单片机系统扩展及接口技术

合集下载

单片机数字输入输出接口扩展设计方法

单片机数字输入输出接口扩展设计方法

单片机数字输入输出接口扩展设计方法单片机作为一种常见的微控制器,其数字输入输出接口的扩展设计方法是我们在电子工程领域中经常遇到的任务之一。

在本文中,我们将讨论单片机数字输入输出接口的扩展设计方法,并探讨其中的原理和应用。

在单片机系统中,数字输入输出(I/O)接口在连接外围设备时起着至关重要的作用。

通过扩展数字 I/O 接口可以为单片机系统提供更多的输入输出通道,从而提高系统的功能和性能。

下面将介绍几种常见的单片机数字 I/O 接口扩展设计方法。

1. 并行输入输出接口扩展并行输入输出接口扩展是最常见和直接的扩展方法之一。

通常,单片机的内部I/O口数量有限,无法满足一些复杂的应用需求。

通过使用外部并行输入输出扩展芯片,可以将单片机的I/O口扩展到更多的通道,同时保持高速数据传输。

这种方法可以使用注册器和开关阵列来实现数据的输入和输出。

2. 串行输入输出接口扩展串行输入输出接口扩展是一种节省外部引脚数量的方法。

使用串行输入输出扩展器,可以通过仅使用几个引脚实现多个输入输出通道。

这种方法适用于具有较多外设设备且外围设备数量有限的应用场景。

通过串行接口(如SPI或I2C)与扩展器通信,可以实现高效的数据传输和控制。

3. 矩阵键盘扩展矩阵键盘扩展是一种常见的数字输入接口扩展方法。

很多应用中,需要通过键盘输入数据或控制系统。

通过矩阵键盘的使用,可以大大减少所需的引脚数量。

通过编程方法可以实现键盘按键的扫描和解码,从而获取用户输入的数据或控制信号。

4. 脉冲编码调制(PCM)接口扩展脉冲编码调制是一种常见的数字输出接口扩展方法。

它通过对数字信号进行脉冲编码,将数字信号转换为脉冲信号输出。

这种方法适用于需要输出多个连续的数字信号的应用,如驱动器或步进电机控制。

通过适当的电路设计和编程,可以实现高效的数字信号输出。

5. PWM(脉冲宽度调制)接口扩展PWM接口扩展是一种常用的数字输出接口扩展方法。

PWM技术通过改变信号的脉冲宽度来实现模拟信号输出。

第八章 单片机扩展与接口技术

第八章 单片机扩展与接口技术

最大地址:0 1 1 1 P0.7 P0.6 P0.5 P0.4 AB7 AB6 AB5 AB4 最小地址:0 0 0 0 . . . .
最大地址:1 1 1 1
1 P0.3 AB3 0 .
1
1 P0.2 AB2 0 .
1
1 1 P0.1 P0.0 AB1 AB0 0 0 . .
1 1
所以地址范围为:0110000000000000~0111111111111111
8 位 A/D 转 换 器 地址 锁存 与译码 VrefVref+
START:转换启动信号。START上跳沿时,所有内部 寄存器清0;START下跳沿时,开始进行A/D转换;
在A/D转换期间,START应保持低电平。
ADC0809的引脚
(1) ADC0801~ADC0805型 8 位MOS型A/D转换 器;
(2) ADC0808/0809 型 8 位MOS型A/D转换器; (3) ADC0816/0817 型 8 位MOS型A/D转换器;
2. 典型A/D转换器芯片ADC0809 简介 (P281-287) ADC0809 是采用CMOS 工艺制造的双列直插式 单片8 位A/D 转换器。分辨率8 位,带8 个模拟量 输入通道,有通道地址译码锁存器,输出带三态数 据锁存器。 启动信号为脉冲启动方式,最大可调节误差为 ±1LSB,ADC0809 内部没有时钟电路,故CLK 时 钟需由外部输入,fclk 允许范围为500kHz~1MHz, 典型值为640kHz。每通道的转换需时间大约 100~150μ s。 工作温度范围为-40℃~+85℃。功耗为15mW, 输入电压范围为0~5V,单一+5V 电源供电。它可 以直接与89C52、89C51、8051 等CPU 相连,也可 以独立使用。

MCS51单片机总线系统与IO口扩展

MCS51单片机总线系统与IO口扩展

6.2.2 单片机总线扩展的编址技术
OE
LE
Dn
Qn
L
H
H
H
L
H
L
L
L
L
L
Qn-1
L
L
H
Qn-1
H
×
×
Z
地址锁存器74LS373
CLR D0-D7Q0-Q7 4 6 2 6 74LS24474LS273 E 0123456789E GG 12Q0-Q7CLKD0-D7AAAAAAAAAAA10A11A12I/O0I/O1I/O2I/O3I/O4I/O5I/O6I/O7OWCE1CE2 56? UUU P0.0-P0.7P0.0-P0.7 +5V 11 01234567 E >> QQQQQQQQ O 01234567 E DDDDDDDDL 2 U74LS373 012 YYY ABC 3 U74LS138 R AD E R P20P07P21P06P22P05P23P04P24P03P25P02P26P01P27P00 W ALE 89C51 1 U
MOV
DPTR,#0FEFFH ;确定扩展芯片地址
MOVX
A,@DPTR
;将扩展输入口内容读入累加器A
当与74LS244相连的按键都没有按下时,输入全为1,若按下某键,则所在线 输入为0。
6.2.1 单片机I/O口扩展
输出控制信号由P2.0和相“或”后形成。当二者都为0后,74LS273的控制端 有效,选通74LS273, P0上的数据锁存到74LS273的输出端,控制发光二极管 LED , 芯 片 地 址 与 74LS244 的 选 通 地 址 相 同 ( 都 是 ×××× ×××0 ×××× ××××B,通常取为FEFFH)。当某线输出为0时,相应的LED发 光。

