通川区三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通川区三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 若,[]0,1b ∈,则不等式2
2
1a b +≤成立的概率为( )
A .
16π B .12π C .8π D .4
π
2. 设0<a <1,实数x ,y 满足,则y 关于x 的函数的图象形状大致是( )
A .
B .
C .
D .
3. 下列函数中哪个与函数y=x 相等( )
A .y=(
)2
B .y=
C .y=
D .y=
4. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )
A .2160
B .2880
C .4320
D .8640
5. 下列关系式中正确的是( )
A .sin11°<cos10°<sin168°
B .sin168°<sin11°<cos10°
C .sin11°<sin168°<cos10°
D .sin168°<cos10°<sin11°
6. 已知i 为虚数单位,则复数
所对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有
1212
()()
0f x f x x x ->-,则有( )
A .(49)(64)(81)f f f <<
B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<
8.
已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于
π,则()f x 的一条对称轴是( )
A .12x π=-
B .12x π=
C .6
x π
=-
D .6
x π
=
9. 函数2
-21y x x =-,[0,3]x ∈的值域为( )
A. B. C. D. 10.已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为

,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2
π D .23π
11.函数2
1()ln 2
f x x x ax =+
+存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞
【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 12.下列函数在(0,+∞)上是增函数的是( )
A

B .y=﹣2x+5
C .y=lnx
D .
y=
二、填空题
13.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
14.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.
15.不等式()2110ax a x +++≥恒成立,则实数的值是__________.
16.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.
17.已知函数f (x )=x 2+
x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .
18.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间
()1k k +,内,则正整数k 的值为________. 三、解答题
19.(本小题满分12分)
在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,1)cos 2cos a B b A c -=, (Ⅰ)求
tan tan A
B
的值;
(Ⅱ)若a =4
B π
=
,求ABC ∆的面积.
20.已知三次函数f (x )的导函数f ′(x )=3x 2﹣3ax ,f (0)=b ,a 、b 为实数. (1)若曲线y=f (x )在点(a+1,f (a+1))处切线的斜率为12,求a 的值;
(2)若f (x )在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且1<a <2,求函数f (x )的解析式.
21.将射线y=x (x ≥0)绕着原点逆时针旋转后所得的射线经过点A=(cos θ,sin θ).
(Ⅰ)求点A 的坐标;
(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.
22.已知圆C:(x﹣1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A,B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,求直线l的方程.
23.(本小题满分12分)
如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.
(1)求证:BD⊥MC1;
(2)求四棱柱ABCD-A1B1C1D1的体积.
24.已知等差数列{a n},满足a3=7,a5+a7=26.
(Ⅰ)求数列{a n}的通项a n;
(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和S n.
通川区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】D
【解析】
考点:几何概型.
2.【答案】A
【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y
轴对称,
在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A.
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
3.【答案】B
【解析】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.
B.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.
C.函数的定义域为R,y=|x|,对应关系不一致.
D.函数的定义域为{x|x≠0},两个函数的定义域不同.
故选B.
【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.
4.【答案】C
【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15,
又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320.
故选C
【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.
5. 【答案】C
【解析】解:∵sin168°=sin (180°﹣12°)=sin12°, cos10°=sin (90°﹣10°)=sin80°.
又∵y=sinx 在x ∈[0,]上是增函数,
∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.
故选:C .
【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.
6. 【答案】A
【解析】解: =
=1+i ,其对应的点为(1,1),
故选:A .
7. 【答案】A
【解析】

点:1、函数的周期性;2、奇偶性与单调性的综合.1111] 8. 【答案】D 【解析】
试题分析:由已知()2sin()6
f x x π
ω=+
,T π=,所以22π
ωπ=
=,则()2sin(2)6
f x x π
=+,令 2,62x k k Z π
π
π+
=+
∈,得,26
k x k Z ππ
=
+∈,可知D 正确.故选D .
考点:三角函数()sin()f x A x ωϕ=+的对称性.
9. 【答案】A 【解析】
试题分析:函数()2
2
2112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,
()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。

故选A 。

考点:二次函数的图象及性质。

10.【答案】A 【解析】

点:三角函数的图象性质. 11.【答案】D 【解析】因为1
()f x x a x
'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,
因为1
2x x
+
?,所以1a £,故选D . 12.【答案】C
【解析】解:对于A ,函数y=
在(﹣∞,+∞)上是减函数,∴不满足题意;
对于B ,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;
对于C ,函数y=lnx 在(0,+∞)上是增函数,∴满足题意;
对于D ,函数y=在(0,+∞)上是减函数,∴不满足题意.
故选:C .
【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.
二、填空题
13.【答案】

