0.故选D.46.已知:正方形,点在边上,点在线段的延长线上,且.(1)如图1,当点为边的中点时,求证:;(2)如图2,当点位于线段的延长线上,求证:.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由正方形性质和相似三角形证明等量关系式;(2)正方形的性质得出平行关系,得到角相等,由△FDE∽△CDF得到比例式.(1)证明:∵四边形是正方形,∴.∵点为边的中点,∴.∵,,∴△FCE∽△FBC.∴.又∵,∴.即.(2)∵四边形是正方形,∴∥,∥,=.∵点位于线段的延长线上,∥,∴.又∵=,∴.∵∥,∴.又∵,∴.又∵,∴△FDE∽△CDF.∴∴“点睛”本题主要考查了正方形的性质,相似三角形性质,解题关键是由已知条件作出两对角相等.47.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则sin∠BAC的值( )A.B.C.D.【答案】A【解析】如图:过点C作CD⊥AB于D,∵CD×AB=BC×3,AB=,AC=,∴CD=,在Rt△ADC中,sinA= == .故选:B.【考点】勾股定理, 三角形的面积, 锐角三角函数的定义48.下列运算正确的是()A.(﹣2a3)2=﹣4a6B.(a+b)2=a2+b2C.a2•a3=a6D.a3+2a3=3a3【答案】D【解析】分析:本题考查的是整式的运算性质.解析:(﹣2a3)2=4a6故A选项错误;故B选项错误;a2•a3=a5故C选项错误; a3+2a3=3a3故D选项正确.故选D.49.下列说法中,正确的是()A.有一个角为直角的四边形是菱形B.对角线互相垂直的菱形是正方形C.对角线相等的平行四边形是矩形D.一组邻边相等的平行四边形是正方形【答案】C【解析】选项A,有一个角为直角的平行四边形是矩形形,错误;选项B,对角线互相垂直的矩形是正方形,错误;选项C,对角线相等的平行四边形是矩形,正确;选项D,一组邻边相等的平行四边形是菱形,错误,故选C.50.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A.0.6B.0.8C.0.75D.【答案】D【解析】 .故选D.51.计算:(﹣)×=________.【答案】8【解析】(﹣)×52.如图,已知a∥b,∠1=115°,则∠2的度数是( )A.45°B.55°C.65°D.85°【答案】A【解析】试题解析:∵∠2="∠3,∠3=135°,"∴∠2="135°,"∵a∥b,∴∠1+∠2="180°,"∴∠1="45°."故选A.【考点】平行线的性质.53.下列运算正确的是()A.﹣(﹣a+b)=a+b B.3a3﹣3a2=a C.(x6)2=x8D.1÷﹣1=【答案】D【解析】A. ∵﹣(﹣a+b)=a-b , 故不正确;B. ∵3a3与3a2不是同类项 , ∴不能合并, 故不正确;C. ∵(x6)2=x12 , 故不正确;D. ∵1÷﹣1=,故正确;故选D.54.为了估计鱼塘中青鱼的数量(鱼塘中只有青鱼),将200条鲤鱼放进鱼塘,随机捕捞出一条鱼,记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2,那么可以估计鱼塘中青鱼的数量为________条.【答案】800【解析】根据用概率估计总体,可知200÷0.2=800(条).故答案为:800.点睛:本题考查用样本估计总体,解题的关键是明确题意,由鲤鱼的数量和出现的频率可以计算出青鱼的数量.55.已知二次函数的图象如图所示,则正比例函6570与反比例函数在同一坐标系中的大致图象是()A.B.C.D.【答案】C【解析】由二次函数图象可知a>0,c>0,由对称轴x=﹣>0,可知b<0,当x=1时,a+b+c<0,即b+c<0,所以正比例函数y=(b+c)x经过二四象限,反比例函数y=图象经过一三象限,故选:C.,【考点】1、二次函数图象的性质,2、一次函数的图象的性质,3、反比例函数图象的性质56.下列运算正确的是()A.a+ a= 2a B.a+ a= a C.a·a= 2a D.(-3a)= -27a【答案】D【解析】A. ,故本选项错误;B. ,故本选项错误;C. ,故本选项错误;D. ,故本选项正确;故选D.57.某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.【答案】(1)W=8t+900;(2)有三种购买方案.为了使拍照的资金更充足,应选择方案:购买30件文化衫、15本相册.【解析】(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据总价=单价×数量,即可得出W关于t的函数关系式;(2)由购买纪念品的总价范围,即可得出关于t的一元一次不等式组,解之即可得出t值,从而得出各购买方案,再根据一次函数的性质即可得出W的最小值,选取该方案即可.试题解析:(1)设购买的文化衫t件,则购买相册(45﹣t)件,根据题意得:W=28t+20×(45﹣t)=8t+900.