单片机原理及接口技术

单片机原理及接口技术

单片机原理及接口技术在当今数字化时代,单片机已经成为嵌入式系统设计中不可或缺的重要组成部分。

本文将介绍单片机的工作原理以及与外部设备进行通信的接口技术。

单片机工作原理单片机是一种集成了处理器、存储器和输入输出设备等功能模块的微型计算机系统。

它通常由中央处理器(CPU)、存储器(RAM和ROM)、计时器(Timer)、串行通信接口(UART)和引脚(Port)组成。

单片机的工作原理可以简要描述为以下几个步骤:1.初始化:单片机在上电时会执行初始化程序,设置各种工作模式、配置寄存器等。

2.执行程序:单片机会根据存储器中存储的程序指令序列来执行相应的操作,包括算术逻辑运算、控制流程等。

3.输入输出操作:单片机通过输入输出接口与外部设备进行通信,如传感器、执行器等。

4.中断处理:单片机可以在特定条件下触发中断请求,暂停当前执行的程序,转而执行中断服务程序,处理相应的事件或信号。

单片机接口技术单片机与外部设备的通信主要依赖于接口技术,包括数字输入输出接口、模拟输入输出接口以及通信接口等。

数字输入输出接口数字输入输出接口用于与二进制设备进行通信,通过配置相应的引脚工作在输入或输出模式,实现信号的采集与输出。

常用的数字输入输出方式包括GPIO口、SPI接口、I2C接口等。

模拟输入输出接口模拟输入输出接口用于处理模拟信号,包括模拟输入端口和模拟输出端口。

模拟输入端口通过模数转换器将模拟信号转换为数字信号,模拟输出端口则通过数模转换器将数字信号转换为模拟信号。

通信接口通信接口是单片机与外部设备进行数据交换的重要手段,主要有串行通信接口(UART)、并行通信接口(Parallel)、CAN接口等。

通过这些通信接口,单片机可以实现与其他设备的数据交换与通信。

结语单片机原理及接口技术是嵌入式系统设计的基础知识,通过深入了解单片机的工作原理和接口技术,可以更好地应用单片机进行系统设计与开发。

希望本文对读者有所帮助,谢谢!以上是关于单片机原理及接口技术的简要介绍,希望能对读者有所启发。

单片机原理及接口技术

单片机原理及接口技术

单片机原理及接口技术单片机(Microcontroller)是一种集成了微处理器核心、存储器、输入/输出端口和定时器等功能于一体的计算机系统。

它具有成本低廉、体积小巧、功耗低等优点,广泛应用于各个领域。

本文将介绍单片机的原理及接口技术。

一、单片机原理1. 单片机的组成结构单片机通常由CPU、存储器、输入/输出口、定时/计数器、中断系统等组成。

其中,CPU是单片机的核心,负责执行程序指令;存储器用于存储程序和数据;输入/输出口用于与外部设备进行数据交互;定时/计数器用于计时和计数;中断系统可以处理外部事件。

2. 单片机的工作原理单片机工作时,先从存储器中加载程序指令到CPU的指令寄存器中,然后CPU执行指令并根据需要从存储器中读取数据进行计算和操作,最后将结果写回存储器或输出到外部设备。

3. 单片机的编程语言单片机的程序可以使用汇编语言或高级语言编写。

汇编语言是一种低级语言,直接使用机器码进行编程,对硬件的控制更加精细,但编写和调试难度较大。

而高级语言(如C语言)可以将复杂的操作用简单的语句描述,易于编写和阅读,但对硬件的控制相对较弱。

二、单片机的接口技术1. 数字输入/输出接口(GPIO)GPIO是单片机与外部设备进行数字信号交互的通道。

通过配置GPIO的输入或输出状态,可以读取外部设备的状态或者输出控制信号。

GPIO的配置包括引脚的模式、电平状态和中断功能等。

应根据具体需求合理配置GPIO,以实现与外部设备的稳定通信。

2. 模拟输入/输出接口单片机通常具有模数转换器(ADC)和数模转换器(DAC),用于模拟信号的输入和输出。

ADC将模拟信号转换为数字信号,以便单片机进行处理。

而DAC则将数字信号转换为模拟信号,用于驱动模拟设备。

模拟输入/输出接口的配置需要考虑转换精度、采样率和信噪比等因素。

3. 串行通信接口串行通信接口允许单片机与其他设备进行数据交换。

常见的接口包括UART(通用异步收发器)、SPI(串行外设接口)和I2C(串行外设接口),它们具有不同的通信速率和传输协议。

单片机原理及接口技术

单片机原理及接口技术

单片机原理及接口技术单片机原理及接口技术(上)一、单片机基本原理单片机(Microcontroller)是由中央处理器(CPU)、存储器(ROM、RAM)、输入/输出接口(I/O)和定时/计数器等模块所组成的一个微型计算机系统。

单片机通过程序控制,能够完成各种控制任务和数据处理任务。

目前,单片机已广泛应用于计算机、通讯、电子、仪表、机械、医疗、军工等领域。

单片机的基本原理是程序控制。

单片机执行的程序,是由程序员以汇编语言或高级语言编制而成,存放在存储器中。

当单片机加电后,CPU按指令序列依次从存储器中取得指令,执行指令,并把执行结果存放到存储器中。

程序员通过编写的程序,可以对单片机进行各种各样的控制和数据处理。

单片机的CPU是整个系统的核心,它负责执行指令、处理数据和控制系统的各种操作。

CPU通常包括运算器、控制器、指令译码器和时序发生器等模块。

其中,运算器主要用于执行算术和逻辑运算;控制器用于执行指令操作和控制系统的运行;指令译码器用于识别指令操作码,并将操作码转化为相应的操作信号;时序发生器用于产生各种时序信号,确保系统按指定的时间序列运行。

