【解析版】中考数学常考易错点:1.5《二次根式》(原创)
二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
2020年中考数学必考专题04 二次根式的运算(解析版)

专题04 二次根式的运算1.二次根式:形如式子a (a ≥0)叫做二次根式。
(或是说,表示非负数的算术平方根的式子,叫做二次根式)。
2.二次根式有意义的条件:被开方数≥0 3.二次根式的性质: (1)是非负数;(2)(a )2=a (a ≥0);(3)==a a 2(4)非负数的积的算术平方根等于积中各因式的算术平方根的积, 即=·(a ≥0,b ≥0)。
(5)非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a ≥0,b>0)。
反之,4.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
5.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
6.分母有理化:分母有理化就是通过分子和分母同乘以分母的有理化因式,将分母中的根号去掉的过程,混合运算中进行二次根式的除法运算,一般都是通过分母有理化而进行的。
7.分母有理化的方法:分子分母同乘以分母的有理化因式。
8.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
())0,0(0,0>≥=≥≥=⨯b a b ab a b a ab b a 专题知识回顾(>0)(<0)0 (=0);9.找有理化因式的方法:(1)分母为单项式时,分母的有理化因式是分母本身带根号的部分。
如:①的有理化因式为,②的有理化因式为。
(2)分母为多项式时,分母的有理化因式是与分母相乘构成平方差的另一部分。
即的有理化因式为,的有理化因式为,的有理化因式为10.二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。
一般地,二次根式的加减法可分以下三个步骤进行:(1)将每一个二次根式都化简成最简二次根式(2)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组(3)合并同类二次根式11.二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
《二次根式》的知识要点和习题

《二次根式》的知识要点和习题知识要点1、二次根式的概念:形如a (a ≥0)的式子叫做二次根式。
二次根式a 的实质是一个非负数a 的算术平方根。
注意:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0是a 为二次根式的前提条件,如5,21x +,等是二次根式,而5-、2x -、12--x 等都不是二次根式;a 的根指数是2, 即2a ,可省略不写;b a 也是二次根式。
当b 为带分数时,要把b 改写成假分数。
538是二次根式,不能写成2532。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。
如 不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 ,,..........都不是最简二次根式,而,,5,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如 ,,就是同类二次根式,因为=2,=3,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为5.二次根式的性质:(1). (a≥0)是一个非负数, 即≥0;(2).非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);(3).某数的平方的算术平方根等于某数的绝对值,即=|a|=(4).非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。
(5).非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。
6.二次根式的乘除(1). 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
初中数学中的二次根式的易错点和考试重点,你都知道吗?

初中数学中的⼆次根式的易错点和考试重点,你都知道吗?
说到数学的⼆次根式的,很多⼩伙伴都表⽰累觉不爱,今天晓⽼师和凯哥就和⼤家梳理下相关
知识,赶紧收藏吧!
在学习⼆次根式中,有三⼤易错点:
1、求⼆次根式中字母的取值范围,忽略了分母不为0的情况;
2、忽视隐含的条件;
3、错误运⽤了结合律.
⽽接下来这⼆⼤知识点主要为⾼频考点中考频率五星
▼
知识点1:⼆次根式的化简
最简⼆次根式:在根号内不含分母,不含开的尽⽅的因数或因式叫做最简⼆次根式.
凯哥点评:判断最简⼆次根式的过程中要注意:
(1)在⼆次根式的被开⽅数中,只要含有分数或⼩数,就不是最简⼆次根式;
(2)在⼆次根式的被开⽅数中的每⼀个因式(或因数),如果幂的指数⼤于或等于2,也不是最简⼆次根式.
知识点2 ⼆次根式的混合运算
1、⼆次根式的混合运算包括⼆次根式的加、减、乘、除、乘⽅、开⽅运算.
2、⼆次根式的混合运算实质上就是实数的混合运算和⽆理数的混合运算.
因此:
(1)运算顺序与有理数的混合运算;
(2)运算律仍然适⽤;
(3)与多项式的乘法和因式分解类似,可以利⽤乘法公式与因式分解的⽅法来简化⼆次根式的有关运算;
(4)对于分母含有⼆次根式的代数式,要掌握有理化的⽅法,化分母为整式。
凯哥点评:本题要注意运算顺序.分母有理化是根据平⽅差公式使分母不含⼆次根式.。
二次根式易错题集

二次根式易错题集一、二次根式的概念: 二次根式的性质: 1.()0≥a a 是一个非负数。
2.()02≥=a a a3.()()⎩⎨⎧-≥==002 a a a a a a错题:1.=25 52.()=-23 -(-3)=33.()=--21255-1=44.()=263()54696322=⨯=∙或()=263()()545463222==⨯5.()=--2666-=-- 6.=-2551515122=⎪⎭⎫ ⎝⎛= 7.根据条件,请你解答下列问题:(1)已知n -20是整数,求自然数n 的值;解:首先二次根式有意义,则满足,020≥-n 所以,20≤n 又因为n -20是整数,所以根号内的数一定是一个平方数,即n -20必定可化为()0,202≥=-a a a n 且为整数这种形式,即()0,202≥=-a a a n 且为整数。
所以满足条件的平方数2a 有0,1,4,9,16。
所以.4,11,16,19,20=n(2)已知n 20是整数,求正整数n 的最小值解:因为n 20是整数,所以根号内的数一定是一个平方数,即n 20必定可化为()为整数a a n 220=这种形式,即()为整数a a n 220=,而()为整数a a n 25420⨯⨯=,4可以开平方,剩下不能开平方的数5,所以正整数n 的最小值就是5,因2555=⨯能被开平方。
所以我们要把常数先进行分解,把能开平方的数分解出来,剩下的不能开平方的数与字母相乘再配成能开平方的数,而字母的最小值就是这个不能开平方的数。
7-2.(2)已知n -12是正整数,求实数n 的最大值;解:因为n -20是正整数,所以满足,012 n -所以,12 n 所以根号内的数一定是一个平方数,即n -20必定可化为()0,202 a a a n 且为整数=-这种形式,即()0,202 a a a n 且为整数=-。
所以满足条件的平方数2a 有1,4,9。
中考数学《二次根式》高频易错点突破提升策略

中考数学《二次根式》高频易错点突破提升策略一.二次根式有意义例1:分析:解答:例2:分析:本题虽未明确说明下列式子有意义,但却隐含了这样的条件,因此,可以看作是例1的变式,保证被开方数为非负即可.二、两个重要公式及化简例3分析:解答:例4这两题的结果确定,那么,必须在绝对值化简时,就可以关注需化简的原式的范围,从而确定字母参数的范围.解答:例5:分析:本题与分母有理化的化简有区别.把根号外的移入根号内,要注意2个方面,第一,要先平方后再乘进去,第二需要注意符号,由题意得,a-1<0,则乘进去之前,需要负号留在根号外.当然,本质上,所有所谓把根号外的式子移入根号内,其实还是一个化简的过程,我们用分母有理化的方法来解决本题,所得结果是一样的.三、二次根式计算例6:分析:二次根式的计算,有些同学就是反复做,反复错,原因在于,不知化简的顺序性,一般而言,记住12个字就足够了:先乘除,再化简;先化简,再加减.怎么理解,很简单,对于只有乘除的混合运算,切记不要先化简,有时候分母有理化后,算起来反而更麻烦,只要把除法转化为乘法,这样可以约分,然后再化简.对于有加减法的混合运算,则只能先化简,因为只有同类二次根式可以加减.显然,第(1)问应该先乘除,再化简.第(2)问,有两种做法,一种分母有理化,一种根号外平方后乘入.解答:四、二次根式其他易错题例7:分析:解答:B例8分析:解答:5五、二次根式提高题例9分析:解答:例10:分析:这道题是我们熟悉的0+0型吗?不是的!等号右边是a!那怎么思考呢?观察等式左边的绝对值形式和根式形式,显然,我们可以根据二次根式有意义,确定a的范围,从而把绝对值化简啊,再从问题的形式看,极有可能是利用整体思想,不必求出a的值.解答:六.真题演练:1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b2. (2018•苏州)若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3. (2018•张家界)下列运算正确的是()A.a2+a=2a3B.=a C.(a+1)2=a2+1 D.(a3)2=a64.(2018•广州)如图,数轴上点A表示的数为a,化简:a+=.5.(2018•烟台)与最简二次根式5是同类二次根式,则a= .6. (2018•滨州)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为.。
中考数学最新真题专项汇总—二次根式(含解析)

中考数学最新真题专项汇总—二次根式(含解析)一.选择题1.(2022·湖北武汉)下列各式计算正确的是( )A=B .1= C =D 2=【答案】C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、=C=D22==C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·山东聊城)射击时,子弹射出枪口时的速度可用公式v 其中a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =⨯,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s ⨯B .20.810m /s ⨯C .2410⨯m /sD .28s 10m /⨯【答案】D【分析】把a =5×105m/s 2,s =0.64m 代入公式=v 化简即可.【详解】解:()2810m /s v =⨯,故选:D .【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2022·|2|cos45-⨯︒的结果,正确的是()B.C.D.2A【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.-⨯︒|2|cos45=2==B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.4.(2022·山东青岛)计算)AB.1C D.3【答案】B再合并即可.【详解】解:94321故选:B.【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.5.(2022·2x -在实数范围内有意义,则x 的取值范围是( )A .1x >-B .1x -C .1x -且0x ≠D .1x -且0x ≠【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选: C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.6.(2022·山东潍坊)秦兵马俑的发现被誉为“世界第八大奇迹”,兵马俑的眼睛,下列估算正确的是( )A .205<<B .2152<< C .12<<1 D 1> 【答案】C【分析】用夹逼法估算无理数即可得出答案.【详解】解:4<5<9,∴23,∴1∴1<1,故选:C.2【点睛】本题考查了无理数的估算,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.7.(2022·湖北恩施)函数y的自变量x的取值范围是()A.3x≥-x≠D.1x≥-且3x≠B.3x≥C.1【答案】C【分析】根据分式有意义的条件与二次根式有意义的条件得出不等式组,解不等式组即可求解.【详解】解:∴10,30+≥-≠,x x解得1x≠,故选C.x≥-且3【点睛】本题考查了求函数自变量的取值范围,掌握分式有意义的条件与二次根式有意义的条件是解题的关键.8.(2022·)A.B.3C.D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为故选:A.【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.9.(2022·x的取值范围是()A.1≥x B.1x>x>C.0x≥D.0【答案】A0)进行计算即可.【详解】解:由题意得:10x-,∴,1x故选:A.0)是解题的关键.10.(2022·山东临沂)满足1m>的整数m的值可能是()A.3B.2C.1D.0【答案】A11的范围,再确定m的范围即可确定答案.【详解】3104<<,∴<,2131011m>,-,1∴≥,故选:A.3m【点睛】本题考查了绝对值的化简,无理数的估算和不等式的求解,熟练掌握知识点是解题的关键.11.(2021·)A.±3B.3C.±9D.9【答案】A【详解】解:,9的平方根是±3,±3,故选:A.【点睛】本题考查了算术平方根,平方根,熟练掌握相关知识是解题的关键.12.(2022·四川广安)下列运算中,正确的是()A.3a2 +2a2 =5a4B.a9÷a3=a3C=D.(﹣3x2)3=﹣27x6【答案】D【分析】根据合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,逐项分析判断即可求解.【详解】解:A. 3a2 +2a2 =5 a 2,故该选项不正确,不符合题意;B. a9÷a3=a6,故该选项不正确,不符合题意;C.D. (﹣3x2)3=﹣27x6,故该选项正确,符合题意;故选D【点睛】本题考查了合并同类项,同底数幂的除法,二次根式的加法,积的乘方运算,正确的计算是解题的关键.13.(2022·x的取值范围是A .x≥3B .x≤3C .x >3D .x <3【答案】A 【详解】解:由题意得30x -≥.解得x≥3,故选:A .14.(2022·内蒙古呼和浩特)下列运算正确的是( )A2± B .222()m n m n +=+ C .1211-=--x x x D .2229332-÷=-y x xy x y【答案】D【分析】分别根据二次根式乘法法则,完全平方公式,异分母分式加减法法则以及分式除法法则计算出各项结果后,再进行判断即可.【详解】解:A. 2,故此计算错误,不符合题意; B. 222()2m n m mn n +=++,故此计算错误,不符合题意; C. 1221(1)x x x x x --=---,故此计算错误,不符合题意; D. 22223933322y x x xy xy =x y y-÷=--,计算正确,符合题意,故选:D . 【点睛】本题主要考查了二次根式乘法,完全平方公式,异分母分式加减法以及分式除法,熟练掌握相关运算法则是解答本题的关键.15.(2022·湖南郴州)下列运算正确的是( )A .325a a a +=B .632a a a ÷=C .()222a b a b +=+ D 5 【答案】D【分析】根据合并同类项、同底数幂的除法法则,完全平方公式以及二次根式的计算法则进行计算即可.【详解】A.32a a+不能合并,故A错误;B.633a a a÷=,故B错误;C.()2222a b a ab b+=++,故C错误;5=,故D正确;故答案为:D.【点睛】本题考查合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则等知识.掌握合并同类项、同底数幂的除法法则、完全平方公式以及二次根式的计算法则是解答本题的关键.16.(2022·四川雅安)下列计算正确的是()A.32=6B.(﹣25)3=﹣85C.(﹣2a2)2=2a4D【答案】D【分析】由有理数的乘方运算可判断A,B,由积的乘方运算与幂的乘方运算可判断C,由二次根式的加法运算可判断D,从而可得答案.【详解】解:239=,故A不符合题意;328,5125故B不符合题意;22424,a a故C不符合题意;2333,故D符合题意;故选D【点睛】本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.17.(2022·湖南永州)下列各式正确的是()A=B .020= C .321a a -= D .()224--=【答案】D 【分析】利用二次根式性质化简、零指数幂、合并同类项、有理数减法运算即可判断。
八年级数学下学期《二次根式》易错题集