(2)根据题意得:,解得:30≤t≤32,∴有三种购买方案:方案一:购买30件文化衫、15本相册;方案二:购买31件文化衫、14本相册;方案三:购买32件文化衫、13本相册.∵W=8t+900中W随x的增大而增大,∴当t=30时,W取最小值,此时用于拍照的费用最多,∴为了使拍照的资金更充足,应选择方案一:购买30件文化衫、15本相册.【考点】一次函数的应用;一元一次不等式组的应用;最值问题;方案型.58.点在反比例函数的图象上,则的值是()A.10B.5C.D.【答案】D.【解析】已知点在反比例函数的图象上,可得k=-2×5=-10,故选D.【考点】反比例函数图象上点的特征.59.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=6,求AD的长.【答案】(1)证明见解析;(2).【解析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=3,再由三角函数即可得出AD的长.试题解析:(1)证明:∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,BD=6,∴AC⊥BD,OD=OB=BD=3,∵∠ADB=30°,∴cos∠ADB=,∴AD==.【考点】菱形的判定与性质.60.如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)欲证明DB=DE,只要证明∠DBE=∠DEB;(2)欲证明直线CF为⊙O的切线,只要证明BC⊥CF即可;试题解析:(1)证明:∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)连接CD.∵DA平分∠BAC,∴∠DAB=∠DAC,∴,∴BD=CD,∵BD=DF,。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若关于x 的分式方程的解为非负数,则a 的取值范围是( )A .a≥1B .a >1C .a≥1且a≠4D .a >1且a≠42.如图所示的是小明设计用手电来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =1.2米,BP = 1.8米,PD =12米,那么该古城墙的高度是( )A .6米B .8米C .18米D .24米3.在函数=中,自变量的取值范围是( )A .≠0B .≥2C .>2或≠0D .≥2或≠04.(2011•宁夏)计算a 2+3a 2的结果是( ) A .3a 2 B .4a 2C.3a4D.4a45.如图,反比例函数与正比例函数的图象相交于A、B两点,过点A作AC⊥x轴于点C.若△ABC的面积是4,则这个反比例函数的解析式为()A. B. C. D.6.(2011山东济南,4,3分)某校九年级一班体育委员在一次体育课上记录了六位同学托排球的个数分别为37,25,30,35,28,25,这组数据的中位数为()A.25 B.28 C.29 D.32.57.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60° D.90°8.(2014四川内江)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC,BC相切于点D,E,则AD为( )A.2.5 B.1.6 C.1.5 D.19.如图,把一个矩形纸片沿EF折叠后,点D、C分别落在D1、C1的位置,若∠EFB=65º,则∠AED1等于()A.70º B.65º C.50º D.25º10.下列运算正确的是A.2x+3y=5xy B.5x2·x3=5x5 C.4x8÷2x2=2x4 D.(-x3)2=x5二、判断题11.已知:如图,在△ABC 中,AB=AC=13,BC=24,点P 、D 分别在边BC 、AC 上,AP 2=AD•AB ,(1)∽;(2)求∠APD 的正弦值.12.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人? 13.已知多项式A=.求解:(1)化简多项式A ; (2)若,求A 的值.14.计算:(1)+()-1-2cos60°; (2)(2x -y )2-(x +y )(x -y ) .15.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,则树高AB=__m .三、填空题16.在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4.则下列四个结论:①AE ∥BC ;②∠ADE=∠BDC ;③△BDE 是等边三角形;④△ADE 的周长是9.其中正确的结论是 (把你认为正确结论的序号都填上).17.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。