存储器是单片机的重要组成部分,用于存储程序和数据。

存储器一般包括ROM、EPROM、FLASH和RAM等类型。

其中,ROM是只读存储器,用于存储程序代码;EPROM是可擦写可编程存储器,用于存储不经常改变的程序代码;FLASH是可擦写可编程存储器,用于存储经常改变的程序代码;RAM是随机存储器,用于存储数据。

输入/输出接口(I/O)用于与外部设备进行数据交换和通信。

单片机的I/O口可分为并行I/O和串行I/O两类。

并行I/O通常包括数据总线、地址总线和控制总线等,用于与外部设备进行高速数据传输。

串行I/O通常通过串口、I2C总线、SPI总线等方式实现,用于与外部设备进行低速数据传输。

定时/计数器是单片机中的重要组成部分,它可以产生各种时间、周期和脉冲信号,用于实现各种定时和计数操作。

第六章 MCS-51系统扩展技术2(8255、74LS)

第六章  MCS-51系统扩展技术2(8255、74LS)

3、MCS-51系统扩展示意图 、 系统扩展示意图
单 片 微 型 机 原 理 与 应 用
为了唯一地选中外部某一存储单元(I/O接口芯片已作为数据存储器的一 接口芯片已作为数据存储器的一 为了唯一地选中外部某一存储单元 部分),必须进行两种选择:一是必须选择出该存储器芯片(或 接口芯片 接口芯片), 部分 ,必须进行两种选择:一是必须选择出该存储器芯片 或I/O接口芯片 , 称为片选;二是必须选择出该芯片中的某一存储单元(或 接口芯片中的寄 称为片选;二是必须选择出该芯片中的某一存储单元 或I/O接口芯片中的寄 存器),称为字选。 存器 ,称为字选。 常用的选址方法有两种:线选法和译码法, 常用的选址方法有两种:线选法和译码法,其中译码法又分为全译码和 部分译码两种。 部分译码两种。
四、部分译码法
单 片 微 型 机 原 理 与 应 用
以上也可采用全译码法, 以上也可采用全译码法,电路更简单
五、扩展存储器时应考虑的几个问题
1. 地址锁存器的选用 2. MCS-51对存储容量的要求 对存储容量的要求 3. 地址线的连接和地址译码方式 4. 工作速度匹配
单 片 微 型 机 原 理 与 应 用
第二节 程序存储器的扩展
一、 常用的程序存储器
单 片 微 型 机 原 理 与 应 用
1. EPROM芯片 芯片 ROM芯片分为 类,即掩膜 芯片分为3类 即掩膜ROM、可编程 芯片分为 、可编程PROM和可擦除 和可擦除 可编程ROM(包括 包括EPROM和E2PROM)。前面两组在实际中使用 可编程 包括 和 。 得很少,因此这里只介绍最常用的可擦除可编程ROM。 得很少,因此这里只介绍最常用的可擦除可编程 。 EPROM芯片:可通过专用的紫外线光源进行照射以擦除其 芯片: 芯片 原有内容,而后用专门的编程器向其写入新的内容。 原有内容,而后用专门的编程器向其写入新的内容。 E2PROM芯片:电可擦除 。 芯片: 芯片

第6章 MCS-51单片机系统扩展技术

第6章  MCS-51单片机系统扩展技术

6.3 数据存储器扩展
6.3.1 静态RAM扩展电路
6.3.2 动态RAM扩展电路
返回本章首页
6.3.1 静态RAM扩展电路
常用的静态RAM芯片有6116,6264,62256等,其 管脚配置如图6-13所示。
1.6264静态RAM扩展 额定功耗200mW,典型存取时间200ns,28脚双列直插 式封装。表6-1给出了6264的操作方式,图6-14为6264静 态RAM扩展电路。
图 6 9
A EEPROM
28 17
扩 展 电 路
写入数据
不是指令
查询 中断 延时
2.2864A EEPROM 扩展
2864A有四种工作方式: (1)维持方式 (2)写入方式 (3)读出方式 (4)数据查询方式
图 6 12
28 64
返回本节
A EEPROM
扩 展 电 路
串行E2PROM简介 串行E2PROM占用引线少、接线简单,适用于作为数据存储 器且保存信息量不大的场合。 以AT93C46/56/57/66为例,它是三线串行接口E2PROM, 能提供128×8、256×8、512×8或64×16、128×16、256×16 位,具有高可靠性、能重复擦写100,000次、保存数据100年 不丢失的特点,采用8脚封装。
第6章 MCS-51单片机系统扩展技术
6.1 MCS-51单片机系统扩展的基本概念
6.2 程序存储器扩展技术
6.3 数据存储器扩展 6.4 输入/输出口扩展技术
T0 T1
时钟电路
ROM
RAM
定时计数器
CPU
并行接口 串行接口 中断系统
P0 P1 P2 P3
TXD RXD
INT0 INT1

