先进制造加工技术-激光加工技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先进制造加工技术之激光加工技术
摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。

用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。

激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。

本文将分别介绍激光加工技术的国内外工业激光现状,原理、特点、应用,并对其发展前景进行论述。

关键词:激光加工技术;加工原理;强化处理;微细加工;发展前景。

引言
20 世纪20 年代爱因斯坦提出的光受激辐射的概念预见了激光的产生,40年后的1960年美国科学家梅曼率先研制成功的第一台红宝石激光器标志着激光的正式诞生, 随后, 激光技术迅猛发展。

继固体激光器后,气体激光器、化学激光器、染料激光器、原子激光器、离子激光器、半导体激光器、X 射线激光器和光纤激光器相继问世,应用领域也扩展到诸如电子、轻工、包装、礼品、小五金工业、医疗器械、汽车、机械制造、钢铁、冶金、石油等, 为传统工业的技术改造和制造业的现代化提供先进的技术装备。

激光与普通光相比有 4 个特性即: 单色性(单一波长)、相干性、方向性和高光强。

激光束易于传输, 其时间特性和空间特性可以分别控制, 经聚焦后可得到极小的光斑, 具有极高功率密度的激光光束可以熔化、气化任何材料, 也可对材料的局部区域进行精密快速加工。

加工过程中输入工件的热量小,热影响区和热变形小;加工效率高; 易于实现自动化。

激光技术是一门综合性高新技术,涉及光学、机械学、电子学等学科。

同样, 激光加工设备也涉及到众多学科, 因而决定了它的高科技性和高收益率。

纵观国际和国内激光应用情况经过多年的研究开发和完善,当代的激光器和激光加工技术与设备已相当成熟,形成了系列激光加工工艺。

一、激光加工技术的概述和国内外工业激光现状
1. 概述
激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工等的一门技术。

激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等
起到愈来愈重要的作用。

2.国内外工业激光现状
国外以美、德、日为代表的几个发达国家在激光加工产业领域的发展速度惊人,它们在主要的大型制造产业,如汽车、电子、机械、航空、钢铁等行业中基本完成了用激光加工工艺对传统工艺的更新换代,进入“光制造”时代。

激光在工业制造中所显示出的低成本、高效率以及应用的巨大潜力,成为世界主要工业国家间互相竞争的动力,纷纷将激光技术作为本国重要的尖端技术给予积极支持,加紧制定国家级激光产业发展计划。

美国通过其“精密激光机械加工(PLM)协会”来激励其新工艺技术的发展,力求使美国工业激光器技术在世界上处于领先的地位,并在世界市场中获得较大的份额。

德国在1994年-2002年制订了国家激光发展计划,促使德国激光器和激光工业应用后来居上,位于世界领先地位。

激光设备在德国汽车和机械制造中的广泛应用,使其在这些领域内的竞争能力近年来得到显著提高。

并制订了德国“2002-2006光学促进计划”,将激光技术作为重中之重,认为未来所有制造加工业中有12%以上的加工工艺需要用激光技术来替代。

除此之外,英国“阿维尔计划”、日本“激光研究五年计划”,甚至俄罗斯、韩国、新加坡、印度也制订有专门的激光技术发展计划。

我国激光技术研究与国外同时起步,是当时与国外技术差距最小的高科技领域。

在国家“六五”至“十一五”科技项目的支持下,逐步形成了以华中科技大学和中科院四大光机为典型代表的研究机构,在激光器的一些核心技术研发上已形成较全面的技术成果,形成了5个国家级的激光技术研究中心。

其中,激光技术国家重点实验室、激光加工国家工程研究中心、武汉光电国家实验室(筹)和最早开设激光学科的华中科技大学均坐落在武汉,成为我国激光技术的发源地。

二、激光加工技术的原理和特点
1、基本原理
激光加工利用高功率密度的激光束照射工件,使材料熔化气化而进行穿孔、切割和焊接等的特种加工。

早期的激光加工由于功率较小,大多用于打小孔和微型焊接。

到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。

数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。

各种专用的激光加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水
平和使用功能。

从激光器输出的高强度激光经过透镜聚焦到工件上,其焦点处的功率密度高达10(~10(瓦/厘米(,温度高达1万摄氏度以上,任何材料都会瞬时熔化、气化。

激光加工就是利用这种光能的热效应对材料进行焊接、打孔和切割等加工的。

通常用于加工的激光器主要是固体激光器和气体激光器。

2、激光加工的特点
激光具有高亮度、方向性强、单色性好、相干性好、空间控制和时间控制性好等优越性能,容易获得超短脉冲和小尺寸光斑,能够产生极高的能量密度和功率密度,几乎能加工所有的材料,例如,塑料,陶瓷,玻璃,金属,半导体材料,
复合材料等等, 以及生物 / 医用材料,特别适用于加工自动化,而且对被加工材料的形状、尺寸和加工环境要求很低.激光加工具有很多优点,如下所述.
激光加工属无接触加工:激光加工是通过激光光束进行加工,与被加工工件不直接接触,降低了机械加工惯性和机械变形,方便了加工.同时,还可加工常规机械加工不能或很难实现的加工工艺,如内雕、集成电路打微孔、硅片的刻划等.
加工质量好,加工精度高:由于激光能量密度高可瞬时完成加工,与传统机械加工相比,工件热变形小、无机械变形,使得加工质量显著提高;激光可通过光学聚焦镜聚焦,激光加工光斑非常小,加工精度很高,如PC 机硬盘高速转子采用激光平衡技术,其转子平衡精度可达微米或亚微米级.
加工效率高:激光切割可比常规机械切割提高加工效率几十倍甚至上百倍;激光打孔特别是微孔可比常规机械打孔提高效率几十倍至上千倍;激光焊接比常规焊接提高效率几十倍;激光调阻可提高效率上千倍,且精度亦显著提高.
材料利用率高,经济效益高:激光加工与其他加工技术相比可节省材料10 ~ 30%,可直接节省材料成本费,且激光加工设备操作维护成本低,对加工费用降低提供了先决条件.
激光加工具有优越的加工性能,使得激光加工技术得到了广泛的应用,并产生了巨大的经济效益和社会效益.目前已成熟的激光加工技术包括:激光快速成形技术、激光焊接技术、激光打孔技术、激光切割技术、激光打标技术、激光刻蚀技术、激光微调技术、激光存储技术、激光划线技术、激光清洗技术、激光热处理和表面处理技术等。