《二次根式》易错题集易错题知识点1.忽略二次根式有意义的条件,只有被开方数a≥0时,式子a才是二次根式;若a<0,则式子a就不能叫二次根式,即a无意义。
2.易把2a与2)(a混淆。
3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算法则计算。
4.对同类二次根式的定义理解不透。
5.二次根式的混合运算顺序不正确。
典型例题选择题1.当a>0,b>0时,n是正整数,计算的值是()A.(b﹣a)B.(a n b3﹣a n+1b2)C.(b3﹣ab2)D.(a n b3+a n+1b2)考点:二次根式的性质与化简。
分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式=﹣=a n b3﹣a n+1b2=(a n b3﹣a n+1b2).故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.2.当x取某一范围的实数时,代数式的值是一个常数,该常数是()A.29 B.16 C.13 D.3考点:二次根式的性质与化简。
分析:将被开方数中16﹣x和x﹣13的取值范围进行讨论.解答:解:=|16﹣x|+|x﹣13|,(1)当时,解得13<x<16,原式=16﹣x+x﹣13=3,为常数;(2)当时,解得x<13,原式=16﹣x+13﹣x=29﹣2x,不是常数;(3)当时,解得x>16;原式=x﹣16+x﹣13=2x﹣29,不是常数;(4)当时,无解.故选D点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.3.当x<﹣1时,|x﹣﹣2|﹣2|x﹣1|的值为()A.2 B.4x﹣6 C.4﹣4x D.4x+4考点:二次根式的性质与化简。
分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0∴|x﹣﹣2|﹣2|x﹣1|=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)=2.故选A.点评:本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.4.化简|2a+3|+(a<﹣4)的结果是()A.﹣3a B.3a﹣C.a+D.﹣3a考点:二次根式的性质与化简;绝对值。
中考数学5年真题(2019-2023)专题汇总解析—二次根式

