赤坎区实验中学2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赤坎区实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1) C .
D .
2. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )
A .0
B .1
C .2
D .3
3. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( ) A .x=π B .
C .
D .
4. 某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-
B .32163π-
C .1683π-
D .3283
π-
【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力. 5. 方程()2
111x y -=-+ )
A .一个圆
B . 两个半圆
C .两个圆
D .半圆 6. 设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l
7. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( ) A .
B .
C .
D .2
8. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinA B .2bcosA
C .2bsinB
D .2bcosB
9. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )
A .﹣16
B .14
C .28
D .30
10.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定
正确的是( ) A .f (x )为奇函数 B .f (x )为偶函数
C .f (x )+1为奇函数
D .f (x )+1为偶函数
二、填空题
11.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32
x = 处的导数302f ⎛⎫
'<
⎪⎝⎭,则13f ⎛⎫
= ⎪⎝⎭
___________. 12.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程
为 .
13.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一 个红球的概率为 .
14.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 15.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 16.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分 别是AC ,BD 的中点,22MN =,则m 与n 所成角的余弦值是______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
三、解答题
17.(本小题满分12分)
已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.
(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.
18.(本小题满分12分)111]
在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .
19.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12
(1)求a ,b 的值.
(2)当x ∈[1,2]时,求f (x )的最大值.
(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x ﹣m 的图象恒有两个交点.
20.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2
ABD π
∠=
,AD =22AB DC ==,F
为PA 的中点.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PB PD ===
P BDF -的体积.
21.(本小题满分12分) 在等比数列{}n a 中,3339,22
a S =
=. A
B
C
D
P
F
(1)求数列{}n a 的通项公式; (2)设221
6log n
n b a +=,且{}n b 为递增数列,若11n n n c b b +=
g ,求证:1231
4
n c c c c ++++<L .
22.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,
设函数()()2n f x x R =??a b
的图象关于点(,1)12
p
对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;
(II )若()()4
f x f p
£对一切实数恒成立,求)(x f y =的单调递增区间.
【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.
赤坎区实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题
1.【答案】C
【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,
即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立
若m+1=0,显然不成立
若m+1≠0,则
解得a.
故选C.
【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.
2.【答案】D
【解析】解:设等差数列{a n}的公差为d,
则S4=4a1+d=﹣2,S5=5a1+d=0,
联立解得,
∴S6=6a1+d=3
故选:D
【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.
3.【答案】B
【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cos x,再向右平移个单位得到y=cos[(x)],
由(x)=kπ,得x=2kπ,
即+2kπ,k∈Z,
当k=0时,,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
4. 【答案】D
【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132
244428233
V =π⨯⨯-⨯⨯⨯=π-,故选D . 5. 【答案】A 【解析】
试题分析:由方程()2
111x y -=-+,两边平方得()2
22
1(11)x y -=-+,即2
2
(1)(1)1x y -++=,所
以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 6. 【答案】C 111] 【解析】
考
点:线线,线面,面面的位置关系 7. 【答案】B
【解析】解:抛物线y 2=4x 的准线l :x=﹣1.
∵|AF|=3,
∴点A 到准线l :x=﹣1的距离为3
∴1+x A =3
∴x A =2, ∴y A =±2
,
∴△AOF 的面积为=.
故选:B .
【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A 的坐标是解题的关键.
8. 【答案】D 【解析】解:∵A=2B ,
∴sinA=sin2B ,又sin2B=2sinBcosB ,
∴sinA=2sinBcosB,
根据正弦定理==2R得:
sinA=,sinB=,
代入sinA=2sinBcosB得:a=2bcosB.
故选D
9.【答案】B
【解析】解:∵a n=(﹣1)n(3n﹣2),
∴S11=()+(a2+a4+a6+a8+a10)
=﹣(1+7+13+19+25+31)+(4+10+16+22+28)
=﹣16,
S20=(a1+a3+…+a19)+(a2+a4+…+a20)
=﹣(1+7+...+55)+(4+10+ (58)
=﹣+
=30,
∴S11+S20=﹣16+30=14.
故选:B.
【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.
10.【答案】C
【解析】解:∵对任意x1,x2∈R有
f(x1+x2)=f(x1)+f(x2)+1,
∴令x1=x2=0,得f(0)=﹣1
∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,
∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],
∴f(x)+1为奇函数.
故选C
【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答.
二、填空题
11.【答案】1 2
【解析】
考
点:三角函数图象与性质,函数导数与不等式.
【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫
'< ⎪⎝⎭
来验证.求出()f x 表达式后,就可以求出13f ⎛⎫
⎪⎝⎭
.1 12.【答案】 (±,0) y=±2x .
【解析】解:双曲线的a=2,b=4,
c=
=2
,
可得焦点的坐标为(±
,0),
渐近线方程为y=±x ,即为y=±2x . 故答案为:(±
,0),y=±2x .
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.