微机原理与单片机接口技术(第2版)李精华 第8章 微处理器控制系统的接口扩展

微机原理与单片机接口技术(第2版)李精华 第8章  微处理器控制系统的接口扩展

8.1.2 编址技术
所谓编址,就是通过51单片机地址总线,使片外扩展的存 储器和I/O口中的每个存储单元或元器件,在51单片机的寻址 范围内均有独立的地址,以便51单片机使用该地址能唯一地选 中该单元。51单片机对外部扩展的存储器和I/O设备进行编址 的方法有两种:线选法和译码法。 1、线选法
所谓线选法,就是直接选定单片机的某根空闲地址线作为 存储芯片的片选信号。 2、译码法
由P0口作为地址线低8位,P2口作为地址线高8位,构 成16位地址,寻址范围为64KB。由于P0口分时复用为 地址总线和数据总线,除提供低8位地址之外,又要 作为数据口,地址和数据分时控制输出。为避免地址 和数据的冲突,低8位地址必须用锁存器锁存。也就 是在P0口外加一个锁存器,当ALE为下降沿时,将低8 位地址锁存。
位(LSB)所对应的输入模拟电压的变化量。分辨率定义 为转换器的满刻度电压(基准电压)VFSR与2n的比值,即
分辨率= VFSR 式中,n为A/D转2换n器输出的二进制位数,n越大,分
辨率越高。分辨率取决于A/D转换器的位数,所以习惯上 用输出的二进制位数或BCD码位数表示。
8.2 A/D转换器与D/A转换器简介
2.A/D转换器的主要技术指标 • (2)量化误差:模拟量是连续的,而数字量是断续
的,当A/D转换器的位数固定后,数字量不能把模拟 量所有的值都精确地表示出来,这种由A/D转换器有 限分辨率所造成的真实值与转换值之间的误差称为量 化误差。一般量化误差为数字量的最低有效位所表示 的模拟量,理想的量化误差容限是±1/2LSB。
三、教学难点
I2C总线接口的程序设计。
四、教学方式
8.1 单片机的外部并行总线
8.1.1 并行总线结构 51单片机具有外部并行总线,分为地址总线(AB)

单片机原理及接口技术实验报告

单片机原理及接口技术实验报告

单片机原理及接口技术实验报告一、引言单片机(Microcontroller)是一种集成为了处理器、存储器和各种接口电路的微型计算机系统。

它具有体积小、功耗低、成本低等优点,广泛应用于嵌入式系统、自动化控制、电子设备等领域。

本实验旨在深入了解单片机的原理和接口技术,并通过实验验证相关理论。

二、实验目的1. 理解单片机的基本原理和结构。

2. 掌握单片机与外部器件的接口技术。

3. 进一步培养实际操作能力和解决问题的能力。

三、实验仪器与材料1. 单片机开辟板2. 电脑3. 串口线4. LED灯5. 蜂鸣器6. 数码管7. 按键开关8. 电阻、电容等元件四、实验内容与步骤1. 单片机原理实验1.1 单片机的基本结构单片机由中央处理器(CPU)、存储器(RAM、ROM)、输入输出接口(I/O)、定时器/计数器、串行通信接口等组成。

通过学习单片机的基本结构,我们可以了解各个部份的功能和作用。

1.2 单片机的工作原理单片机的工作原理是指单片机在不同工作模式下的内部状态和运行规律。

通过学习单片机的工作原理,我们可以更好地理解单片机的工作过程,为后续的实验操作提供基础。

2. 单片机接口技术实验2.1 LED灯接口实验将LED灯与单片机相连,通过控制单片机的输出口电平,控制LED灯的亮灭。

通过实验,我们可以学习到单片机的输出接口的使用方法。

2.2 蜂鸣器接口实验将蜂鸣器与单片机相连,通过控制单片机的输出口电平和频率,控制蜂鸣器的声音。

通过实验,我们可以学习到单片机的输出接口的使用方法。

2.3 数码管接口实验将数码管与单片机相连,通过控制单片机的输出口电平和数据,显示不同的数字。

通过实验,我们可以学习到单片机的输出接口和数码管的使用方法。

2.4 按键开关接口实验将按键开关与单片机相连,通过检测单片机的输入口电平,实现按键的功能。

通过实验,我们可以学习到单片机的输入接口的使用方法。

五、实验结果与分析1. 单片机原理实验结果通过学习单片机的基本结构和工作原理,我们深入了解了单片机的内部组成和工作过程,为后续的接口技术实验打下了基础。

单片机原理及应用 第4章 MCS-51单片机系统的扩展技术

单片机原理及应用 第4章 MCS-51单片机系统的扩展技术

2.数据存储器典型扩展电路
6264的地址范围为:0000H~1FFFH。
[例题] 在上页图的数据存储器扩展电路中,将片内RAM 以50H单 元开始的16个数据,传送片外数据存储器0000H开始的单元中。
程序如下:
ORG 1000H MOV R0, #50H MOV R7, #16 MOV DPTR, #0000H AGAIN: MOV A, @R0 MOVX @DPTR, A INC R0 INC DPTR DJNZ R7, AGAIN RET END ; 数据指针指向片内50H单元 ; 待传送数据个数送计数寄存器 ; 数据指针指向数据存储器6264的0000H单元 ; 片内待输出的数据送累加器A ; 数据输出至数据存储器6264 ; 修改数据指针 ; 判断数据是否传送完成
4.2.1
程序存储器扩展
单片机内部没有ROM,或虽有ROM但容量太小时,必须扩 展外部程序存储器方能工作。最常用的ROM器件是EPROM 1. 常用EPROM程序存储器 EPROM主要是27系列芯片,如:2764(8K)/27128(16K) /27256(32K)/27040(512K)等,一般选择8KB以上的芯片作为 外部程序存储器。
4.2.3 MCS-51对外部存储器的扩展
下图所示的8031扩展系统中,外扩了16KB程序存储器(使用两片 2764芯片)和8KB数据存储器(使用一片6264芯片)。采用全地址译码方 式,P2.7用于控制2―4译码器的工作,P2.6, P2.5参加译码,且无悬空地 址线,无地址重叠现象。 1# 2764, 2# 2764, 3# 6264的地址范围分别为:0000H~1FFFH, 2000H~3FFFH, 4000~5FFFH。
MOV DPTR, #7FFFH ; 数据指针指向74LS377 MOV A, 60H ; 输出的60H单元数据送累加器A MOVX @DPTR, A ; P0口将数据通过74LS377输出