中考数学5年真题(2019-2023)专题汇总解析—二次根式考点1二次根式一、单选题1.(2023)A.25与30之间B.30与35之间C.35与40之间D.40与45之间【答案】D【详解】解∶∵160020232025<<.即4045<,40与45之间.故选D.【点睛】本题主要考查了估算无理数的大小,正确估算无理数的取值范围是解题关键.2.(2023年江苏省无锡市中考数学真题)实数9的算术平方根是()A.3B.3±C.19D.9-【答案】A【分析】根据算术平方根的定义即可求出结果.3=,故选:A.【点睛】本题考查了平方根和算术平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2023年重庆市中考数学真题(A卷)的值应在()A .7和8之间B .8和9之间C .9和10之间D .10和11之间【答案】B【分析】先计算二次根式的混合运算,再估算结果的大小即可判断.=4=+∵2 2.5<<,∴45<<,∴849<+<,故选:B .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的混合运算法则是解题的关键.4.(2019·广东·的结果是()A .4-B .4C .4±D .2【答案】B【分析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.5.(2020·广西贵港·在实数范围内有意义,则实数x 的取值范围是()A .1x <-B .1x ≥-C .0x ≥D .1x ≥【答案】B【分析】根据二次根式的被开方数为非负数即可得出的取值范围.∴x+1≥0∴x≥﹣1故选:B【点睛】本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.6.(2020·山东聊城·÷).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.÷==1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.(2023年辽宁省大连市中考数学真题)下列计算正确的是()A.0=B.+=C=D)26=-【答案】D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A.)1=,故该选项不正确,不符合题意;B.=C.=D.)26=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.8.(2021·广东·统考中考真题)若0a =,则ab =()AB .92C .D .9【答案】B【分析】根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a 、b 的值,从而可求得ab 的值.【详解】∵0a ≥0≥,且0a =∴0a =0==即0a =,且320a b -=∴a =b∴92ab ==故选:B .【点睛】本题考查了绝对值和算术平方根的非负性,一般地,几个非负数的和为零,则这几个非负数都为零.9.(2022·河北·统考中考真题)下列正确的是()A23=+B 23=⨯CD 0.7=【答案】B【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;=⨯,故正确;23=≠≠,故错误;0.7故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.(2023()A.点P B.点Q C.点R D.点S【答案】B<<【详解】解:∵479<<,<<23Q,故选:B.11.(2023年河北省中考数学真题)若a b===()A.2B.4C D【答案】A【分析】把a b【详解】解:∵a b==2==,故选:A.【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.12.(2019·四川资阳·统考中考真题)设x=x的取值范围是()A.23x<<B.34x<<C.45x<<D.无法确定【答案】B【分析】根据无理数的估计解答即可.【详解】解:∵91516<<,∴34<<,故选B.【点睛】此题考查估算无理数的大小,关键是根据无理数的估计解答.13.(2021·广东·统考中考真题)设6a,小数部分为b,则(2a b+的值是()A.6B.C.12D.【答案】A的整数部分可确定a的值,进而确定b的值,然后将a与b的值代入计算即可得到所求代数式的值.【详解】∵34<<,∴263<<,∴62a=,∴小数部分624b==∴(((22244416106a b+=⨯+-=+-=-=.故选:A.【点睛】本题考查了二次根式的运算,正确确定6a与小数部分b的值是解题关键.二、填空题14.(2019·江苏苏州·x的取值范围为.【答案】6x≥【分析】根据根式有意义的条件,得到不等式,解出不等式即可.-60x≥,解出得到6x≥.【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键.15.(2020·广西·=.【分析】利用二次根式的性质化简,再相减.==【点睛】本题考查了二次根式的减法,解题的关键是掌握二次根式的化简及性质.16.(2021·天津·统考中考真题)计算1)的结果等于.【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题的关键.17.(2023年湖北省武汉市数学真题)写出一个小于4的正无理数是.【分析】根据无理数估算的方法求解即可.<4<..【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.18.(2023x 的取值范围是.【答案】13x ≥-【分析】根据二次根式有意义的条件得到130x +≥,解不等式即可得到答案.∴130x +≥,解得13x ≥-,故答案为:13x ≥-【点睛】此题考查了二次根式有意义的条件,熟知被开方式为非负数是解题的关键.19.(2019·河南·12--==.【答案】112【分析】本题涉及二次根式化简、负整数指数幂两个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.12--122=-112=.故答案为11 2.【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.20.(2021·安徽·统考中考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,1-,它介于整数n和1n+之间,则n的值是.【答案】11即可完成求解.2.236≈;1 1.236≈;因为1.236介于整数1和2之间,所以1n=;故答案为:1.分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力.21.(20231+=.【答案】3【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.22.(2023年上海市中考数学真题)已知关于x2=,则x=【答案】18【分析】根据二次根式的性质,等式两边平方,解方程即可.【详解】解:根据题意得,140x -≥,即14x ≥,2=,等式两边分别平方,144x -=移项,18x =,符合题意,故答案为:18.【点睛】本题主要考查二次根式与方程的综合,掌握含二次根式的方程的解法是解题的关键.23.(2023年黑龙江省绥化市中考数学真题)若式子x有意义,则x 的取值范围是.【答案】5x ≥-且0x ≠/0x ≠且5x ≥-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵式子∴50x +≥且0x ≠,∴5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.24.(2023年黑龙江省齐齐哈尔市中考数学真题)在函数12y x +-中,自变量x 的取值范围是.【答案】1x >且2x ≠【分析】根据分式有意义的条件,二次根式有意义的条件得出10,20x x ->-≠,即可求解.【详解】解:依题意,10,20x x ->-≠∴1x >且2x ≠,故答案为:1x >且2x ≠.【点睛】本题考查了求函数自变量的取值范围,熟练掌握分式有意义的条件,二次根式有意义的条件是解题的关键.三、解答题25.(2019·福建·统考中考真题)先化简,再求值:(x -1)÷(x -21xx-),其中x【答案】1x x -,1+2【分析】先化简分式,然后将x 的值代入计算即可.【详解】解:原式=(x−1)÷221x x x-+()()211xx x =-⋅-1x x =-当x +1时,12=+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.26.(2022·福建·统考中考真题)先化简,再求值:2111aa a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -.【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案.【详解】解:原式()()111a a a a a+-+=÷()()111a a a a a +=⋅+-11a =-.当1a =时,原式2=.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.27.(2023年安徽中考数学真题)先化简,再求值:2211x x x +++,其中1x =.【答案】1x +【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解:2211x x x +++()211x x +=+1x =+,当1x =-时,∴原式11+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.28.(20232133-⎛⎫- ⎪⎝⎭【答案】6-【分析】根据立方根、负整数指数幂及二次根式的运算可进行求解.【详解】解:原式2293=-+6=-.【点睛】本题主要考查立方根、负整数指数幂及二次根式的运算,熟练掌握立方根、负整数指数幂及二次根式的运算是解题的关键.29.(2023年吉林省长春市中考数学真题)先化简.再求值:2(1)(1)a a a ++-,其中3a =.【答案】31a +1+【分析】根据完全平方公式以及单项式乘以单项式进行化简,然后将字母的值代入进行计算即可求解.【详解】解:2(1)(1)a a a ++-2221a a a a =+++-31a =+当a =311==【点睛】本题考查了整式乘法的化简求值,实数的混合运算,熟练掌握完全平方公式以及单项式乘以单项式的运算法则是解题的关键.30.(2023年内蒙古通辽市中考数学真题)计算:21tan 453-⎛⎫+︒-⎪⎝⎭【答案】0【分析】根据负整数次幂、特殊角的三角函数值、算术平方根化简,然后在计算即可.【详解】解:21tan 453-⎛⎫+︒-⎪⎝⎭9110=+-,0=.【点睛】本题主要考查了负整数次幂、特殊角的三角函数值、算术平方根等知识点,掌握基本的运算法则是解答本题的关键.31.(2019·河南·统考中考真题)先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =【答案】3x【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:原式212(2)22(2)x x x x x x x +--⎛⎫=-÷ ⎪---⎝⎭322x x x-=⋅-3x=,当x ===.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.32.(2023年辽宁省营口市中考数学真题)先化简,再求值:524223m m m m-⎛⎫++⋅⎪--⎝⎭,其中tan 45m =︒.【答案】26--m ,原式16=-【分析】先根据分式的混合计算法则化简,然后根据特殊角三角函数值和二次根式的性质求出m 的值,最后代值计算即可.【详解】解:524223m m m m-⎛⎫++⋅⎪--⎝⎭()22245223m m m m m-⎛⎫-=-⋅⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵tan 45m =︒,∴415m =+=,∴原式25610616=-⨯-=--=-.【点睛】本题主要考查了分式的化简求值,求特殊角三角函数值,化简二次根式等等,正确计算是解题的关键.33.(2023·重庆九龙坡·的值应在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】A【分析】根据二次根式的乘法进行计算,以及估算无理数的大小的方法解答即可.=6=∵91416<<,∴34<,∴43-<<-,∴263<<,故选:A .【点睛】本题考查了估算无理数的大小和二次根式的运算.解题的关键是掌握二次根式的运算方法,以及估算无理数的大小的方法.34.(2023·辽宁丹东·统考二模)在函数y =x 的取值范围是()A .12x -<≤B .21x -<≤C .12x ≤≤D .12x <≤【答案】D【分析】根据函数有意义的条件得到2010x x -≥⎧⎨->⎩,解不等式组即可得到自变量x 的取值范围.【详解】解:由题意得2010x x -≥⎧⎨->⎩,解不等式组得12x <≤,故选:D .【点睛】此题考查了自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.35.(2023·安徽蚌埠·统考三模)下列运算正确的是()A 3=B .()3328a a -=-C =D .112235+=【答案】B【分析】根据二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则依次判断即可得出答案.【详解】解:A 333==B .()3328a a -=-,故此选项符合题意;CD .11522365+=≠,故此选项不符合题意.故选:B .【点睛】本题考查二次根式的性质,积的乘方法则,二次根式的加法运算法则,有理数的加法运算法则.掌握相应的运算法则和性质是解题的关键.36.(2023·河北沧州·校考模拟预测)下列运算中,正确的是().A3=±B 2=C 2=D 8=-【答案】C【分析】利用二次根式的化简的法则对各项进行运算即可.【详解】解答:解:A 3=,故A 不符合题意;B 2=-,故B 不符合题意;C 2=,故C 符合题意;D 8=,故D 不符合题意;故选:C .【点睛】本题主要考查二次根式的化简,解答的关键是对相应的运算法则的掌握.37.(2023·四川泸州·四川省泸县第一中学校考三模)实数2的平方根为()A .2B .2±C D .【答案】D【分析】利用平方根的定义求解即可.【详解】∵2的平方根是.故选D .【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.38.(2023·西南大学附中校考三模)估计(3-)A .0和1之间B .2和3之间C .3和4之间D .4和5之间【答案】A【分析】由题意知(34-,由1.4 1.5=<<=,可得4.2 4.5<<,0.240.5<<,然后判断作答即可.【详解】解:(34-⨯,∵1.4 1.5=<<=,∴4.2 4.5<<,∴0.240.5<<,∴估算(3-0和1之间,故选:A .39.(2023·河北石家庄·校联考一模)下列计算正确的是()A =B1=-C =D 23=【答案】C【分析】根据二次根式加法、二次根式减法、二次根式乘法、二次根式除法分别进行判断即可.【详解】解:AB 0-=,故选项错误,不符合题意;C =D 1=,故选项错误,不符合题意.故选:C .【点睛】此题考查了二次根式的加法、减法、乘法、除法,熟练掌握运算法则是解题的关键.40.(2023·江苏无锡·校考二模)函数y x的取值范围是()A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤【答案】C【详解】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数x 50x 5-≥⇒≥.故选C.考点:1.函数自变量的取值范围;2.二次根式有意义的条件.41.(2023·湖南长沙·校联考二模)4的算术平方根是()A .2B .2±C .8D .16【答案】A【分析】如果一个数x 的平方等于(0)a a ≥,那么这个数x 叫做a 的平方根,可以表示为平方根叫做a 的算术平方根.正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.【详解】解:42=,故选:A .【点睛】本题考查算术平方根的定义,明确平方根与算术平方根的区别与联系是本题的关键.42.(2023·重庆九龙坡·重庆市育才中学校考一模)x)A .0B .2C .3D .5【答案】D【分析】根据二次根式有意义的条件进行求解即可.∴40x -≥,即4x ≥,∴四个选项中只有D 选项中的5符合题意,故选:D .【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零是解题的关键.43.(2023·甘肃平凉·的结果是.【答案】2【分析】根据二次根式的性质进行化简即可.2=.故答案为:2.()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.44.(2021·黑龙江大庆·=【答案】4【分析】先算4(2)-,再开根即可.==4=故答案是:4.【点睛】本题考查了求一个数的4次方和对一个实数开根号,解题的关键是:掌握相关的运算法则.45.(2023·广东茂名·校考一模)已知实数x,y |4|0y -=,则1x y -=⎛⎫⎪⎝⎭.【答案】2【分析】根据算术平方根的非负性,绝对值的非负性得出24x y ==,,进而根据负整数指数幂进行计算即可求解.40y -=0≥,40y -≥,∴20x -=,40y -=,∴24x y ==,,∴11112422x y ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭===.故答案为:2.【点睛】本题主要考查了算术平方根和绝对值的非负性、负整数次幂等知识点,根据非负性正确求得x 、y 的值是解答本题的关键.46.(2023·福建福州·校考二模)已知2a =2b =22a b ab -的值等于.【答案】【分析】先求出a b -=1ab =,再由()22a b ab ab a b -=-进行求解即可.【详解】解:∵2a =2b =∴22a b -=++=((22431ab =+⨯-=-=,∴22a b ab -()ab a b =-1=⨯=故答案为:【点睛】本题主要考查了二次根式的混合运算、求代数式的值,正确得到a b -=1ab =是解题的关键47.(2023·山东聊城·x 的取值范围是.【答案】12x ≥【分析】根据二次根式有意义的条件可得210x -≥,即可.【详解】解:由题意得:210x -≥,解得:12x ≥,故答案为:12x ≥.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.48.(2023·安徽滁州·校考模拟预测)计算)11-的结果等于.【答案】22【分析】直接利用平方差公式进行简便运算即可.【详解】解:)2211123122=-=-=,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.49.(2023·陕西西安·校考模拟预测)-64的立方根是.【答案】-4【分析】直接利用立方根的意义,一个数的立方等于a ,则a 的立方根是这个数进行求解.【详解】解:根据立方根的意义,一个数的立方等于a ,则a 的立方根是这个数,可知-64的立方根为-4.故答案为:-4.【点睛】本题考查了立方根,解题的关键是掌握一个数的立方等于a ,则a 的立方根是这个数.50.(2023·云南昭通·x 的取值范围是.【答案】x>8【分析】由分式的分母不等于零和二次根式的被开方数是非负数得到x﹣8>0.【详解】解:由题意,得x﹣8>0,解得x>8.故答案是:x>8.【点睛】考查了分式有意义的条件和二次根式有意义的条件,注意,二次根式在分母上,所以不能取到0.51.(2023·四川泸州·四川省泸县第一中学校考三模)函数y=x的取值范围是.【答案】x>3【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.x30x3x>3x30x3-≥≥⎧⎧⇒⇒⎨⎨-≠≠⎩⎩.52.(2023·河南洛阳·统考一模)计算:22-=.【答案】74-【分析】先计算22-,再算减法.【详解】解:原式17244=-=-.故答案为:74-.【点睛】本题考查了实数的计算,掌握负整数指数幂、二次根式的化简是解决本题的关键.53.(2023·安徽蚌埠·统考三模)计算:212022--=.【答案】2023【分析】根据有理数的乘方,二次根根式的性质,化简绝对值进行计算即可求解.【详解】解:212022--=122022-++2023=,故答案为:2023.【点睛】本题考查了有理数的乘方,二次根根式的性质,化简绝对值,正确的计算是解题的关键.54.(2022·新疆·x的取值范围是.【答案】x≥3【分析】直接利用二次根式有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x—3≥0,解得:x≥3,故答案为:x≥3【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.55.(2023·黑龙江哈尔滨·统考三模)计算=.【答案】【分析】先根据二次根式的性质化简,然后根据二次根式的加减法则求解即可.【详解】解:=-2=-=故答案为:【点睛】本题主要考查了二次根式的性质、二次根式的加减运算等知识点,灵活运用二次根式的的性质化简是解题的关键.x的取值范围是.56.(2023·云南昆明·一模)要使式子3有意义,x≥【答案】5【分析】二次根式中的被开方数是非负数,依此即可求解.x-≥,【详解】解:依题意有:50x≥.解得5x≥.故答案为:5【点睛】本题考查了二次根式有意义的条件,关键是熟悉二次根式中的被开方数是非负数的知识点.57.(云南省丽江市华坪县2020-2021=.【答案】6【分析】利用二次根式的乘法法则进行求解即可.==.6故答案为:6.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则和二次根式的性质是解题的关键.58.(2023·山西·模拟预测)计算:=.【答案】【分析】先化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:3=⨯=+=故答案为:【点睛】本题主要考查了二次根式的加减计算,二次根式的化简,正确计算是解题的关键.59.(2023·重庆沙坪坝·重庆八中校考模拟预测)如果2y=+,那么yx的值是.【答案】225【分析】根据二次根式有意义的条件,求出,x y的值,进而求出y x的值即可.【详解】解:∵2y=,∴150,150x x -≥-≥,∴15150x x -=-=,∴15,2x y ==,∴215225y x ==;故答案为:225.【点睛】本题考查二次根式有意义的条件,代数式求值.熟练掌握二次根式的被开方数是非负数,是解题的关键.60.(江西省崇仁县第二中学2016-2017学年八年级上学期第二次月考数学试题)计算:=【答案】61.(2015年初中毕业升学考试(山东滨州卷)数学(带解析))计算的结果为.【答案】﹣1【分析】此题用平方差公式计算即可.【详解】22=-23=-1=-62.(2023·黑龙江哈尔滨·=.【答案】3【分析】根据二次根式的化简方法和运算法则进行计算.【详解】解:原式33==【点睛】本题考查二次根式的计算,在化简二次根式的基础上再把同类二次根式合并.63.(福建省永春县第一中学2017【分析】根据二次根式乘法,加减法运算法则计算即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的化简方法是解题的关键.64.(2023·广东茂名·校考一模)先化简,再求值:2121211x x x x +⎛⎫÷+ ⎪-+-⎝⎭其中1x +.【答案】11x -;2【分析】先通分算括号内的,把除化为乘,再约分,化简后将x 的值代入计算.【详解】解:212(1)211x x x x +÷+-+-211(1)1x x x x ++=÷--211(1)1x x x x +-=⋅-+11x =-,当1x =+时,原式=2=.【点睛】本题考查了分式化简求值,掌握分式的基本性质,将分式通分和约分进行化简是关键.65.(2023·四川泸州·011+()3-23-【答案】【分析】根据实数的混合运算法则即可求解.011+()3-23-=(1+32-=1+32-+【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及运算法则.66.(2023·安徽六安·1+【分析】先计算算术平方根.化简绝对值,求解立方根,再合并即可.1+=+-413=【点睛】本题考查是算术平方根的含义,化简绝对值,求解立方根,实数的混合运算,掌握“算术平方根与立方根的含义”是解本题的关键.67.(2022·新疆·统考中考真题)计算:20-+(2)|(3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式451=++=【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是=.解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1a。
九年级上册数学《二次根式》知识点整理(最新整理)