初三数学试卷附答案解析

初三数学试卷附答案解析

初三数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A .甲的方差比乙的方差小B .甲的方差比乙的方差大C .甲的平均数比乙的平均数小D .甲的平均数比乙的平均数大 2.已知二次函数的图象如图所示,对称轴为.下列结论中正确的是( )A .B .C .D .3.在下列手机软件图标中是轴对称图形的是( )A .B .C .D .4.在同一平面直角坐标系中,直线与直线的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。

某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。

假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( ) A .+4= B .-4= C .+4= D .-4=6.分式方程的解是( )。

A .x=-4B .x=1C .x 1=4,x 2=1D .x 1=—4,x 2=17.(2012•绵阳)把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是( )A .B .C .D .8.已知二次函数,其中a 、b 、c 满足a+b+c=0和9a-3b+c=0,则该二次函数图象的对称轴是直线( ) A .B .C .D .9.计算(-18)÷6的结果等于( ) A .-3 B .3 C .D .10.如图所示,渔船在A 处看到灯塔C 在北偏东60º方向上,渔船向正东方向航行了12海里到达B 处,在B 处看到灯塔C 在正北方向上,这时渔船与灯塔C 的距离是【 】二、判断题11.解不等式组,并把它的解集在数轴上表示出来.12.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2016年底某市汽车拥有量为14.4万辆.己知2014年底该市汽车拥有量为10万辆.(1)求2014年底至2016年底该市汽车拥有量的年平均增长率?(2)为保护城市环境,要求该市到2018年底汽车拥有量不超过15.464万辆,据估计从2016年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)13.有一种用“☆”定义的新运算:对于任意实数a,b都有a☆b=b2+a.例如7☆4=42+7=23.(1) 已知m☆2的结果是6,则m的值是多少?(2) 将两个实数n和n+2用这种新定义“☆”加以运算,结果为4,则n的值是多少?14.如图,经过原点的抛物线与轴的另一个交点为A。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx;考试时间:xxx分钟;出题人:xxx姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为()A.4cm B.3cm C.2cm D.1cm2.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是()3.两圆的半径分别为2和1,圆心距为3,则反映这两圆位置关系的为图()4.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.若二次函数的图象经过点P(-2,4),则该图象必经过点( )A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)6.一元二次方程的解是().A.,B.C.D.,7.-5的绝对值为【】A.-5 B.5 C. D.8.下列事件中,是必然发生的事件是()A.打开电视机,正在播放新闻B.父亲的年龄比儿子的年龄大C.通过长期努力学习,你会成为数学家D.下雨天,每个人都打着雨伞9.下列运算正确的是()A.3a+3b=6ab B.a3﹣a=a2 C.a6÷a3=a2 D.(a2)3=a610.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°二、判断题11.如图,是⊙的直径,、为⊙上位于异侧的两点,连接并延长至点,使得,连接交⊙于点,连接、、.(1)证明: ;(2)若,求的度数;(3)设交于点,若是的中点,求的值.12.(本题满分10分)如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且.(1)试问:∠BAE与∠CAD相等吗?为什么?(2)判断△ABE与△ACD是否相似?并说明理由.13.为了减少雾霾,美化环境,小王上班的交通方式由驾车改为骑自行车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑自行车速度的4倍,小王每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑自行车的速度.14.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)当四边形ABCD是形时,四边形OBEC是正方形15.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.三、填空题16.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线上一点,则点B与其对应点B′间的距离为 .17.某班级有男生和女生若干,若随机抽取1人,抽到男生的概率是,则抽到女生的概率是18.如图,四边形OABC 为菱形,点B 、C 在以点O 为圆心的上,若OA=1cm ,∠1=∠2,则的长为 cm .19.在实数范围内定义一种运算“*”,其规则为a*b=a 2—b 2,根据这个规则,求方程(x -2) *1=0的解为________________20.⊙O 的周长是24π,则长为5π的弧所对的圆心角为 度。