第五章_MCS-51单片机的系统扩展

第五章_MCS-51单片机的系统扩展

8255A的控制字与工作模式
8255A有3种工作方式,即模式0、模式1和模式2,这些工作方式可用软件编程来 指定,其设定格式如图5-21所示,设定指令由单片机根据表5-5所示的地址选择表实 现,其中8255A芯片的三个端口在模式0下被分成两组,在模式1和模式2下PC口为 读写控制信号线,只有PA能工作在模式2下。 此外,PC口还具有位控制功能,可以通过工作方式控制字将其任意一位置“1” 或者清“0”,其控制方式见图5-22所示。
图5-21 8255A方式控制字设置
图5-22 PC口位操作控制字
(1)方式0(基本输入/输出方式) 这种工作方式不需要任何选通信号,A口、B口及C口的高4位和低4位都 可以设定为输入或输出。作为输出口时,输出的数据均被锁存;作为输入口 时,A口的数据能锁存,B口与C口的数据不能锁存。例如,欲设定PA口和PC 口高四位工作在模式0输出以及PB口和PC口低四位工作在模式0输入方式的指 令为: MOV DPTR,#8003H ;控制字的地址为8003H MOV A,#83H ;工作方式控制字为83H MOVX @DPTR,A ;设定工作方式控制字 在这种模式下,单片机可以对8255A的数据端口进行无条件读写,8255A 三个I/O端口数据可得到锁存和缓冲。因此,8255A的模式0属于基本输入输出 模式。
(2)方式1(选通输入/输出方式) 在这种工作方式下,A口可由编程设定为输入口或输出口,C口的3位用来作 为A口输入/输出操作的控制和同步信号;B口同样可由编程设定为输入口或输出口, C口的另3位用来作为B口输入/输出操作的控制和同步信号。在方式1下A口和B口的 输入数据或输出数据都能被锁存。C口的6条线作为控制和状态信号线,其定义如 表5-6所示。
图5-18 利用74LS164扩展并行输出口

单片机系统扩展

单片机系统扩展

第六章单片机系统扩展通常情况下,采用MCS-51单片机的最小系统只能用于一些很简单的应用场合,此情况下直接使用单片机内部程序存储器、数据存储器、定时功能、中断功能,I/O端口;使得应用系统的成本降低。

但在许多应用场合,仅靠单片机的内部资源不能满足要求,因此,系统扩展是单片机应用系统硬件设计中最常遇到的问题。

在很多复杂的应用情况下,单片机内的RAM ,ROM 和 I/O接口数量有限,不够使用,这种情况下就需要进行扩展。

因此单片机的系统扩展主要是指外接数据存贮器、程序存贮器或I/O接口等,以满足应用系统的需要。

6.1 单片机应用系统按照单片机系统扩展与系统配置状况,单片机应用系统可以分为最小应用系统、最小功耗系统、典型应用系统等。

最小应用系统,是指能维持单片机运行的最简单配置的系统。

这种系统成本低廉、结构简单,常用来构成简单的控制系统,如开关状态的输入/输出控制等。

对于片内有ROM/EPROM 的单片机,其最小应用系统即为配有晶振、复位电路和电源的单个单片机。

对于片内无ROM/EPROM的单片机,其最小系统除了外部配置晶振、复位电路和电源外,还应当外接EPROM 或EEPROM作为程序存储器用。

最小应用系统的功能取决于单片机芯片的技术水平。

单片机的最小功耗应用系统是指能正常运行而又功耗力求最小的单片机系统。

单片机的典型应用系统是指单片机要完成工业测控功能所必须具备的硬件结构系统。

6.1.1 8051/8751最小应用系统MCS-51系列单片机的特点就是体积小,功能全,系统结构紧凑,硬件设计灵活。

对于简单的应用,最小系统即能满足要求。

8051/8751是片内有ROM/EPROM的单片机,因此,用这些芯片构成的最小系统简单、可靠。

图6-1 8051/8751最小应用系统用8051/8751单片机构成最小应用系统时,只要将单片机接上时钟电路和复位电路即可,如图6-1所示。

由于集成度的限制,最小应用系统只能用作一些小型的控制单元。

单片机中的IO口扩展原理及应用

单片机中的IO口扩展原理及应用

单片机中的IO口扩展原理及应用单片机是一种在微处理器中集成了中央处理器、内存、输入/输出控制和时钟等功能的微型计算机。

在实际应用中,单片机的使用每況愈下,并逐渐被更高级的处理器所取代。

然而,在一些特殊应用领域,如嵌入式系统和物联网设备中,单片机仍然扮演着重要的角色。

在单片机中,IO口的扩展是一项关键的技术,用来增加单片机的输入和输出接口数量。

本文将探讨单片机中的IO口扩展原理及其应用。

一、单片机IO口扩展原理在单片机中,IO口(Input/Output Port)用于连接外部电路和其他设备,扮演着数据输入和输出的桥梁角色。

然而,通常单片机内部只有有限的IO口数量。

为了满足复杂的应用需求,需要通过扩展技术来增加IO口的数量。

1. 并行IO口扩展其中一种常见的IO口扩展技术是通过并行IO口扩展芯片来增加IO口数量。

该芯片通常由一个并行输入/输出移位寄存器和控制逻辑组成。

通过串行通信协议,单片机可以控制并行IO口扩展芯片,以实现扩展IO口的输入和输出功能。

这种方式适用于需要大量IO口的应用,如工业控制和自动化设备。

不过需要注意的是,并行IO口扩展芯片策略相对复杂,需要额外的引脚和电路设计,并且使用的软件协议需要单片机和外部芯片之间的高速通信支持。

2. 串行IO口扩展另一种常见的IO口扩展技术是通过串行IO口扩展芯片来增加IO口数量。

串行IO口扩展芯片通常采用常用的串行通信协议,如I2C(Inter-Integrated Circuit)或SPI(Serial Peripheral Interface),通过少量的引脚连接到单片机。