a a 5 x 2 + 1 - 5 -x 2 a a a a a a b二次根式一、本节学习指导学习二次根式时,我们把平方根的知识顺带巩固一下。
这就是系统性学习,这样学习的好处是把零碎的知识可以系统起来。
本节中我们要对二次根式有意义的条件要掌握。
二、知识要点1、二次根式的概念:形如 (a≥0)的式子叫做二次根式。
注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以 a≥0 是 为二次根式的前提条件,如 , , 等是二次根式,而 , 等都不是二次根式。
2、取值范围(1)、二次根式有意义的条件:由二次根式的意义可知,当 a≧0 时, 有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
(2)、二次根式无意义的条件:因负数没有算术平方根,所以当 a ﹤0 时, 没有意义。
3、二次根式 (a≥0)的非负性(a≥0)表示 a 的算术平方根,也就是说, (a≥0)是一个非负数,即 0(a≥0)。
注意:因为二次根式 (a≥0)表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是 0,所以非负数(a ≥0)的算术平方根是非负数,即( a )2 (a ≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若 + = 0 ,则 a=0,b=0;若 + b 2 = 0 ,则 a=0,b=0;若 + b 2 = 0 ,则a=0,b=0。
4、二次根式(a )2的性质: (a )2 = a (a≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
注意:二次根式的性质公式( a )2 = a (a≥0)是逆用平方根的定义得出的结论。
上面的公a a a aa 27 ≈ 2.646 a 2 a 2a 2a 2 a 2 a 2a 2a 2a 2a 2⎨-a (a < 0) ⎩式也可以反过来应用:若 a≥0,则 a = ( a )2 ,如: 2 = ( 2)2 , 1 = ( 1)2。
中考数学专题特训第六讲:二次根式(含详细参考答案)

中考数学专题复习第六讲:二次根式【基础知识回顾】 一、二次根式式子a ( )叫做二次根式【赵老师提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式】二、二次根式的性质:①(a )2= (a ≥0)= (a ≥0 ,b ≥0)(a ≥0, b ≥0)【赵老师提醒:二次根式的性质注意其逆用:如比较23和的大小,可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小】 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算【赵老师提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 】 【重点考点例析】考点一:二次根式有意义的条件(a ≥o )(a <o )例1 (2012•潍坊)如果代数式43x -有意义,则x 的取值范围是( ) A .x ≠3 B .x <3 C .x >3 D .x ≥3思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练1.(2012•德阳)使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12 C .x≥0且x≠12D .一切实数 1.C1.解:由题意得:2x-1≠0,x≥0, 解得:x≥0,且x≠12, 故选:C .考点二:二次根式的性质例2 (2012•张家界)实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b . 故选C .点评:本题考查了二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练为 . 1.-b2.解:∵由数轴可知:b <0<a ,|b|>|a|,=|a+b|+a =-a-b+a =-b ,故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3. 点评:此题主要考查了二次根式的混合运算以及负整数指数幂的性质,熟练利用这些性质将各式进行化简是解题关键. 对应训练4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0,(1)1)4x x x +=本题考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .804.D分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可.=80, 故选D .点评:本题考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算,本题主要考查学生的思维能力和应变能力,题目比较好,是一道具有代表性的题目.【聚焦山东中考】1.(2012•泰安)下列运算正确的是( )A 5=-B .21()164--=C .x 6÷x 3=x 2 D .(x 3)2=x 5 1.B .2.(2012•临沂)计算:= . 2.03.7【备考真题过关】一、选择题A .x >0B .x≥-2C .x≥2D .x≤2 1.DA B .5 C .2 D .22.AA .3BC .D .3.C .A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 4.A即5<m <6, 故选A .5.(2012•南充)下列计算正确的是( )A .x 3+x 3=x 6B .m 2•m 3=m 6C .3=D = 5.D6.(2012•黔东南州)下列等式一定成立的是( )A .945-=B .5315⨯=C .93=±D .2(9)9--=6.B7.(2012•广西)使式子有意义的x 的取值范围是( )A . x ≥﹣1B . ﹣1≤x ≤2C . x ≤2D .﹣1<x <2 考点: 二次根式有意义的条件。
最新初中数学二次根式易错题汇编及解析(1)

最新初中数学二次根式易错题汇编及解析(1)一、选择题1.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|,()2a a b a a b b +=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.2.下列计算错误的是( ) A 2598a a a =B 14772= C .3223= D 60523=【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】 解:259538a a a a a ==,正确; 14727772=⨯⨯= C. 32222= D. 6051223==故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.3.2a +在实数范围内有意义,则a 的取值范围是( )A .a≤﹣2B .a≥﹣2C .a <﹣2D .a >﹣2【答案】B【解析】【分析】2a +在实数范围内有意义,则其被开方数大于等于0;易得a +2≥0,解不等式a +2≥0,即得答案.【详解】 解:∵二次根式2a +在实数范围内有意义,∴a +2≥0,解得a ≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;4.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.5.已知实数a 满足20062007a a a --=,那么22006a -的值是( )A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴20062007a a a --=可化为a 2006a 2007a -+-=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.6.在下列算式中:=②=;③42==;=,其中正确的是( ) A .①③B .②④C .③④D .①④ 【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;222==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.7.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .8.x 的取值范围是( )A .x <1B .x ≥1C .x ≤﹣1D .x <﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x ﹣1≥0,解得,x ≥1,故选:B .【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数, 则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.下列运算正确的是( )A .B )2=2C D==3﹣2=1【答案】B【解析】【分析】根据二次根式的性质和加减运算法则判断即可.【详解】根据二次根式的加减,可知23﹣3=3,所以A 选项错误; 根据二次根式的性质2()a =a (a≥0),可知(﹣2)2=2,所以B 选项正确; 根据二次根式的性质2(0)=0(=0)(0)a a a a a a a ⎧⎪=⎨⎪-⎩><,可知2-11() =|﹣11|=11,所以C 选项错误;D 、根据二次根式的性质,可知223-2=94-=5,所以D 选项错误.故选B .【点睛】此题主要考查了的二次根式的性质2()a =a (a≥0),2(0)=0(=0)(0)a a a a a a a ⎧⎪=⎨⎪-⎩><,正确利用性质和运算法则计算是解题关键.11.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .2 【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式12.如果一个三角形的三边长分别为12、k 、7221236k k -+|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.13.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.14.a 的取值范围是( )A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】 直接利用二次根式有意义的条件分析得出答案.【详解】式子2a +有意义,则1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.15.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.16.下列计算或化简正确的是( )A .=BC 3=-D 3=【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B.822=,故B错误;C.2(3)3-=,故C错误;D.27327393÷=÷==,正确.故选D.17.计算3212324⨯÷的结果是()A.22B.33C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:3 212324⨯÷1(23)12324=⨯÷⨯÷1186=1326=⨯22=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.18.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A.2 B6C.236223D.23225【答案】D【解析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323 =222233+ =23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.19.3x +有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于03x +有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.20.6(6)x x x x -=- ) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】 ()x x 6x x 6-=-∴x ≥0,x-6≥0,∴x 6≥.。
中考数学总复习 第05讲 二次根式及其运算课件(考点精

考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.
分式与二次根式(解析版)-中考数学必考考点与题型专训