初三数学第一章测试题

初三数学第一章测试题

初三数学第一章测试题一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 2.5B. πC. 0.33333D. √42. 如果a > b > 0,那么下列哪个不等式是正确的?A. a + b > 2bB. a - b < bC. a × b < b²D. a / b > 13. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 以下哪个是二次根式?A. √3xB. √x²C. √x³D. √x/25. 一个数列的前三项为1, 2, 3,如果该数列是等差数列,那么第四项是多少?A. 4B. 5C. 6D. 7二、填空题(每题2分,共10分)6. 若a² + b² = c²,且a, b, c都是整数,那么a, b, c构成一个______。

7. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长度是______。

8. 如果一个数的平方根是4,那么这个数是______。

9. 一个圆的直径为10,那么它的半径是______。

10. 如果一个数列的前n项和为S(n),且S(5) = 35,那么这个数列的第五项是______。

三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + √5)²。

12. 解方程:2x + 5 = 17。

13. 化简二次根式:√(2x²y) / √xy。

四、解答题(每题10分,共20分)14. 已知一个直角三角形的两条直角边分别为6和8,求斜边的长度。

15. 一个数列的前三项为2, 4, 6,如果这个数列是等差数列,求第10项的值。

五、证明题(每题15分,共15分)16. 证明勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。

请注意,这些测试题是根据初三数学第一章的常见主题设计的,具体内容可能需要根据实际教学进度和课程标准进行调整。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.-3的倒数是( )A .3B .±3C .D .-2.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s (米)与小文出发时间t (分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的 2.5倍;③a=24;④b=480.其中正确的是A .①②③B .①②④C .①③④D .①②③④ 3.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40º,则∠ABD 的度数是( )A .25ºB .20ºC .30ºD .15º4.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .rB .2rC .rD .3r5.有3个正方形如图所示放置,直角三角形部分的面积依次记为A,B,则 A:B等于()A.1: B.1:2 C.2:3 D.4:96.一个扇形半径30cm,圆心角120°,用它围成一个圆锥的侧面,则圆锥底面半径为().A.5cm B.10cm C.20cm D.30cm7.如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则BH=()A. B. C. D.8.如图,已知☉O的两条弦AC,BD相交于点E,∠A=70°,∠C=50°,那么tan ∠AEB的值为()A. B. C. D.9.一元二次方程x2+px-6=0的一个根为2,则p的值为()A.-1 B.-2 C.1 D.210.若二次函数y=ax2+bx+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()A.a+c B.a-c C.-c D.c二、判断题11.某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑,每台电子白板各多少万元?(2)根据学校实际,需至少购进电脑和电子白板共30台,总费用不超过28万元,那么电子白板最多能买几台?12.若关于x的一元二次方程x2﹣3x+k=0有两个不相等的实数根,且满足,求k的正整数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江南实验学校2011学年度第二学期期中学业水平测试九年级数学试卷(考试时间为100分钟,满分为120分)命题人:章俊屹 审核人:沈水彩 责任人:章俊屹一、精心选一选(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.-3的绝对值是( ▲ )A .3B .-3C .31D .-31 2.▲ )A.1和2B.2和3C.3和4D.4和5 3. 有下列六个命题:①有理数和数轴上的点一一对应; ②带根号的数不一定是无理数;③三角形的内切圆和外切圆是同心圆; ④ 在数据1,3,3,0,2中,众数是3,中位数是3 ⑤圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线;⑥一个圆锥的侧面积是一个面积为4 ⑦平方厘米的扇形,那么这个圆锥的母线长L 和底面半径R 之间的函数关系是正比例函数。