通过控制寄存器和数据寄存器,单片机可以发送指令和数据来控制扩展IO口的输入和输出。

这种方式相对于并行IO口扩展芯片来说,引脚数量较少,实现简单,适用于需要较少IO口数量的应用。

同时,由于使用串行通信协议,可以通过级联多个串行IO口扩展芯片,进一步增加IO口数量。

二、单片机IO口扩展应用单片机IO口扩展技术在各种嵌入式系统和物联网设备中都有广泛的应用。

《单片机微型计算机原理与接口技术》第八章 80C51单片微机的系统扩展原理与接口技术

《单片机微型计算机原理与接口技术》第八章 80C51单片微机的系统扩展原理与接口技术

②开始数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线(SDA )上发生一个由高电平到低电平的变化作为起始信号(START) ,启动I2C 总线。I2C总线所有命令必须在起始信号以后进行。 ③停止数据传送 在串行时钟线(SCL)保持高电平的情况下,串行数据线 (SDA)上发生一个由低电平到高电平的变化,称为停止信号( STOP)。这时将停止I2C 总线上的数据传送。 ④数据有效性 在开始信号以后,串行时钟线(SCL)保持高电平的周期 期间,当串行数据线(SDA)稳定时.串行数据线的状态表示数 据线是有效的。需要一个时钟脉冲。 每次数据传送在起始信号(START)下启动,在停止信号 (STOP)下结束。 在I2C总线上数据传送方式有两种,主发送到从接收和从发 送到主接收。它们由起始信号(START)后的第一个字节的最低 位(即方向位R/W)决定。
①串行数据线(MISO、MOSI) 主机输入/从机输出数据线(MISO)和主机输出/ 从机输入数据线(MOSI),用于串行数据的发送和接收。 数据发送时.先传送MSB(高位),后传送LSB(低位)。 在SPI设置为主机方式时,MISO线是从机数据输入线 ,MOSI是主机数据输出线;在SPI设置为从机方式时, MISO线是从机数据输出线,MOSI是从机数据输入线。
8.1.1外部并行扩展原理
单片微机是通过芯片的引脚进行系统扩展的。 80C51系列带总线的单片微机芯片引脚可以构成图8-1所 示的三总线结构.即地址总线(AB)数据总线(DB)和控制总 线(CB)。具有总线的外部芯片都通过这三组总线进行扩展。 (1)地址总线(AB) 地址总线由单片微机P0口提供 低8位地址A0~A7,P2口提 供高8位地址A8~A15。P0口是地址总线低8位和8位数据总线复 用口,只能分时用作地址线。故P0口输出的低8位地址A0~A7必 须用锁存器锁存。 锁存器的锁存控制信号为单片微机ALE引脚输出的控制信 号。在ALE的下降沿将P0口输出的地址A0~A7锁存。P0、P2口 在系统扩展中用做地址线后便不能作为一般I/O口使用。 由于地址总线宽度为16位,故可寻址范围为64 KB。 (2)数据总线(DB) 数据总线由P0口提供,用D0~D7表示。P0口为三态双向

单片机的系统扩展原理及接口技术 第8章习题答案 高锋第二版

单片机的系统扩展原理及接口技术  第8章习题答案  高锋第二版

第8章思考与练习题解析【8—1】简述单片机系统扩展的基本原则和实现方法。

【答】系统扩展是单片机应用系统硬件设计中最常遇到的问题。

系统扩展是指单片机内部各功能部件不能满足应用系统要求时,在片外连接相应的外围芯片以满足应用系统要求。

80C5 1系列单片机有很强的外部扩展能力,外围扩展电路芯片大多是一些常规芯片,扩展电路及扩展方法较为典型、规范。

用户很容易通过标准扩展电路来构成较大规模的应用系统。

对于单片机系统扩展的基本方法有并行扩展法和串行扩展法两种。

并行扩展法是指利用单片机的三组总线(地址总线AB、数据总线DB和控制总线CB)进行的系统扩展;串行扩展法是指利用SPI三线总线和12C双线总线的串行系统扩展。

1.外部并行扩展单片机是通过芯片的引脚进行系统扩展的。

为了满足系统扩展要求,80C51系列单片机芯片引脚可以构成图8-1所示的三总线结构,即地址总线AB、数据总线DB和控制总线CB。

单片机所有的外部芯片都通过这三组总线进行扩展。

2.外部串行扩展80C51.系列单片机的串行扩展包括:SPI(Serial Peripheral Interface)三线总线和12C双总线两种。

在单片机内部不具有串行总线时,可利用单片机的两根或三根I/O引脚甩软件来虚拟串行总线的功能。

12C总线系统示意图如图8—2所示。

【8—2】如何构造80C51单片机并行扩展的系统总线?【答】80C51并行扩展的系统总线有三组。

①地址总线(A0~A15):由P0口提供低8位地址A0~A7,P0 口输出的低8位地址A0~A7必须用锁存器锁存,锁存器的锁存控制信号为单片机引脚ALE输出的控制信号。