【解析】解:∵直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行,
∴3aa=1(1﹣2a ),解得a=﹣1或a=,
经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
14.【答案】 0.9
【解析】解:由题意, =0.9,
故答案为:0.9
15.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足20
(1)40a a a >⎧⎨
∆=+-≤⎩,即2
0(1)0
a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题. 16.【答案】
1e e
- 【解析】解析: 由ln a b ≥得a
b e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“a
b e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为
1
1
1|a a e da e e ==-⎰
,∴随机事件“ln a b ≥”的概率为
1
e e
-.
17.【答案】 9+4 .
【解析】解:∵函数f (x )=x 2
+
x ﹣b+只有一个零点,
∴△=a ﹣4(﹣b+)=0,∴a+4b=1, ∵a ,b 为正实数,
∴+=(+)(a+4b )=9++
≥9+2=9+4
当且仅当
=,即a=
b 时取等号,
∴+的最小值为:9+4
故答案为:
9+4
【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.18.【答案】2
【解析】
三、解答题
19.【答案】
【解析】(本小题满分12分)
解:
(Ⅰ)由1)cos2cos
a B
b A c
-=及正弦定理得
1)sin cos2sin cos sin sin cos+cos sin
A B B A C A B A B
-==,(3分)
cos3sin cos
A B B A
=
,∴tan
tan
A
B
=6分)
(Ⅱ)tan A B
==
3
A
π
=

sin4
2
sin sin
3
a B
b
A
π
π
===,(8分)
sin sin()
4
C A B
=+=,(10分)
∴ABC

的面积为111
sin2(3
2242
ab C=⨯=(12分)
20.【答案】
【解析】解:(1)由导数的几何意义f′(a+1)=12
∴3(a+1)2﹣3a(a+1)=12
∴3a=9∴a=3
(2)∵f′(x)=3x2﹣3ax,f(0)=b

由f′(x)=3x(x﹣a)=0得x1=0,x2=a
∵x∈[﹣1,1],1<a<2
∴当x∈[﹣1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减.∴f(x)在区间[﹣1,1]上的最大值为f(0)
∵f(0)=b,
∴b=1
∵,
∴f(﹣1)<f(1)
∴f(﹣1)是函数f(x)的最小值,


∴f(x)=x3﹣2x2+1
【点评】曲线在切点处的导数值为曲线的切线斜率;求函数的最值,一定要注意导数为0的根与定义域的关系.
21.【答案】
【解析】解:(Ⅰ)设射线y=x(x≥0)的倾斜角为α,则tanα=,α∈(0,).
∴tanθ=tan(α+)==,
∴由解得,
∴点A的坐标为(,).
(Ⅱ)f(x)=•=3sinθ•sin2x+2cosθ•2cos2x=sin2x+cos2x
=sin(2x+)
由x∈[0,],可得2x+∈[,],
∴sin(2x+)∈[﹣,1],
∴函数f(x)的值域为[﹣,].
【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.
22.【答案】
【解析】
【分析】(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;
(2)当弦AB被点P平分时,求出直线的斜率,即可写出直线l的方程;
【解答】解:(1)已知圆C :(x ﹣1)2+y 2
=9的圆心为C (1,0),因为直线l 过点P ,C ,所以直线l 的斜率为2,所以直线l 的方程为y=2(x ﹣1),即2x ﹣y ﹣2=0.
(2)当弦AB 被点P 平分时,l ⊥PC ,直线l 的方程为
,即x+2y ﹣6=0.
23.【答案】
【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E ,
∵四边形ABCD 为菱形,
∴BD ⊥AC ,
又AA 1⊥平面ABCD ,
BD ⊂平面ABCD ,∴A 1A ⊥BD ;
又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1,
又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.
(2)∵AB =BD =2,且四边形ABCD 是菱形,
∴AC =2AE =2AB 2-BE 2=23,
又△BMC 1为等腰三角形,且M 为A 1A 的中点,
∴BM 是最短边,即C 1B =C 1M .
则有BC 2+C 1C 2=AC 2+A 1M 2,
即4+C 1C 2=12+(C 1C 2
)2, 解得C 1C =463
, 所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C
=12AC ×BD ×C 1C =12×23×2×463
=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2.
24.【答案】
【解析】解:(Ⅰ)设{a n }的首项为a 1,公差为d ,
∵a5+a7=26
∴a6=13,,
∴a n=a3+(n﹣3)d=2n+1;
(Ⅱ)由(1)可知,
∴.。

相关文档
最新文档