【附5套中考模拟试卷】安徽省黄山市2019-2020学年中考数学模拟试题(2)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省黄山市2019-2020学年中考数学模拟试题(2)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列说法中,正确的是( )
A .长度相等的弧是等弧
B .平分弦的直径垂直于弦,并且平分弦所对的两条弧
C .经过半径并且垂直于这条半径的直线是圆的切线
D .在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
2.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x
的解集为( )
A .602x x <-<<或
B .602x x -<或
C .2x >
D .6x <-
3.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )
A .5
B .2
C .52
D .25
4.已知关于x 的不等式组0217x a x -<⎧⎨-≥⎩
至少有两个整数解,且存在以3,a ,7为边的三角形,则a 的整数解有( )
A .4个
B .5个
C .6个
D .7个
5.下列性质中菱形不一定具有的性质是( )
A .对角线互相平分
B .对角线互相垂直
C .对角线相等
D .既是轴对称图形又是中心对称图形
6.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 和
的长分别为( )
A .2,
B .2 ,π
C .,
D .2,
7.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( )
A .513
B .512
C .1213
D .125
8.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为( )
A .50035030x x =-
B .50035030x x =-
C .500350+30x x =
D .500350+30x x
= 9.如图,AD 为△ABC 的中线,点E 为AC 边的中点,连接DE ,则下列结论中不一定成立的是( )
A .DC=DE
B .AB=2DE
C .S △CDE =14
S △ABC D .DE ∥AB 10.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )
A .6
B .131
C .9
D .323
11.已知⊙O 的半径为5,弦AB=6,P 是AB 上任意一点,点C 是劣弧»AB 的中点,若△POC 为直角三角形,则PB 的长度( )
A .1
B .5
C .1或5
D .2或4
12.一个多边形的每个内角均为120°,则这个多边形是( )
A .四边形
B .五边形
C .六边形
D .七边形
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .
14.分式
1
2x
有意义时,x的取值范围是_____.
15.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.
16.如图,⊙O的直径AB=8,C为»AB的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.
17.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=23+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.
18.分解因式:x3y﹣2x2y+xy=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).
(1)求抛物线L的顶点坐标和A点坐标.
(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.
20.(6分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.
(1)试探究线段AE与CG的关系,并说明理由.
(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
②当△CDE为等腰三角形时,求CG的长.
21.(6分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是人,扇形C的圆心角是°;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?
22.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA 级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.
(1)求每千克A级别茶叶和B级别茶叶的销售利润;
(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.
23.(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥
轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.
24.(10分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC 是该抛物线的内接格点三角形,AB=32,且点A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()
A.7 B.8 C.14 D.16
25.(10分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;
(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.
26.(12分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.
27.(12分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
图1 各项报名人数扇形统计图:
图2 各项报名人数条形统计图:
根据以上信息解答下列问题:
(1)学生报名总人数为人;
(2)如图1项目D所在扇形的圆心角等于;
(3)请将图2的条形统计图补充完整;
(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.D
【解析】
【分析】
根据切线的判定,圆的知识,可得答案.
【详解】
解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
故选:D.
【点睛】
本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.2.B
【解析】
【分析】
根据函数的图象和交点坐标即可求得结果.
【详解】
解:不等式kx+b>m
x
的解集为:-6<x<0或x>2,
故选B.
【点睛】
此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.
3.C
【解析】
【分析】
通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.
【详解】
过点D作DE⊥BC于点E
.
由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..
∴AD=a.
∴1
2
DE•AD=a.
∴DE=1.
当点F从D到B时,用5
∴5
Rt△DBE中,
()2
222
=521 BD DE
--=,∵四边形ABCD是菱形,
∴EC=a-1,DC=a,
Rt△DEC中,a1=11+(a-1)1.
解得a=5 2 .
故选C.
【点睛】
本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.4.A
【解析】
【分析】
依据不等式组至少有两个整数解,即可得到a>5,再根据存在以3,a,7为边的三角形,可得4<a<10,进而得出a的取值范围是5<a<10,即可得到a的整数解有4个.
【详解】
解:解不等式①,可得x<a,
解不等式②,可得x≥4,
∵不等式组至少有两个整数解,
∴a>5,
又∵存在以3,a,7为边的三角形,
∴4<a<10,
∴a的取值范围是5<a<10,
∴a的整数解有4个,
故选:A.
【点睛】
此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
5.C
【解析】
【分析】
根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.
【详解】
解:A、菱形的对角线互相平分,此选项正确;
B、菱形的对角线互相垂直,此选项正确;
C、菱形的对角线不一定相等,此选项错误;
D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.
考点:菱形的性质
6.D
【解析】
试题分析:连接OB,
∵OB=4,
∴BM=2,
∴OM=2,,
故选D.
考点:1正多边形和圆;2.弧长的计算.
7.B
【解析】
如图,等腰△ABC中,AB=AC=13,BC=24,
过A作AD⊥BC于D,则BD=12,
在Rt△ABD中,AB=13,BD=12,则,
225
AB BD
-=,
故tanB=
5
12 AD
BD
=.
故选B.
【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.8.A
【解析】
【分析】
根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间.
【详解】
现在每天生产x台机器,则原计划每天生产(x﹣30)台机器.
依题意得:500350
x x30
=
-
,
故选A.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 9.A
【解析】
【分析】
根据三角形中位线定理判断即可.
【详解】
∵AD为△ABC的中线,点E为AC边的中点,
∴DC=1
2
BC,DE=
1
2
AB,
∵BC不一定等于AB,
∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;
S△CDE=1
4
S△ABC,C一定成立;
DE∥AB,D一定成立;
故选A.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
10.C
【解析】
【分析】
如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.。