由P2口提供高8位地址A8~A1 5。

②数据总线(DO~D7):由P0 口提供,其宽度为8位,数据总线要连到多个外围芯片上,而在同一时间里只能够有一个是有效的数据传送通道。

哪个芯片的数据通道有效则由地址线控制各个芯片的片选线来选择。

③控制总线(CB):包括片外系统扩展用控制线和片外信号对单片机的控制线。

单片机接口技术详解及应用案例分析

单片机接口技术详解及应用案例分析

单片机接口技术详解及应用案例分析引言:单片机(Microcontroller)是一种特殊的集成电路,它将计算机的所有功能集成在一个芯片上。

在现代电子产品中广泛应用,特别是嵌入式系统设计中,单片机作为核心部件发挥着重要的作用。

在本文中,我们将深入探讨单片机接口技术的详细原理,并通过实际案例分析来展示其应用。

一、单片机接口技术的基本原理在单片机系统中,接口技术起着连接CPU和外设的作用,使得单片机能够与外界进行数据交互和通信。

常见的单片机接口技术包括串口、并行口、I2C总线、SPI总线、CAN总线等。

1. 串口(Serial Port)接口技术:串口是一种使用少量引脚进行双向通信的接口技术。

它的主要原理是通过将数据按照一定的规则进行序列化,然后通过单根传输线(例如RS-232)进行传输。

串口接口技术广泛应用于通信设备、计算机外设等领域。

在实际应用中,我们可以利用串口接口实现单片机与上位机的数据交互,实现远程数据采集、监控等功能。

2. 并行口(Parallel Port)接口技术:并行口是一种使用多个引脚进行数据传输的接口技术。

它的主要原理是通过同时传输多位数据来提高数据传输速度。

在实际应用中,我们可以利用并行口接口实现单片机与外部存储器、LCD模块、打印机等设备的连接。

例如,当需要将单片机作为控制器驱动LCD显示屏时,可以通过并行口接口将数据和控制信号同时传输,实现图形显示功能。

3. I2C(Inter-Integrated Circuit)总线技术:I2C总线是一种双向、串行的通信总线,主要用于连接集成电路之间的通信。

I2C总线的主要特点是使用两根传输线(SDA和SCL)进行数据和时钟信号的传输。

在实际应用中,我们可以利用I2C总线接口连接各种外设,如温度传感器、电子罗盘、时钟模块等。

通过与单片机相结合,可以实现数据的读取和控制。

4. SPI(Serial Peripheral Interface)总线技术:SPI总线是一种同步的串行通信总线,用于高速数据传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P0 —— 分时作低8位地址线、数据线; P2 —— 作高8位地址线。
二、 8KB/16KB EPROM
紫外线擦除电可编程只读存储器EPROM。
只读存储器:只能读,不能写,断电后信息不丢 失,是一种非易失性存储器 EPROM的实例 2716 2K*8 2732 4K*8 2764 8K*8 27128 16K*8 27256 32K*8
控制总线——CPU发出 控制片外ROM、RAM、I/O。
二、系统扩展的实现
1、以P0口作地址/数据总线。 需要加8位锁存器,先把低8位地址送锁存器暂存, 然后由地址锁存器给系统提供8位地址,而把P0口作 数据线使用。 2、以P2口作地址总线高8位或部分高位 3、控制总线 ①ALE ——地址锁存选通(低8位地址锁存); ②PSEN ——扩展 ROM 选通信号; ③EA ——内外 ROM 选通信号; ④RD、WR——扩展数据存储器、I/O 口选通信号, 在执行 MOVX 时——两信号有效。
ALE=“1”低8位有效
89C51
ALE
30
11 32 33 34 35 36 37 38 39
下降沿锁存数据,下次ALE变高时,地址发生变化
20
Vcc
+5V
P0.7
P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0
18 17 14 13 8 7 4 3
G
8D
7D 6D 5D 4D 3D 2D 1D OE
6116
CE D7 D6
D5
D4
D1
D2 GND
D5
D4
12
13
D3
14
15
D3
14
15
D3
引脚符号功能: A0~Ai —— 地址输入线,i=10(6116) i=12(6264) i=14(62256) D0~D7 —— 双向三态数据线。 CE —— 片选信号输入线。 OE —— 读选通信号输入线。 WE —— 写允许信号输入线。 Vcc —— 工作电源,+5V。 GND —— 线路地。
1
28
Vcc WE A13
1
24
Vcc A8
A7 A6
A8
A9 A11 OE
A5
A4 A3 A2 A1 A0 D0 D1 D2 GND
A9
WE OE A12
A5
A4 A3 A2 A1 A0 D0
6264
A10 CE D7 D6
A2
A1 A0 D0 D1 D2 GND
62256
A10
CE D7 D6 D5 D4
第八章 单片机系统扩展及接口技术
为什么要进行系统扩展? 片内存储器容量、并行I/O口数目、定时器等内 部资源数目有限。 如何扩展? 1.串行扩展总线方式(SPI,I2C) 2.并行扩展三总线方式
地址总线(AB)
数据总线(DB)
89C51
控制总线(CB)
数据 存储器
程序 存储器
I/O接口
I/O接口
§ 8-5 键盘接口
常用的键盘有机械式、薄膜式、电容式、霍尔效应式 键盘分独立式和行列式
10K C D E F 10K
+Vcc
K7 …
8
4 0
9
5 1
A
6 2
B
7 3
K0
独立式键盘
行列式键盘 在行与列的交叉点位置安装按键。当 按键闭合,相应的行和列连接。
下面以机械式触点按键组成的非编码键盘为例,对键盘接 口功能和原理进行介绍。 键盘接口必须具有去抖动、防串键、按键识别和键码产生4 个基本功能。
+5V
I/O0 I/O1 Vcc I/O2 I/O3 Vpp I/O4 I/O5 CE I/O6 GND I/O7 OE WE
8051扩展2KB RAM 6116系统连接图
三、 89C51同时外扩32KB EPROM 和32KB RAM
P2.7
8051
P2.0 ALE P0.0
A0 ~ A7 74LS373 OE G GND D0 ~ D7
一、抖动:机械式按键在压键时在触点可靠地接通前多次通断 抖动 1 闭 合 断 开 闭 合 抖动
防抖动:有硬件、有软件 软件防抖动通过软件延时(10ms) 硬件防抖动使用RS触发器
U0 无 抖动
二、串键:多键同时按下或一键没按下又有新键按下
解决方法: 双键锁定 、N键巡回 ①双键锁定:当检测到有两个或两个以上的键被按下时, 只把最后释放的键当作有效键,并产生相应键码。 ②N键轮回:当检测到有多个键被按下时,能根据发现 它们的顺序依次产生相应键的键码。
+5V
XTAL2 RST
P1.7 P2.0
EA
8051 P2.7 P3.0 P0.0 P3.1(TXD) P3.2(INT0) P3.3(INT1) P3.4(T0) P3.5(T1) P3.6(WR) P3.7(RD)P0.7 PSEN ALE
+5V
D0 D1 Vcc D2 D3 Vpp D4 D5 D6 GND D7 OE
A0 ~ 27256
A14
OE D0 ~ D7 CE
~ A14 62256 CE OE WE D0 ~ D7 A0
P0.7 PSEN P3.6(WR) P3.7(RD) 8051扩展32KB RAM 和32KB EPROM连接图
也可以使用地址译码技术
§ 8-4 简单并行 I/O 口的扩展
8.4.1 I/O 口的直接输入/输出 P1.3 ~ P1.0 —— 输入,接开关 K P1.7 ~ P1.4 —— 输出,接 LED 编程 —— 由 K = “0”或“1”, 使 LED = “亮”或“灭”。 LOOP: MOV A, #0FH MOV P1,A MOV A,P1 SWAP A MOV P1,A AJMP LOOP
8Q
7Q 6Q 74LS 5Q 373 4Q 3Q 2Q 1Q GND
19 16 15 12 9 6 5 2
A7 A6 A5 A4 A3 A2 A1 A0
1
10
89C51地址总线扩展电路
一、 片外三总线结构
总线——连接系统中各扩展部件的一组公共信号线 三总线——地址总线、数据总线、控制总线 地址总线——由CPU送出,单向、用于提供地址信息 数据总线——双向传送数据 CPU↔RAM、CPU↔I/O 数据总线位数与单片机处理数据的字长一致
2764
A0 ~ A12
CE
D0