三、常用的激光加工技术
1、激光打孔
采用脉冲激光器可进行打孔,脉冲宽度为0.1~1毫秒,特别适于打微孔和异形孔,孔径约为0.005~1毫米。

激光打孔已广泛用于钟表和仪表的宝石轴承、金刚石拉丝模、化纤喷丝头等工件的加工。

2、激光切割、划片与刻字
在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。

对小工件的切割常用中、小功率固体激光器或CO2激光器。

在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。

用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可永久保持。

3、激光微调
采用中、小功率激光器除去电子元器件上的部分材料,以达到改变电参数(如电阻值、电容量和谐振频率等)的目的。

激光微调精度高、速度快,适于大规模生产。

利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节。

4、激光焊接
激光焊接强度高、热变形小、密封性好,可以焊接尺寸和性质悬殊,以及熔点很高(如陶瓷)和易氧化的材料。

激光焊接的心脏起搏器,其密封性好、寿命长,而且体积小。

激光热处理用激光照射材料,选择适当的波长和控制照射时间、功率密度,可使材料表面熔化和再结晶,达到淬火或退火的目的。

激光热处理的优点是可以控制热处理的深度,可以选择和控制热处理部位,工件变形小,可处理形状复杂的零件和部件,可对盲孔和深孔的内壁进行处理。

例如,气缸活塞经激光热处理后可延长寿命;用激光热处理可恢复离子轰击所引起损伤的硅材料。

5、强化处理
激光表面强化技术基于激光束的高能量密度加热和工件快速自冷却两个过程,在金属材料激光表面强化中,当激光束能量密度处于低端时可用于金属材料的表面相变强化,当激光束能连密度处于高端时,工件表面光斑出相当与一个移动的坩埚,可完成一系列的冶金过程,包括表面重熔、表层增碳、表层合金化
和表层熔覆。

这些功能在实际应用中引发的材料替代技术,将给制造业带来巨大的经济效益。

6、微细加工
选择适当波长的激光,通过各种优化工艺和逼近衍射极限的聚焦系统,获得高质量光束、高稳定性、微小尺寸焦斑的输出。

利用其锋芒尖利的“光刀”特性,进行高密微痕的刻制、高密信息的直写;也可利用其光阱的“力”效应,进行微小透明球状物的夹持操作。

例如,高精密光栅的刻制;通过CAD/CAM软件进行仿真图案(或文字)和控制,实现高保真打标;利用光阱的“束缚力”,对生物细胞执行移动操作(生物光镊)。

微细加工工艺包括微细机械加工工艺和微细电加工工艺两部分。

四、激光加工的发展前景
激光加工用于再制造业和应用于其他制造业一样,有其不可替代的优点,并优于其它加工技术。

激光加工用于再制造业是由相变硬化发展到激光表面合金化和激光熔覆,由激光合金涂层发展到复合涂层及陶瓷涂层,从而使得激光表面加工技术成为再制造的一项重要手段。

它主要是采用5KW~10KWCO2高功率激光器及其系统。

与国际上激光加工系统相比,我国的激光加工系统差距甚大,仅占全球销售额的4%左右。

主要表现为:高档激光加工系统很少,甚至没有;主力激光器不过关;微细激光加工装备缺口较大;而这些领域我国的生产加工企业正在积蓄力量稳步进入,国内应用市场有很大发展空间。

预测今后2-3年内,我国激光加工销售额将会由2008年的35亿人民币上升翻一倍,也就是说会达到70亿元产值。

国内各类制造业接受了激光加工技术,它可使他们的产品增加技术含量,加快产品更新换代,为适应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。

目前正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特征的激光,尤其是能适应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。

参考文献:
【1】·张辽远,现代加工技术。

北京:机械工业出版社,2008.7
【2】·宋威廉,激光加工技术的发展。

北京:机械工业出版社,2008.3 【3】·曾智江朱三根,微细技工技术的研究。

北京:高等教育出版社,2007.12 【4】·孟永刚,激光加工技术。

北京:国防工业出版社,2008.01
【5】周兰英,现代加工技术。

北京理工大学出版社,2009
【6】张永康,激光加工技术。

化学工业出版社,2004
【7】鞠鲁粤,现代材料成型技术基础。

上海大学出版社,1998
【8】译者,左演声出版社,材料现代分析方法。

北京工业大学出版社,2000 【9】王富耻,材料现代分析测试方法。

北京理工大学出版社,2000
【10】李祥友,曾晓燕,黄维玲,激光精密加工技术现状和展望。

激光杂志:2005年05 期。

相关文档
最新文档