其中是真命题的个数是 ( ▲ ) A .0个 B .1个 C .2个 D .3个4. 如图所示,以恒定的速度向此容器注水,容器内水的高度(h )与注水时间(t )之间的函数关系可用下列图像大致描述的是( ▲ )5. 如图,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移 到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面积为7,则图中阴影部分的面积为( ▲ )A. 7B. 14C. 21D. 28 6. 欣赏著名作家巴金在他的作品《海上日出》中对日出状况的描写果然过了一会儿,在那个地方出现了太阳的小半边脸,红是真 红,却没有亮光.这段文字中,给我们呈现是直线与圆的哪一种位置关系( ▲ )A. 相切B.相离C.外切D.相交 7. 如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ▲ ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4) 8. 如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD若AD = 3,BC = 9,则GO : BG =( ▲ ).A .1 : 2B .1 : 3C .2 : 3D .11 : 20第4题(第14题)9. 消费者物价指数,英文缩写为CPI ,是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指,该指数过高的升幅往往不被市场欢迎. 一般说来当CPI>3%的增幅时我们称为通货膨胀;而当CPI>5%的增幅时,我们把它称为严重通货膨胀.下图来源于2010年9月11日的杭州《每日商报》,反映了1997年至2008年期间浙江省CPI 变化情况,请根据以上信息并结合图象,判断下列说法中错误的是( ▲ )A. 1997年至2008年期间,共有2年通货膨胀,1年严重通货膨胀B. 1997年至2008年期间,较上一年涨幅最大和跌幅最大的都是3.10%C. 1997年至2008年期间,较上一年涨幅或跌幅在1.00%以内的有3年D. 1997年至2008年期间的年均CPI 指数为1.55% 10. 如图,⋂AB 是半径为1的半圆弧,△AOC 为等边三角形,D 是⋂BC 上的一动点,则四边形AODC 的面积s 的取值范围是( ▲ ) A.≤2+s 44 B.≤2+<s 44 C.≤1+s 22D.1+<s<22二、认真填一填(本题有6个小题,每小题4分,共24分) 11. 分解因式:2xy -4x 2y 2= ▲ . 12. 在四边形ABCD 中,AB=CD ,要使四边形ABCD 为平行四边形,则应添加的条件是(添加一个条件即可) ▲ .13. 如图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,且位似比为31. 若五边形ABCDE 的面积为16cm 2, 周长为22cm ,那么五边形A ′B ′C ′D ′E ′的面积为 ▲ cm 2,周长为 ▲ cm.14. 如图,是某工件的三视图,其中圆的半径为10cm ,等腰三角形的高为30cm ,则此工件的侧面积是 ▲2008年2007年2006年2005年2004年2003年2002年2001年2000年1999年1998年1997年(第9题图) 第13题15. 现有一根长为1的铁丝.①若把它围成图1所示的矩形框,当矩形框的长a 与矩形框的宽b 满足 ▲ b 时所围成的矩形框面积最大;②若把它围成图2所示的矩形框,当矩形框的长a 与矩形框的宽b 满足=a ▲ b 时所围成的矩形框面积最大;③若把它围成图n 所示的矩形框(图中共有1n 条宽),当矩形框的长a 与矩形框的宽b 满足=a ▲ b 时所围成的矩形框面积最大.16. 如图,一方形花坛分成编号为①、②、③、④四块,现有红、黄、蓝、紫四种颜色的花供选种。

要求每块只种一种颜色的花,且相邻的两块种不同颜色的花,如果编号为①的已经种上红色花,那么其余三块不同的种法有 ▲ 种。

三. 全面答一答 (本题有8个小题, 共66分) 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以。

17.(本小题满分6分)数学是从实际生活中来的,又应用于生活。

请将下列事件与对应的数学原理连接起来.18、(本小题满分6分)请你以点C 为位似中心在点C 的异侧作出△ABC 的 位似图形△CDE(要求位似比为2:1,即为缩小一半), 并画出△CDE 的内心P .(要求尺规作图,保留作图痕迹)19、(本小题满分6分) 已知圆锥的底面半径为r =20cm ,高h=1520cm,现在有一只蚂蚁从底边上一点A 侧面上爬行一周又回到A 点,求蚂蚁爬行的最短距离。