PGM D7 OE
2764逻辑关系图 地址线A0~A12 13根 数据线D0~D7 片选 CS 读允许 OE 编程脉冲 PGM 8根 2764引脚排列图
2764的工作模式 信号 VCC VPP CE OE PGM 读方式 +5V +5V 低 低 低 编程方式 +5V +25V 高 高 正脉冲 校验方式 +5V +25V 低 低 低 备用方式 +5V +5V 无关 无关 高 未选中 +5V +5V 高 无关 无关
一、 常用的 RAM 芯片 1、静态 RAM 芯片
常用的有——6116(2K×8bit)、6264(8K×8bit)、 62256(32K×8bit)、628128(128K×8bit)等。
NC
A12 A7 A6
1
28
Vcc WE CS A8 A9 A11 OE
A14 A12 A7 A6 A5 A4 A3
I/O设备
I/O设备
系统扩展及接口结构
§8-1 并行扩展三总线的产生
单片机——用I/O口做数据/地址复用线
P2 ALE P0 地址 锁存器 D0~D7 A0~A7 A8~A15
地址总线
89C51
PSEN WR
数据总线
地址锁存器 的作用将P0 口的地址信 息过锁存
控制总线 89C51扩展的三总线
RD
K0
K3
乒乓开关
P1.0 P1.1 P1.2 P1.3 74LS07 P1.7 P1.6 P1.5 P1.4 89C51 LED0 89C51与开关(键)和LED 接口 插孔
发光二级管 插孔 LED3
8.4.2
I/O口的扩展
I/O口是CPU和外界数字信息交换的桥梁 如果51单片机对程序存储器或数据存储器进行扩 展,片上可用I/O就是P1口 所以多数只要是扩展的单片机系统,其I/O口应该 是不够
P0F: P1F: P2F: P3F: P4F: P5F: P6F: P7F: PROM0:
LJMP LJMP LJMP LJMP LJMP LJMP LJMP LJMP … LJMP PROM1: … LJMP : PROM7: … LJMP
PROM0 PROM1 PROM2 PROM3 PROM4 PROM5 PROM6 PROM7 START START
扩展16KB EPROM27128系统连接图
§8-3 扩展数据存储器
单片机面向控制,实际需要扩展的容量不大 一般常用静态 RAM 芯片,无需刷新电路 最大扩展到64K,特殊需要时可用62256、628128 片外数据存储器 RAM 的读/写由RD(P3.7)/WR(P3.6) 信号控制
+5V
Vcc Vss XTAL1 P1.0
GND Vcc 8D 8Q 7D 7Q 6D 6Q 5D82825Q 4D 4Q 3D 3Q 2D 2Q 1D 1Q STB OE A7 A6 A5 A4 A3 A2 A1 A0 6116
XTAL2 RST
+5V
P1.7 P2.0
A10 A9 A8
EA 89C51 P2.7 P3.0 P0.0 P3.1(TXD) P3.2(INT0) P3.3(INT1) P3.4(T0) P3.5(T1) P3.6(WR) P3.7(RD)P0.7 PSEN ALE
相关文档
最新文档