分式与二次根式命题趋势分式与二次根式是历年中考的考察重点,年年考查,分值为12分左右。
预计2023年各地中考还将继续重视对分式与根式的有关概念、分式与根式的性质和分式与根式的混合运算等的考查,且考查形式多样,为避免丢分,学生应扎实掌握。
知识梳理1、分式1)分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式.(2)分式AB中,A 叫做分子,B 叫做分母.【注】①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB =0.2)分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为A B =A ⋅C B ⋅C (C ≠0)或A B =A ÷CB ÷C (C ≠0),其中A ,B ,C 均为整式.3)约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.4)最简分式:分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式.5)通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.6)最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7)分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示:a b ±c b =a ±cb.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a b ±c d =ad bd ±bc bd =ad ±bcbd.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示:a b ⋅cd=a ⋅cb ⋅d.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示:a b ÷c d =ab⋅d c =a ⋅d b ⋅c .(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示:a b n =a nb n (n 为正整数,b ≠0).(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.2、二次根式1)二次根式的有关概念(1)二次根式的概念:形如a (a ≥0)的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.【注】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0.(2)最简二次根式:被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式: 化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2)二次根式的性质(1)a ≥0(a ≥0);(2)(a )2=a (a ≥0); (3)a 2=a =a (a >0)0(a =0)-a (a <0) ;3)二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除乘法法则:a ⋅b =ab (a ≥0,b ≥0);除法法则:a b=a b(a ≥0,b >0).(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.重点考向考向1分式的有关概念1.分式的三要素:(1)形如AB的式子;(2)A ,B 均为整式;(3)分母B 中含有字母.2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即B ≠0.(2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例引领1.(2022·湖南怀化·中考真题)代数式25x ,1π,2x 2+4,x 2-23,1x ,x +1x +2中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是2x 2+4,1x ,x +1x +2,∴分式有3个,故选:B .【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键.2.(2022·浙江湖州·中考真题)当a =1时,分式a +1a的值是.【答案】2【分析】直接把a 的值代入计算即可.【详解】解:当a =1时,a +1a =1+11=2.故答案为:2.【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可.3.(2023·河南·中考模拟)下列说法错误的是()A.当x ≠3时,分式4x +5x -3有意义 B.当x =1时,分式x +1x -1无意义C.不论a 取何值,分式a 2+1a2都有意义 D.当x =1时,分式x -1x +1的值为0【答案】C【分析】分母不为0时,分式有意义,分母为0时,分式无意义,分子等于0,分母不为0时分式值为0,由此判断即可.【解析】解:A 选项当x -3≠0,即x ≠3时,分式4x +5x -3有意义,故A 正确;B 选项当x -1=0,即x =1时,分式x +1x -1无意义,故B 正确;C 选项当a 2≠0,即a ≠0时,分式a 2+1a 2有意义,故C 错误;D 选项当x -1=0,且x +1≠0即x =1时,分式x -1x +1的值为0,故D 正确.故选C .【点睛】本题主要考查了分式有意义、无意义、值为0的条件,熟练掌握分式的分母不为0是确定分式有意义的关键.变式拓展1.(2022·湖北黄冈·中考真题)若分式2x -1有意义,则x 的取值范围是.【答案】x ≠1【分析】根据分式有意义的条件即可求解.【详解】解:∵分式2x -1有意义,∴x -1≠0,解得x ≠1.故答案为:x ≠1.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.2.(2022·广西·中考真题)当x =时,分式2xx +2的值为零.【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可.【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0,故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.3.(2023·绵阳市·中考模拟)下列关于分式的判断,正确的是()A.当x =2时,x +1x -2的值为零B.无论x 为何值,4x 2+3的值总为正数C.无论x 为何值,3x +1不可能得整数值D.当x =3时,x -33无意义【答案】B【分析】分式有意义的条件是分母不等于0,分式值是0的条件是分子是0,分母不是0.【详解】解:A 、当x =2时,分母x -2=0,分式无意义,故A 错误;B 、分母中x 2+3≥3,因而第二个式子一定成立,故B 正确;C 、当x +1=1或-1时,3x +1的值是整数,故C 错误;D 、x -33不是分式,故D 错误.故选:B .【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式各种结果的判断标准:分式的值是正数的条件是分子、分母同号;值是负数的条件是分子、分母异号;分式值是0的条件是分子是0,分母不是0.考向2分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例引领1.(2020·河北中考真题)若a ≠b ,则下列分式化简正确的是()A.a +2b +2=abB.a -2b -2=abC.a 2b2=ab D.12a 12b =ab【答案】D【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题.【详解】∵a ≠b ,∴a +2b +2≠a b ,选项A 错误;a -2b -2≠ab,选项B 错误;a 2b 2≠a b ,选项C 错误;12a 12b =a b ,选项D 正确;故选:D .【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.2.(2022·广东·一模)如果把分式2yx +y中的x 和y 都扩大为原来的2倍,那么分式的值()A.不变B.缩小为原来的12C.扩大为原来的2倍D.扩大为原来的4倍【答案】A【分析】依题意,分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可.【详解】分别用2x 和2y 去代换原分式中的x 和y ,得:2×2y 2x +2y =4y 2(x +y )=2yx +y 化简后的结果和原式相同,故答案为:A .【点睛】本题主要考查了分式的基本性质,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.变式拓展1.(2022·河北·三模)下列各式从左到右的变形中,不正确的是()A.-23a =-23aB.-b -6a =b6aC.3a -4b =-3a4bD.--8a 3b =8a-3b【答案】D【分析】根据分式的基本性质逐个判断即可.【详解】解:A 、-23a =-23a ,故本选项不符合题意;B 、-b -6a =b6a,故本选项不符合题意;C 、3a -4b =-3a 4b ,故本选项不符合题意;D 、--8a 3b =8a 3b ,故本选项符合题意;故选:D【点睛】本题考查了分式的基本性质,能熟记分式的基本性质是解此题的关键,注意:①分式的基本性质是:分式的分子和分母都乘以或除以同一个不为0的整式,分式的值不变,②分式分子的符号,分式分母的符号,分式本身的符号,改变其中的两个符号,分式本身的值不变.2.(2022·浙江·一模)若把分式1x +1y中的x ,y 同时扩大2倍,则分式的值()A.是原来的2倍B.是原来的12C.是原来的14D.不变【答案】B【分析】根据分式的加法进行计算,再把x ,y 同时扩大2倍,观察分式值变化即可.【详解】解:1x +1y =x +y xy ,x ,y 同时扩大2倍得2x +2y 2x ×2y =2(x +y )4xy =12×x +y xy,分式的值是原来的12,故选:B .【点睛】本题考查了分式的加法和分式的基本性质,解题关键是熟练进行分式加法和约分.考向3分式的约分与通分约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例引领1.(2022·江苏·二模)分式m 2m -2n 和3nm -n的最简公分母为.【答案】2(m -n )【分析】利用最简公分母的定义求解,分式m 2m -2n 和3nm -n的分母分别是2(m -n )、(m -n ),故最简公分母是2(m -n )即是本题答案.【详解】解:∵分式m 2m -2n 和3nm -n的分母分别是2(m -n )、(m -n ).∴它们的最简公分母是2(m -n ).故答案为:2(m -n ).【点睛】本题考查最简公分母,将原式的分母正确进行因式分解并掌握最简公分母的定义是解题关键.2.(2022·上海崇明·二模)化简:xx 2-2x=.【答案】1x -2【分析】直接利用分式的性质化简得出答案.【详解】解:x x 2-2x=x x (x -2)=1x -2.故答案为:1x -2.【点睛】此题主要考查了分式的化简,熟练掌握运算法则是解答此题的关键.3.(2022·广西·二模)关于分式的约分或通分,下列哪个说法正确()A.x +1x 2-1约分的结果是1x B.分式1x 2-1与1x -1的最简公分母是x -1C.2xx2约分的结果是1D.化简x 2x 2-1-1x 2-1的结果是1【答案】D【分析】根据分式的基本性质将分式约分,即可判断A 与C ;根据确定最简公分母的方法判断B ;根据分式减法法则计算,即可判断D .【详解】A 、x +1x 2-1=1x -1,故本选项错误;B 、分式1x 2-1与1x -1的最简公分母是x 2-1,故本选项错误;C 、2x x 2=2x ,故本选项错误;D 、x 2x 2-1-1x 2-1=1,故本选项正确;故选D .【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.变式拓展1.(2023·河北·一模)要把分式32a 2b 与a -bab 2c通分,分式的最简公分母是()A.2a 2b 2cB.2a 3b 3C.2a 3b 3cD.6a 3b 3c【答案】A【分析】根据最简公分母定义是各分母的最小公倍数即可求解.【详解】解:根据最简公分母是各分母的最小公倍数,∵系数2与1的公倍数是2,a 2与a 的最高次幂是a 2,b 与b 2的最高次幂是b 2,对于只在一个单项式中出现的字母c 直接作公分母中的因式,∴公分母为:2a 2b 2c .故选择:A .【点睛】本题考查最简公分母,熟练掌握最简公分母是解题关键.2.(2023·河北滦州·一模)下列分式化简结果为ab的是()A.a +2b +2B.a -2b -2C.a +ab +bD.a ×ab ×b【答案】C【分析】根据分式的化简逐个判断即可.【详解】A .a +2b +2≠a b ,故选项A 错误;B .a -2b -2≠ab,故选项B 错误;C .a +a b +b =2a 2b =a b ,故选项C 正确;D .a ×a b ×b =a 2b 2≠a b ,故选项D 错误;故选:C .【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键.3.(2022·上海·二模)计算:1a -1b=.【答案】b -aab【分析】将式子通分计算即可.【详解】1a -1b =b ab -a ab =b -aab【点睛】本题考查分式通分,正确寻找分母的最小公倍数是解题关键.考向4分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例引领1.(2022·广西玉林·中考真题)若x 是非负整数,则表示2x x +2-x 2-4(x +2)2的值的对应点落在下图数轴上的范围是()A.①B.②C.③D.①或②【答案】B【分析】先对分式进行化简,然后问题可求解.【详解】解:2x x +2-x 2-4(x +2)2=2x x +2 x +2 2-x 2-4(x +2)2=2x 2+4x -x 2+4x +2 2=x +2 2(x +2)2=1;故选B .【点睛】本题主要考查分式的运算,熟练掌握分式的减法运算是解题的关键.2.(2022·黑龙江牡丹江·中考真题)先化简,再求值:3x x -2-x x +2÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.【答案】2x +8,10.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=3x x +2 -x x -2 x -2 x +2⋅x 2-4x =2x x +4 x -2 x +2⋅x -2 x +2x =2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.3.(2022·山东聊城·中考真题)先化简,再求值:a 2-4a ÷a -4a -4a -2a -2,其中a =2sin45°+12-1.【答案】a a -2,2+1【分析】运用分式化简法则:先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答.【详解】解:a 2-4a ÷a -4a -4a -2a -2=a +2 a -2 a ×a a -22-2a -2=a +2a -2-2a -2=aa -2,∵a =2sin45°+12-1=2×22+2=2+2,代入得:原式=2+22+2-2=2+1;故答案为:aa -2;2+1.【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.变式拓展1.(2022·山东威海·中考真题)试卷上一个正确的式子1a +b +1a -b ÷★=2a +b被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为()A.aa -bB.a -b aC.a a +bD.4a a 2-b 2【答案】A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可.【详解】解:1a +b +1a -b ÷★=2a +b a -b +a +b a +b a -b÷★=2a +b ★=2a a +b a -b÷2a +b =aa -b ,故选A .【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.2.(2022·江苏扬州·中考真题)计算:(1)2cos45°+π-3 0-8(2)2m -1+1÷2m +2m 2-2m +1【答案】(1)1-2(2)m -12【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可;(2)先合并括号里的分式,再对分子和分母分别因式分解即可化简;【详解】(1)解:原式=2×22+1-22=1-2.(2)解:原式=2m -1+m -1m -1 ⋅m -1 22m +1 =m +1m -1⋅m -1 22m +1 =m -12.【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.3.(2022·辽宁营口·中考真题)先化简,再求值:a +1-5+2a a +1 ÷a 2+4a +4a +1,其中a =9+|-2|-12-1.【答案】a -2a +2,15.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值.【详解】解:a +1-5+2a a +1 ÷a 2+4a +4a +1=(a +1)2-5-2a a +1÷(a +2)2a +1=a2-4 a+1⋅a+1(a+2)2=(a+2)(a-2)a+1⋅a+1(a+2)2=a-2a+2,当a=9+|-2|-12-1=3+2-2=3时,原式=3-23+2=15.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.考向5二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例引领1.(2022·广东广州·中考真题)代数式1x+1有意义时,x应满足的条件为()A.x≠-1B.x>-1C.x<-1D.x≤-1【答案】B【分析】根据分式分母不为0及二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知:x+1>0,∴x>-1,故选:B.【点睛】本题考察了分式及二次根式有意义的条件,属于基础题.2.(2022·河北·中考真题)下列正确的是()A.4+9=2+3B.4×9=2×3C.94=32D. 4.9=0.7【答案】B【分析】根据二次根式的性质判断即可.【详解】解:A.4+9=13≠2+3,故错误;B.4×9=2×3,故正确;C.94=38≠32,故错误;D. 4.9≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.3.(2022·四川遂宁·中考真题)实数a,b在数轴上的位置如图所示,化简a+1-b-12+a-b2 =.【答案】2【分析】利用数轴可得出-1<a<0,1<b<2,进而化简求出答案.【详解】解:由数轴可得:-1<a<0,1<b<2,则a+1>0,b-1>0,a-b<0∴a+1-b-12+a-b2=|a+1|-|b-1|+|a-b|=a+1-(b-1)-(a-b)=a+1-b +1-a+b=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a,b的取值范围是解题关键.变式拓展1.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是()A.13B.12C.a2D.53【答案】A【分析】根据最简二次根式的定义即可求出答案.【详解】解:A、13是最简二次根式,故选项正确;B、12=23,不是最简二次根式,故选项错误;C、a2=a ,不是最简二次根式,故选项错误;D、53=153,不是最简二次根式,故选项错误;故选A.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.2.(2022·四川南充·中考真题)若8-x为整数,x为正整数,则x的值是.【答案】4或7或8【分析】根据根号下的数大于等于0和x为正整数,可得x可以取1、2、3、4、5、6、7、8,再根据8-x为整数即可得x的值.【详解】解:∵8-x≥0∴x≤8∵x为正整数∴x可以为1、2、3、4、5、6、7、8∵8-x为整数∴x为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.3.(2022·山东聊城·中考真题)射击时,子弹射出枪口时的速度可用公式v=2as进行计算,其中a为子弹的加速度,s为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4×102m/sB.0.8×102m/sC.4×102m/sD.8×102m/s【答案】D【分析】把a=5×105m/s2,s=0.64m代入公式v=2as,再根据二次根式的性质化简即可.【详解】解:v=2as=2×5×105×0.64=8×102m/s,故选:D.【点睛】此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.考向6二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号).2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较;(2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例引领1.(2022·湖北武汉·中考真题)下列各式计算正确的是()A.2+3=5B.43-33=1C.2×3=6D.12÷2=6【答案】C【分析】由合并同类二次根式判断A,B,由二次根式的乘除法判断C,D.【详解】解:A、2+3≠5原计算错误,该选项不符合题意;B、43-33=3原计算错误,该选项不符合题意;C、2×3=6正确,该选项符合题意;D、12÷2=23÷2=3原计算错误,该选项不符合题意;故选:C.【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键.2.(2022·重庆·中考真题)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.3.(2022·上海·中考真题)计算:|-3|-13-12+23-1-1212【答案】1-3【分析】原式分别化简|-3|=3,1 3-12=3,23-1=3+1,1212=23,再进行合并即可得到答案.【详解】解:|-3|-13-12+23-1-1212=3-3+3+1-23=1-3【点睛】本题主要考查了实数的混合运算,熟练掌握运算法则是解答本题的关键.变式拓展1.(2022·贵州毕节·中考真题)计算8+|-2|×cos45°的结果,正确的是()A.2B.32C.22+3D.22+2【答案】B【分析】化简二次根式并代入特殊角的锐角三角比,再按照正确的运算顺序进行计算即可.【详解】解:8+|-2|×cos45°=22+2×22=22+2=32.故选:B【点睛】此题考查了二次根式的运算、特殊角的锐角三角比等知识,熟练掌握运算法则是解题的关键.2.(2021·湖南常德市·中考真题)计算:5+12-1⋅5+12=()A.0B.1C.2D.5-12【答案】C 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5+12-1 ⋅5+12=5-12⋅5+12=5-12=2.故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键.3.(2022·内蒙古通辽·中考真题)计算:2⋅6+41-3 sin60°-12-1.【答案】4【分析】根据二次根式的乘法,化简绝对值,特殊角的三角函数值,负整数指数幂进行计算即可求解.【详解】解:原式=23+43-1 ×32-2=23+6-23-2=4【点睛】本题考查了实数的混合运算,掌握二次根式的乘法,化简绝对值,特殊角的三角函数值,负整数指数幂是解题的关键.考向7二次根式与分式中的探究规律问题典例引领1.(2022·湖南常德·中考真题)我们发现:6+3=3,6+6+3=3,6+6+6+3=3,⋯,6+6+6+⋯+6+6+3=3n 个根号,一般地,对于正整数a ,b ,如果满足b +b +b +⋯+b +b +a =a n 个根号时,称a ,b 为一组完美方根数对.如上面3,6 是一组完美方根数对.则下面4个结论:①4,12 是完美方根数对;②9,91 是完美方根数对;③若a ,380 是完美方根数对,则a =20;④若x ,y 是完美方根数对,则点P x ,y 在抛物线y =x 2-x 上.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C 【分析】根据定义逐项分析判断即可.【详解】解:∵12+4=4,∴4,12 是完美方根数对;故①正确;∵91+9=10≠9∴9,91 不是完美方根数对;故②不正确;若a ,380 是完美方根数对,则380+a =a 即a 2=380+a 解得a =20或a =-19∵a 是正整数则a =20故③正确;若x ,y 是完美方根数对,则y +x =x ∴y +x =x 2,即y =x 2-x 故④正确故选C 【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.2.(2022·四川眉山·中考真题)将一组数2,2,6,22,⋯,42,按下列方式进行排列:2,2,6,22;10,23,14,4;⋯若2的位置记为(1,2),14的位置记为(2,3),则27的位置记为.【答案】(4,2)【分析】先找出被开方数的规律,然后再求得27的位置即可.【详解】数字可以化成:2,4,6,8;10,12,14,16;∴规律为:被开数为从2开始的偶数,每一行4个数,∵27=28,28是第14个偶数,而14÷4=3⋯2∴27的位置记为(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.3.(2022·四川达州·中考真题)人们把5-12≈0.618这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a=5-12,b=5+12,记S1=11+a+11+b,S2=21+a2+2 1+b2,⋯,S100=1001+a100+1001+b100,则S1+S2+⋯+S100=.【答案】5050【分析】利用分式的加减法则分别可求S1=1,S2=2,S100=100,•••,利用规律求解即可.【详解】解:∵a=5-12,b=5+12,∴ab=5-12×5+12=1,∵S1=11+a +11+b=2+a+b1+a+b+ab=2+a+b2+a+b=1,S2=21+a2+21+b2=2×2+a2+b21+a2+b2+a2b2=2×2+a2+b22+a2+b2=2,⋯,S100=1001+a100+1001+b100=100×1+a10+1+b101+a10+b10+a10b10=100∴S1+S2+⋯+S100=1+2+⋯⋯+100=5050故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得ab=1,找出的规律是本题的关键.变式拓展1.(2022·河南驻马店·模拟预测)斐波那契(约1170-1250)是意大利数学家,他研究了一列数,被称为“斐波那契数列”.他发现该数列中的每个正整数都可以用无理数的形式表示,如第n(n为正整数)个数a n可表示为15[1+52n-1-52 n,且连续三个数a n-1,a n,a n+1之间存在以下关系a n-1+a n=a n+1(n≥2).①第1个数a1=1;②第2个数:a2=2;③“斐波那契数列”中的前8个数是1,1,2,3,5,8,13,21;④若把“斐波那契数列”中的每一项除以4所得的余数按相对应的顺序组成一组新数列,在新数列中,第2017项的值是1.以上说法正确的有.(请把你认为正确的序号全都填上去)【答案】①②④【分析】将n=1和n=2代入15[1+52n-1-52 n即可求得a1和a2,再按照a n-1+a n=a n+1可以求得前八个数,根据“把‘斐波那契数列'中的每一项除以4所得的余数”求出来一部分特殊项,观察规律,即可得到第2017项的值.【详解】①a1=151+52-1-52=15×5=1,故正确;②a2=15[1+522-1-52 2=15×5=1,故错误;③“斐波那契数列”中的前8个数是1,1,2,3,5,8,13,21,故正确;④1,1,2,3,5,8,13,21除以4所得的余数分别是1,1,2,3,1,0,1,1,2,3,1,0,⋯,2017÷6=336⋯1,故在新数列中,第2017项的值是1,故正确.故答案为:①③④.【点睛】本题考查了规律探究题,读懂题意,列出特殊项,观察一般规律是解决本题的关键.2.(2021·四川眉山市·中考真题)观察下列等式:x 1=1+112+122=32=1+11×2;x 2=1+122+132=76=1+12×3;x 3=1+132+142=1312=1+13×4;⋯⋯根据以上规律,计算x 1+x 2+x 3+⋯+x 2020-2021=.【答案】-12016【分析】根据题意,找到第n 个等式的左边为1+1n 2+1(n +1)2,等式右边为1与1n (n +1)的和;利用这个结论得到原式=112+116+1112+⋯+112020×2021-2021,然后把12化为1-12,16化为12-13,12015×2016化为12015-12016,再进行分数的加减运算即可.【详解】解:由题意可知,1+1n 2+1(n +1)2=1+1n (n +1),x 2020=1+12020×2021x 1+x 2+x 3+⋯+x 2020-2021=112+116+1112+⋯+112020×2021-2021=2020+1-12+12-13+⋯+12015-12016-2021=2020+1-12016-2021=-12016.故答案为:-12016.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.热点必刷1.(2022·黑龙江绥化·中考真题)若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-1且x ≠0【答案】C【分析】根据二次根式被开方数不能为负数,负整数指数幂的底数不等于0,计算求值即可;【详解】解:由题意得:x +1≥0且x ≠0,∴x ≥-1且x ≠0,故选:C .【点睛】本题考查了二次根式的定义,负整数指数幂的定义,掌握其定义是解题关键.2.(2022·广西桂林·中考真题)化简12的结果是()A.23 B.3C.22D.2【答案】A【分析】将被开方数12写成平方数4与3的乘积,再将4开出来为2,易知化简结果为23.【详解】解:12=4×3=22×3=23,故选:A .【点睛】本题考查了二次根式的化简,关键在于被开方数要写成平方数乘积的形式再进行化简.。
二次根式知识点总结