13.【答案】9
8 【
解
析
】
【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,),(y x 可以看成是有序的,如()1,2与()2,1不同;有
时也可以看成是无序的,如)1,2)(2,1(相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用)(1)(A P A P -=求解较好. 14.【答案】
【解析】当n =1时,a 1=S 1=k 1+2k 2,当n ≥2时,a n =S n -S n -1=(k 1+k 2·2n )-(k 1+k 2·2n -1)=k 2·2n -1, ∴k 1+2k 2=k 2·20,即k 1+k 2=0,① 又a 2,a 3,a 4-2成等差数列. ∴2a 3=a 2+a 4-2, 即8k 2=2k 2+8k 2-2.② 由①②联立得k 1=-1,k 2=1, ∴a n =2n -1. 答案:2n -1
15.【答案】 [,1] .
【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M , ∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1], 故答案为[,1].
16.【答案】512
【
解
析
】
三、解答题
17.【答案】(1)详见解析;(2)详见解析. 【
解
析
】
试
题解析:证明:(1)连接C A 1,∵直三棱柱111C B A ABC -中,四边形C C AA 11是矩形, 故点F 在C A 1上,且F 为C A 1的中点,
在BC A 1∆中,∵F E 、分别是11AC B A 、的中点,∴BC EF //. 又⊄EF 平面ABC ,⊂BC 平面ABC ,∴//EF 平面ABC .
考点:1.线面平行的判定定理;2.面面垂直的判定定理.
18.【答案】(1)详见解析;(2)详见解析. 【解析】
试题分析:(1)根据DB EF //,所以平面BEF 就是平面BDEF ,连接DF,AC 是等腰三角形ABC 和ACF 的公共底边,点D 是AC 的中点,所以BD AC ⊥,DF AC ⊥,即证得⊥AC 平面BEF 的条件;(2)要证明线面平行,可先证明面面平行,取FC 的中点为,连接GI ,HI ,根据中位线证明平面//HGI 平面ABC ,即可证明结论.
试题解析:证明:(1)∵DB EF //,∴EF 与DB 确定平面BDEF .
如图①,连结DF . ∵CF AF =,D 是AC 的中点,∴AC DF ⊥.同理可得AC BD ⊥. 又D DF BD =I ,⊂DF BD 、平面BDEF ,∴⊥AC 平面BDEF ,即⊥AC 平面BEF .
考点:1.线线,线面垂直关系;2.线线,线面,面面平行关系.
【方法点睛】本题考查了立体几何中的平行和垂直关系,属于中档题型,重点说说证明平行的方法,当涉及证明线面平行时,一种方法是证明平面外的线与平面内的线平行,一般是构造平行四边形或是构造三角形的中位线,二种方法是证明面面平行,则线面平行,因为直线与直线外一点确定一个平面,所以所以一般是在某条直线上再找一点,一般是中点,连接构成三角形,证明另两条边与平面平行. 19.【答案】
【解析】解:(1)∵f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12,
∴a ﹣b=2,a 2﹣b 2=12, 解得:a=4,b=2;
(2)由(1)得:函数f (x )=lg (4x ﹣2x ), 当x ∈[1,2]时,4x ﹣2x ∈[2,12], 故当x=2时,函数f (x )取最大值lg12,
(3)若函数g (x )=a x 的图象与h (x )=b x ﹣m 的图象恒有两个交点.
则4x ﹣2x =m 有两个解,令t=2x ,则t >0, 则t 2﹣t=m 有两个正解;
则
,
解得:m ∈(﹣,0)
【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.
20.【答案】(本小题满分13分)
解:(Ⅰ)当E 为PB 的中点时,//CE 平面PAD . (1分) 连结EF 、EC ,那么//EF AB ,1
2
EF AB =. ∵//DC AB ,1
2
DC AB =
,∴//EF DC ,EF DC =,∴//EC FD . (3分) 又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 为AD 的中点,连结OP 、OB ,∵PA PD =,∴OP AD ⊥,
在直角三角形ABD 中,1
2
OB AD OA ==, 又∵PA PB =,∴PAO PBO ∆≅∆,∴POA POB ∠=∠,∴
OP OB ⊥,
∴OP ⊥平面ABD . (10分)
2222(6)(2)2PO PA AO =-=-=,222BD AD AB =-=
∴三棱锥P BDF -的体积1112
222233
P BDF P ABD V V --==⨯⨯⨯=. (13分)
21.【答案】(1)1
31622n n n a a -⎛⎫
==- ⎪
⎝⎭
g 或;(2)证明见解析.
【解析】
试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得1
31622n n n a a -⎛⎫
==- ⎪⎝⎭
g 或;(2)
由于{}n b 为递增数列,所以取1
162n n a -⎛⎫=⋅- ⎪
⎝⎭
,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫
=
==- ⎪++⎝⎭
g ,
其前项和为()111
4414
n -
<+. A
B
C
D
P
O
E F
考点:数列与裂项求和法.1 22.【答案】。