图n… … 图1 图2 图3 aa aa b b b b (第15题)(第16题)事件 教室的门要用两扇 合页才能自由开关 飞机从萧山机场飞往天津,它的航行路线是直的经过两点有且只有一条直线 数学原理两点之间线段最短 测量运动员的跳远成绩时 皮尺与起跳线保持垂直 直线外一点与直线上各点连接 的所有线段中,垂线段最短 A B C每隔6分钟有一部电车从他后面驶向前面,每隔2电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为12u u ,表示),请你根据下面的示意图,求电车每隔几分钟(用t 表示)从车站开出一部? 21.(本小题满分8分)如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为AB 边上一点,求证:(1)△ACE ≌△BCD ; (2)AD 2+DB 2=DE 2.小精灵提示:第二小题没有思路怎么办? 不妨想想第一小题出卷老师为什么要让同学们证明全等噢! 22.(本小题满分10分)浙江中国花木城组织10辆汽车装运完A 、B 、C 三种不同品质的苗木共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种苗木,根据下表提供的信息,解答以下问题:(1)设装运A 种苗木的车辆数为x ,装运B 种苗木的车辆数为y ,求y 与x 之间的函数关系式; (2)如果装运每种苗木的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.23、(本题满分10分)某航空公司经营A 、B 、C 、D 四个城市之间的客运业务. 若机票价格y(元)是两城市间的距 离x(千米)的一次函数. 今年“五、一”期间部分机票价格如下表所示: (1)求该公司机票价格y(元)与距离x(千米)的函数关系式; (2)利用(1)中的关系式将表格填完整;(3)判断A 、B 、C 、D 这四个城市中,哪三个城市在同一条直线上?请说明理由;(4)若航空公司准备从旅游旺季的7月开始增开从B 市直接飞到D 市的旅游专线,且按以上规律给机票定价,那么机票定价应是多少元?450如图一,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,5OA =,4OC =.(1)在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D E ,两点的坐标;(2)如图二,若AE 上有一动点P (不与A E ,重合)自A 点沿AE 方向向E 点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t 秒(05t <<),过P 点作ED 的平行线交AD 于点M ,过点M 作AE 的平行线交DE 于点N .求四边形PMNE 的面积S 与时间t 之间的函数关系式;当t 取何值时,S 有最大值?最大值是多少?(3)在(2)的条件下,当t 为何值时,以A M E ,,为顶点的三角形为等腰三角形,并求出相应的时刻点M 的坐标.江南实验学校2011学年度第二学期期中学业水平测试九年级数学参考答案及评分建议说明(阅卷教师必看)1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.一、仔细选一选(本题有10个小题,每小题3分,共30分)二、认真填一填(本题有6个小题,每小题4分,共24分)11.)+1)(-1(22y y x 12. AB ∥CD(答案不唯一) 13. 144 cm 2 , 66cm14. 2cm (没写单位则算全错) 15、1,23 ,21+n (前两空每空1分,第三空2分) 16. 15三. 全面答一答 (本题有8个小题, 共66分)解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以。

17、 (每连对一条给2分)18、(本小题满分6分)△CDE 正确得3分内心P 正确得3分 1分19.(本小题满分6分)由r=20cm ,h=2015cm 事件 教室的门要用两扇合页才能自由开关飞机从萧山飞往天津, 它的航行路线是直的 经过两点有且只有一条直线 数学原理 两点之间线段最短测量运动员的跳远成绩时皮尺与起跳线保持垂直直线外一点与直线上各点连接 的所有线段中,垂线段最短 h而圆锥侧面展开后的扇形的弧长为cm ππ40202=⨯,可求得圆锥侧面展开后的扇形的圆心角为900------------------2分 故最短距离AA ’为802cm ------------------------2分20.(本小题满分8分) 解:根据题意得:1211216()2()u u u tu u u t -=⎧⎨+=⎩ ·············································································································· 4分 解得122u u =。

相关文档
最新文档