二次根式知识点总结二次根式是数学中常见的一种表达式形式,它涉及到根号以及平方的运算。
在学习二次根式的过程中,需要掌握它的性质、化简方法、解题技巧等知识点。
本文将对二次根式的相关知识进行总结和介绍。
一、二次根式的定义和性质1. 定义:二次根式是指具有形如√a(其中a≥0)的表达式。
2. 性质:a) √a * √b = √(a * b):两个二次根式相乘时,可将根号下的因子相乘并开平方。
b) √(a / b) = √a / √b:两个二次根式相除时,可将根号下的因子相除并开平方。
c) √(a + b)≠√a + √b:两个二次根式相加时,一般不能直接合并,需要进行特殊处理。
d) 当a>b时,√a±√b=√a±√(a-b);当a<b时,√a±√b=√a±i√(b-a)(其中i为虚数单位)。
二、二次根式的化简方法化简是指将一个较为复杂的二次根式写成最简形式的过程。
常见的化简方法有以下几种:1. 合并同类项法:将根号下的因子合并,并进行运算。
例如:√3 + √12 = √3 + 2√3 = 3√32. 有理化分母法:将二次根式的分母有理化,即将分母中的根号去掉。
例如:1 / (√2 + √3) = (√2 - √3) / ((√2 + √3) * (√2 - √3)) = (√2 - √3) / (-1) = -√2 +√33. 平方差公式法:利用平方差公式将二次根式的平方进行变换,使得表达式更简单。
例如:(2 + √5)(2 - √5) = 4 - 5 = -14. 有理化分子法:将二次根式的分子有理化,即将分子中的根号去掉。
例如:(1 + √3) / (√2 - 1) = ((1 + √3) * (√2 + 1)) / ((√2 - 1) * (√2 + 1)) = (√2 + √6 + √2√3 + √3) / (2 - 1) = √2 + √6 + √6 + √3三、二次根式的运算在解题过程中,经常需要进行二次根式的运算。
(易错题精选)初中数学二次根式知识点总复习附答案(1)

(易错题精选)初中数学二次根式知识点总复习附答案(1)一、选择题1.下列各式中,是最简二次根式的是( )A .12B .5C .18D .2a【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A 被开方数含分母,错误.(2)B 满足条件,正确. (3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.2.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.3.下列各式计算正确的是( )A.2+b=2b B=C.(2a2)3=8a5D.a6÷ a4=a2【答案】D【解析】解:A.2与b不是同类项,不能合并,故错误;B不是同类二次根式,不能合并,故错误;C.(2a2)3=8a6,故错误;D.正确.故选D.4.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.5.若x、y4y=,则xy的值为()A.0 B.12C.2 D.不能确定【答案】C【解析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾12且x⩽12,∴x=12,y=4,∴xy=12×4=2.故答案为C.6.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.7.x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.8.一次函数y mx n =-+结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0, ∴22()m n n -+=|m ﹣n |+|n | =m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.9.下列计算正确的是( )A .+=B .﹣=﹣1C .×=6D .÷=3【答案】D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、B与不能合并,所以A 、B 选项错误; C 、原式=×=,所以C 选项错误; D 、原式==3,所以D 选项正确.故选:D. 【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.在下列各组根式中,是同类二次根式的是( )A 212B 212C 4ab 4abD 1a -1a +【答案】B【解析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A =不是同类二次根式;B 2=是同类二次根式;C b ==D 不是同类二次根式;故选:B .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.11.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.12.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9,即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.13.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==.故选A.14.下列计算或化简正确的是( )A .=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .15.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、310与25-不是同类二次根式,不能合并,此选项错误;B 、 711111711⎛⎫⋅÷ ⎪ ⎪⎝⎭=71111117⋅⨯=71111117⨯⨯=11,此选项正确; C 、() 75153-÷=(53-15)÷3=5-5,此选项错误;D 、 1818339-=2222-=-,此选项错误; 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.18.若二次根式3x -在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】解:∵二次根式3x -在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.19.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .2 【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=.考点:最简二次根式20.1=-,那么x的取值范围是()xA.x≥1B.x>1 C.x≤1D.x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x的取值范围.。
2022年中考数学真题-专题03 二次根式(1)(全国通用解析版)

专题03 二次根式一、选择题(2022·湖南衡阳)1. a 的取值范围是( )A. 1a >B. 1a ≥C. 1a <D. 1a ≤【答案】B【解析】【分析】根据二次根式中的被开方数是非负数求解可得.【详解】根据题意知1a -≥0,解得1a ≥,故选:B .【点睛】本题主要考查二次根式有意义的条件,解题的关键是掌握二次根式的双重非负性.(2022·江苏连云港)2. 函数y =x 的取值范围是( ) A. 1≥xB. 0x ≥C. 0x ≤D. 1x ≤【答案】A【解析】 【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∴1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.(2022·重庆)3. 的值应在( )A. 10和11之间B. 9和10之间C. 8和9之间D. 7和8之间【答案】B【解析】6=+,从而判定即可.【详解】6=+∴43,∴910<,故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算,熟练掌握无理数估算方法是解题的关键.(2022·湖南常德)4.3=3=3=,…,6666633n ++++++=个根号,一般地,对于正整数a ,b ,如果满足n b b b b b a a ++++++=个根号时,称(),a b 为一组完美方根数对.如上面()3,6是一组完美方根数对.则下面4个结论:①()4,12是完美方根数对;②()9,91是完美方根数对;③若(),380a 是完美方根数对,则20a =;④若(),x y 是完美方根数对,则点(),P x y 在抛物线2yx x 上.其中正确的结论有( ) A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】【分析】根据定义逐项分析判断即可.【详解】解:1244+=,∴()4,12是完美方根数对;故①正确;10=9≠∴()9,91不是完美方根数对;故②不正确;若(),380a a =即2380a a =+解得20a =或19a =- a 是正整数则20a =故③正确;若(),x y x =2y x x ∴+=,即2y x x故④正确故选C【点睛】本题考查了求算术平方根,解一元二次方程,二次函数的定义,理解定义是解题的关键.(2022·河北)5. 下列正确的是( )A. 23=+ 23=⨯ 0.7=【答案】B【解析】【分析】根据二次根式的性质判断即可.【详解】解:23=≠+,故错误;23=⨯,故正确;=≠0.7≠,故错误;故选:B .【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. (2022·河南)6. 下列运算正确的是( )A. 2-= B. ()2211a a +=+ C. ()325a a = D. 2322a a a ⋅= 【答案】D【解析】【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.【详解】解:A. =B. ()22112a a a +=++,故该选项不正确,不符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 2322a a a ⋅=,故该选项正确,符合题意;故选:D.【点睛】本题考查了二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式,正确地计算是解题的关键.(2022·湖南怀化)7. 下列计算正确的是( )A. (2a 2)3=6a 6B. a 8÷a 2=a 4C. =2D. (x ﹣y )2=x 2﹣y 2【答案】C【解析】【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误;B.a 8÷a 2=a 6≠a 4,故错误;=2,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误;故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.(2022·湖南怀化)8. 下列计算正确的是( )A. (2a 2)3=6a 6B. a 8÷a 2=a 4C. =2D. (x ﹣y )2=x 2﹣y 2【答案】C【解析】【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误;B.a 8÷a 2=a 6≠a 4,故错误;=2,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误;故选:C .【点睛】本题主要考查积的乘方、同底数幂的除法、二次根式的化简、完全平方公式等知识,掌握相关运算法则是解题的关键.(2022·云南) 9. 下列运算正确的是( )A. =B. 030=C. ()3328a a -=- D. 632a a a ÷= 【答案】C【解析】【分析】根据合并同类二次根式判断A ,根据零次幂判断B ,根据积的乘方判断C ,根据同底数幂的除法判断D .【详解】解:题意;B.031=,此选项运算错误,不符合题意;C.()3328a a -=-,此选项运算正确,符合题意;D.633a a a ÷=,此选项运算错误,不符合题意;故选:C .【点睛】本题考查了二次根式的加法、零次幂、积的乘方、同底数幂相除,熟练掌握运算法则是解题的关键.(2022·四川德阳) 10. 下列计算正确的是( )A. ()222a b a b -=- 1=C. 1a a a a÷⋅= D. 32361126ab a b ⎛⎫-=- ⎪⎝⎭【答案】B【解析】 【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1=,故本选项符合题意;C.1111a a a a a÷⋅=⋅=,故本选项错误; D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误; 故选:B .【点睛】本题考查了完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键. (2022·江苏连云港)11. 函数y =x 的取值范围是( ) A. 1≥xB. 0x ≥C. 0x ≤D. 1x ≤【答案】A【解析】 【分析】根据二次根式有意义的条件列出不等式,即可求解.【详解】解:∵10x -≥,∴1≥x .故选A .【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.(2022·四川自贡)12. 下列运算正确的是( )A. ()212-=-B. 1=C. 632a a a ÷=D. 0102022⎛⎫-= ⎪⎝⎭ 【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.()211-=,故A 错误;B.221=-=,故B 正确;C.633a a a ÷=,故C 错误;D.0112022⎛⎫-= ⎪⎝⎭,故D 错误. 故选:B .【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.(2022·四川凉山)13. )A. ±2B. -2C. 4D. 2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.==,2故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.(2022·重庆)14. 4的值在()A. 6到7之间B. 5到6之间C. 4到5之间D. 3到4之间【答案】D【解析】【分析】根据49<54<64,得到78<<,进而得到344<<,即可得到答案.【详解】解:∵49<54<64,∴78<<,∴344<<4的值在3到4之间,故选:D.【点睛】此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题(2022·云南)15. x的取值范围是______.【答案】x≥﹣1【解析】【分析】根据二次根式有意义的条件可得:x+1≥0,即可求得.有意义∴x+1≥0,∴x≥﹣1.故答案为:x≥﹣1.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.(2022·湖北武汉)16.的结果是_________.【答案】2【解析】【分析】根据二次根式的性质进行化简即可.2=.故答案为:2. ()()(0000a a a a a a ⎧⎪===⎨⎪-⎩>)<.(2022·湖北荆州)17. 若3的整数部分为a ,小数部分为b ,则代数式()2b ⋅的值是______.【答案】2【解析】【分析】先由12<<得到132<<,进而得出a和b ,代入()2b +⋅求解即可.【详解】解:∵ 12<<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b +⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.(2022·山东滨州) 18. 在实数范围内有意义,则x 的取值范围为_____.【答案】x ≥5【解析】【分析】根据二次根式有意义的条件得出x −5≥0,计算求解即可.【详解】解:由题意知,50x -≥,解得,5x ≥,故答案为:5x ≥.【点睛】本题考查了二次根式有意义的条件,解一元一次不等式.熟练掌握二次根式有意义的条件是解题的关键.(2022·四川南充)19. 为整数,x 为正整数,则x 的值是_______________.【答案】4或7或8【解析】【分析】根据根号下的数大于等于0和x 为正整数,可得x 可以取1、2、3、4、5、6、7、8为整数即可得x 的值.【详解】解:∵80x -≥∴8x ≤∵x 为正整数∴x 可以为1、2、3、4、5、6、7、8为整数∴x 为4或7或8故答案为:4或7或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.(2022·天津)20. 计算1)+的结果等于___________.【答案】18【解析】【分析】根据平方差公式即可求解.【详解】解:221)119118=-=-=,故答案为:18.【点睛】本题考查了平方差公式的应用,熟练掌握平方差公式的展开式是解题的关键.(2022·浙江嘉兴)21. 如图,在ABC 中,∠ABC =90°,∠A =60°,直尺的一边与BC 重合,另一边分别交AB ,AC 于点D ,E .点B ,C ,D ,E 处的读数分别为15,12,0,1,则直尺宽BD 的长为_________.【答案】3【解析】 【分析】先求解33,,3AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC60,90,A ABC ∠=︒∠=︒ 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.(2022·新疆)22. 在实数范围内有意义,则x 的取值范围为__________.【答案】3x ≥【解析】【分析】根据二次根式有意义的条件,得到不等式,解出不等式即可.有意义,则需要-30x ≥,解出得到3x ≥.故答案为:3x ≥【点睛】本题考查二次根式有意义的条件,能够得到不等式是解题关键. (2022·四川眉山)23. ,2,,按下列方式进行排列:,2,,,4;…若2的位置记为(1,2)(2,3),则________.【答案】(4,2)【解析】【分析】先找出被开方数的规律,然后再求得【详解】数字可以化成:∴规律为:被开数为从2开始的偶数,每一行4个数,∵=28是第14个偶数,而14432÷=∴(4,2)故答案为:(4,2)【点睛】本题考查了类比点的坐标解决实际问题的能力和阅读理解能力.被开方数全部统一是关键.(2022·江苏扬州)24. x 的取值范围是__.【答案】1x【解析】【分析】二次根式有意义的条件:被开方数为非负数,再列不等式,从而可得答案.则10x -,解得:1x .故答案为:1x .【点睛】本题考查的是二次根式有意义的条件,解题的关键是根据二次根式有意义的条件列不等式.(2022·四川遂宁)25. 实数a ,b 在数轴上的位置如图所示,化简1a +-=______.【答案】2【解析】 【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +-=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.(2022·湖南衡阳)26._____.【答案】4【解析】【分析】根据二次根式的乘法法则计算即可.4===.故答案为:4.【点睛】本题考查了二次根式的乘法,解题的关键是掌握运算法则.(2022·湖南娄底)27.函数y =的自变量x 的取值范围是_______. 【答案】1x >【解析】有意义可得:10,x ->再解不等式可得答案.有意义可得: 10,10x x 即10,x ->解得: 1.x >故答案为:1x >【点睛】本题考查的是二次根式与分式有意义的条件,函数自变量的取值范围,理解函数自变量的取值范围的含义是解本题的关键.(2022·山西)28. 的结果是________. 【答案】3【解析】 【分析】直接利用二次根式的乘法法则计算得出答案.=3.故答案为:3.【点睛】此题主要考查了二次根式的乘法法则,熟练掌握二次根式的乘法法则是解题关键.(2022·四川宜宾) 29. 《数学九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a 、b 、c 求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =长为18的三角形的三边满足::4:3:2a b c =,则用以上给出的公式求得这个三角形的面积为______.【答案】【解析】【分析】根据周长为18的三角形的三边满足::4:3:2a b c =,求得8,6,4a b c ===,代入公式即可求解.【详解】解:∵周长为18的三角形的三边满足::4:3:2a b c =,设4,3,2a k b k c k ===∴43218k k k ++=解得2k =∴8,6,4a b c ===∴S =====故答案为:【点睛】本题考查了化简二次根式,正确的计算是解题的关键.(2022·湖北荆州)30. 如图,在Rt △ABC 中,∠ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若113CE AE ==,则CD =______.【解析】【分析】先求解AE ,AC ,再连结BE ,证明,,AEBE AD BD 利用勾股定理求解BC ,AB ,从而可得答案.【详解】解:113CE AE==,3,4,AE AC如图,连结,BE由作图可得:MN是AB的垂直平分线,3,,AE BE AD BD90,ACB∠=︒223122,BC2242226,AB16.2BD AB【点睛】本题考查的是线段的垂直平分线的作图与性质,勾股定理的应用,二次根式的化简,熟悉几何基本作图与基本图形的性质是解本题的关键.(2022·湖南常德)31.x的取值范围是______.【答案】4x>【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:根据题意,得:4040xx-≥⎧⎨-≠⎩,解得:x>4,故答案为:x>4.【点睛】本题考查了二次根式有意义的条件是二次根式的被开方数是非负数,分式有意义的条件是分母不为0.(2022·湖南岳阳)32. x的取值范围是_______.【答案】1x【解析】【分析】根据二次根式的被开方数是非负数列出不等式10x-,解不等式即可求得x的取值范围.【详解】解:根据题意得10x-,解得1x.故答案为:1x.【点睛】本题考查了二次根式有意义的条件,解题的关键是利用被开方数是非负数得出不等式.(2022·山东泰安)33. =__________.【答案】【解析】【分析】先计算乘法,再合并,即可求解.3=4233=,故答案为:【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.(2022·湖北随州)34. 已知m 是整数,则根据==m 有最小值3721⨯=.设n 为正整数,若1的整数,则n 的最小值为______,最大值为______. 【答案】 ∵. 3 ∵. 75【解析】【分析】根据n 为正整数, 1的整数,先求出n 的值可以为3、12、75,3001的整数来求解.==1的整数,1=>. ∵n 为正整数∴n 的值可以为3、12、75,n 的最小值是3,最大值是75.故答案为:3;75.【点睛】本题考查了无理数的估算,理解无理数的估算方法是解答关键. (2022·四川达州)35. 人们把10.6182≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设a =b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b =+++,则12100S S S +++=_______.【答案】5050【解析】【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解:a =,b =1ab ==∴, 1112211112a b a b a b b b a bS a a ++++=+===+++++++, 222222222222222222221112a b a b S a b a b a b a b++++=+=⨯=⨯=+++++++, …,10010010010010010010010010010010011100100111a b S a b a b a b +++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050 【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.三、解答题(2022·四川乐山)36. 1sin 302-︒+【答案】3【解析】【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.【详解】解:原式113322=+-=. 【点睛】本题主要考查了特殊角三角函数值、负整数指数幂、二次根式的性质等知识,熟知相关计算法则是解题的关键.(2022·江苏宿迁)37.计算:112-⎛⎫-⎪⎝⎭4sin60°.【答案】2【解析】【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:11124sin6023422=+2=【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.(2022·湖南娄底)38. 计算:()101202212sin602π-⎛⎫-++--︒⎪⎝⎭.【答案】-2【解析】【分析】分别计算零指数幂、负整数指数幂、绝对值和特殊角的三角函数值,然后按照去括号、先乘除后加减的顺序依次计算即可得出答案.【详解】解:()-1012022-12sin602π⎛⎫+-+-︒⎪⎝⎭(1212=---121=--2=-.【点睛】此题考查实数的混合运算,包含零指数幂、负整数指数幂、绝对值和特殊角的三角函数值.熟练掌握相关运算的运算法则以及整体的运算顺序是解决问题的关键.(2022·浙江湖州)39.计算:()223+⨯-.【答案】0【解析】【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)6236=+-=+--=⨯【点睛】本题考查实数的混合运算,关键是掌握2a=.(2022·甘肃武威)40.【答案】【解析】【分析】根据二次根式的混合运算进行计算即可求解.【详解】解:原式==【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.(2022·湖南常德)41.计算:213sin30452-︒︒⎛⎫-+⎪⎝⎭【答案】1【解析】【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=1142-⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.(2022·四川广元)42. 计算:2sin60°﹣2|+(π)0+(﹣12)﹣2.【答案】3【解析】【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣2|+(π﹣)0+(﹣12)﹣2=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键. (2022·湖北十堰)43. 计算:1202212(1)3-⎛⎫+-- ⎪⎝⎭.【解析】【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:1202212(1)3-⎛⎫+-- ⎪⎝⎭321=+-【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.(2022·四川宜宾)44. 计算:(14sin 302︒;(2)21111a a a ⎛⎫-÷ ⎪+-⎝⎭.【答案】(1(2)1a -【解析】【分析】(1)先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可;(2)先计算括号,再运用除法法则转化成乘法计算即可求解.【小问1详解】解:原式1422=⨯+=【小问2详解】 解:原式211111a a a a a+-⎛⎫=-⋅ ⎪++⎝⎭ ()()111a a a a a+-=⋅+ 1a =-.【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算与分式混合运算法则,熟记特殊角的三角函数值.(2022·四川南充)45. 先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.【答案】24x -;-【解析】【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=22326424x x x x x -+---=24x -;当x 1时,原式=)214-=3+1-4=-【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.(2022·湖南岳阳)46. 计算:2022032tan 45(1))π--︒+--.【答案】1【解析】【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+-- 32111=-⨯+-3211=-+-1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.(2022·湖南娄底)47. “体育承载着国家强盛、民族振兴的梦想”.墩墩使用握力器(如实物图所示)锻炼手部肌肉.如图,握力器弹簧的一端固定在点P 处,在无外力作用下,弹簧的长度为3cm ,即3cm PQ =.开始训练时,将弹簧的端点Q 调在点B 处,此时弹簧长4cm PB =,弹力大小是100N ,经过一段时间的锻炼后,他手部的力量大大提高,需增加训练强度,于是将弹簧端点Q 调到点C 处,使弹力大小变为300N ,已知120∠=︒PBC ,求BC 的长.注:弹簧的弹力与形变成正比,即F k x =⋅∆,k 是劲度系数,x ∆是弹簧的形变量,在无外力作用下,弹簧的长度为0x ,在外力作用下,弹簧的长度为x ,则0x x x ∆=-.【答案】2-【解析】【分析】利用物理知识先求解,k 再求解336,PC再求解,,BM PM 再利用勾股定理求解MC ,从而可得答案.【详解】解:由题意可得:当100F时,431,x 100,k 即100,F x当300F =时,则3,x336,PC如图,记直角顶点为M ,120,90,PBC PMBPBBPM 而4,30,22BM PM2,4223,22MC6232426,BC MC BM26 2.【点睛】本题是跨学科的题,考查了正比例函数的性质,三角形的外角的性质,勾股定理的应用,含30的直角三角形的性质,二次根式的化简,理解题意,建立数学函数模型是解本题的关键.。
二次根式知识点总结及常见题型

二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。
其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。
1) 二次根式有意义的条件是被开方数为非负数。
据此可以确定字母的取值范围。
2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。
若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。
3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。
4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。
二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。
(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。
(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。
应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。
该性质常与配方法结合求字母的值。
2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。
二次根式易错点总结

二次根式易错点总结
二次根式是数学中的一个重要概念,但在学习过程中,学生常常会遇到一些易错点。
以下是对二次根式易错点的总结:
1. 对定义理解不准确:二次根式的定义为非负实数的平方根。
学生需要明确,只有非负实数才有实数平方根,且负数没有实数平方根。
2. 运算顺序混淆:在进行二次根式的加减运算时,学生需要遵循先乘除后加减的原则。
然而,在二次根式的乘除法中,学生需要先进行乘除法再进行加减法。
3. 对性质理解不准确:在进行二次根式的化简时,学生需要掌握并准确应用二次根式的性质。
例如,当对一个二次根式进行化简时,应先将各个项的系数提取出来,然后再进行化简。
4. 对运算律掌握不熟练:在进行二次根式的运算时,学生需要熟练掌握运算律。
例如,在进行二次根式的乘除法时,学生需要掌握乘法分配律、乘法结合律等运算律。
5. 对运算顺序掌握不准确:在进行二次根式的混合运算时,学生需要明确运算的顺序,即先进行乘方运算,然后进行乘除运算,最后进行加减运算。
此外,当有括号时,应先进行括号内的运算。
6. 对负数平方根的理解存在误区:虽然负数没有实数平方根,但在某些情况下,我们可以通过引入复数来定义负数的平方根。
然而,学生需要明确,在实数范围内,负数没有平方根。
综上所述,为了更好地掌握二次根式,学生需要准确理解其定义、性质、运算律和运算顺序,并注意一些常见的易错点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5二次根式
易错清单
1.你理解平方根和算术平方根的区别与联系吗?
【例1】(2014·江苏南京)8的平方根是().
A. 4
B. ±4
【解析】∵(±2)2=8,
∴8的平方根是.
【答案】 D
【误区纠错】容易错误地选择C.
2.你能发现二次根式的隐含条件吗?
A. -1
B. 0
C. 1
D. 2
【解析】∵(m-1)2+=0,
∴m-1=0,n+2=0.
∴m=1,n=-2.
∴m+n=1+(-2)=-1.
【答案】 A
【误区纠错】忘记考查二次根式有意义的条件,不知如何下手.
3.a一定等于吗?
【误区纠错】错误地把负数(x-1)直接平方后移到根号里面.
4.在运算中常见错误.
【解析】本题涉及特殊角的三角函数值、绝对值、二次根式化简、负指数四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.二次根式的加减只将系数相加减.
【例5】(2014·四川成都)先化简,再求值:
【解析】本题是一道关于分式化简和二次根式的综合类题,注意不能去掉分母.
名师点拨
1.能利用二次根式的概念及性质解决相关的问题.
2.会利用二次根式的加减法则进行加减运算.
3.能根据先乘除后加减法则进行二次根式的混合运算.
提分策略
1.二次根式的化简与计算.
(1)利用二次根式的性质,先把每个二次根式化简,然后进行运算;在中考中二次根式常与零指数、负指数结合在一起考查.
(2)此类分式与二次根式综合计算与化简问题,一般先化简再代入求值;最后的结果要化为分母没有根号的数或者是最简二次根式.
2.二次根式的非负性.
(2)若几个非负数的和等于零,则这几个数都为零.
A. 20或16
B. 20
C. 16
D. 以上答案均不对
(1)若4是腰长,则三角形的三边长为:4,4,8,不能组成三角形;
(2)若4是底边长,则三角形的三边长为:4,8,8,能组成三角形,周长为4+8+8=20,故选B.【答案】 B
专项训练
一、选择题
3. (2014·安徽淮北五校联考)估计7-的值在().
A. 1到2之间
B. 2到3之间
C. 3到4之间
D. 4到5之间
4. (2014·河北唐山模拟) 的运算结果是().
(第5题)
A. 2a+b
B. -2a+b
C. b
D. 2a-b
6. (2013·河北三模)一个正方形的面积等于10,则它的边长a满足().
A. 3<a<4
B. 5<a<6
C. 7<a<8
D. 9<a<10
7. (2013·山东德州特长展示)下列各式(题中字母均为正实数)中化简正确的是().
二、填空题
三、解答题
10. (2014·山东禹城二模)先化简,再求值:
11. (2014·上海长宁区二模)计算:
12. (2014·内蒙古赤峰模拟)先化简,再求值:
13. (2014·湖北黄石九中模拟)先化简,后计算:
14. (2013·浙江温州一模)计算:
15. (2013·湖北荆州模拟)先化简,再求值:
参考答案与解析
1. B[解析]二次根式化为最简二次根式后,如果被开方数相同就叫同类二次根式.
2. C[解析]原式=a-2+a-3=2a-5.
5. C[解析]原式=-a+(a+b)=b.
6. A[解析]解题的关键是注意找出和10最接近的两个能完全开方的数.
7. D[解析]考查二次根式的相关性质.。