安宁区实验中学2018-2019学年高二上学期第二次月考试卷物理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安宁区实验中学2018-2019学年高二上学期第二次月考试卷物理 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图所示,直线a 和曲线b 分别是在平直公路上行驶的汽车a 和b 的位置—时间(x -t )图线。
由图可知:( )
A .在时刻t 1
,a 车追上b 车
B .在时刻t 2
,a 、b 两车运动方向相反
C .在t 1
到t 2
这段时间内,b 车的位移比a 车的大
D .在t 1
到t 2
这段时间内,b 车的速率一直比a 车的大
【答案】 B 【解析】
2. 如图所示,甲带负电,乙是不带电的绝缘物块,甲乙叠放在一起,置于粗糙的水平地板上,地板上方空间有垂直纸面向里的匀强磁场,现加一水平向左的匀强电场,发现甲、乙间无相对滑动,并一起向右加速运动。
在加速运动阶段
A .甲、乙两物块间的摩擦力不变
B .甲、乙两物块做加速度减小的加速运动
C .乙物块与地面之间的摩擦力不断变大
D .甲、乙两物体可能做匀加速直线运动
【答案】BC
【解析】 甲带负电,向右运动的过程中根据左手定则可知洛伦兹力的方向向下,对整体分析,速度增大,洛伦兹力增大,则正压力增大,地面对乙的滑动摩擦力f 增大,电场力F 一定,根据牛顿第二定律得,加速度a 减小,对甲研究得到,乙对甲的摩擦力f 甲=m 甲a ,则得到f 甲减小,甲、乙两物块间的静摩擦力不断减小,故AD 错误,BC 正确。
3. 小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍,某时刻,航天站使登月器减速分离,登月器沿如图所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回,当第一次回到分离点时恰与航天站对接,登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行。
已知月球表面的重力加速度为g ,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )
A .4.7πR g
B .3.6πR g
C .1.7π
R g
D .1.4π
R g
【答案】 A 【
解
析
】
设登月器在小椭圆轨道运行的周期为T 1,航天站在大圆轨道运行的周期为T 2。
对登月器和航天站依据开普勒第三定律分别有 T 23R 3=T 122R 3=T 22
3R 3
② 为使登月器仍沿原椭圆轨道回到分离点与航天站实现对接,登月器可以在月球表面逗留的时间t 应满足 t =nT 2-T 1 ③(其中,n =1、2、3、…)
联立①②③得t =6πn 3R g -4π 2R
g
(其中,n =1、2、3、…)
当n =1时,登月器可以在月球上停留的时间最短,即t =4.7πR
g
,故A 正确。
4. 一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V 。
下列说法正确的是( )
A .电场强度的大小为2.5 V/cm
B .坐标原点处的电势为1 V
C .电子在a 点的电势能比在b 点的低7 eV
D .电子从b 点运动到c 点,电场力做功为9 eV 5. (2016·江苏苏北四市高三联考)某踢出的足球在空中运动轨迹如图所示,足球视为质点,空气阻力不计。
用v 、
E 、E k 、P 分别表示足球的速率、机械能、动能和重力的瞬时功率大小,用t 表示足球在空中的运动时间,下列图象中可能正确的是( )
【答案】D 【
解
析
】
6.图示为一电场的的电场线图,关于A、B两点的电场强度,下列说法正确的是
A. A点的电场强度小于B点的电场强度
B. A点的电场强度大于B点的电场强度
C. B点的电场强度度方向向左,A点的向右
D. 负电荷在B点受到的电场力向左
【答案】B
【解析】电场线的疏密代表场强的强弱,根据图象可知,在电场的A点的电场线较密,所以在A点的电场强度要比B点的电场强度大,故A错误,B正确;电场线的方向就是电场强度的方向,由图可知B点的电场线的方向向左,A点沿着该点切线方向,指向左方,故C错误;负电荷在B点受到的电场力方向与电场强度方向相反,所以受到向右的电场力,故D错误。
所以B正确,ACD错误。
7.某型号的回旋加速器的工作原理如图所示(俯视图)。
D形盒内存在匀强磁场,磁场的磁感应强度为B。
D形盒半径为R,两盒间狭缝很小,带电粒子穿过狭缝的时间忽略不计。
设氘核()从粒子源A处射入加速电场的初速度不计。
氘核质量为m、带电荷量为q。
加速器接频率为f的高频交流电源,其电压为U。
不计重力,不考虑相对论效应。
下列正确的是
A.氘核第1次经过狭缝被加速后进入D形盒运动轨道的半径为
B.只增大电压U,氘核从D形盒出口处射出时的动能不变
C.不改变磁感应强度B和交流电频率f,该回旋加速器不能加速氦核()
D.不改变磁感应强度B和交流电频率f,该回旋加速器也能加速氦核()
【答案】ABD
【解析】
8.如图甲所示,在升降机顶部安装了一个能够显示拉力的传感器,传感器下方挂一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,以此时为零时刻,在后面一段时间内传感器所显示的弹力F的大小随时间t变化的图象如图乙所示,
g为重力加速度,则下列选项正确的是
A.升降机停止前在向上运动
B.0~t1时间小球处于失重状态,t1~t2时间小球处于超重状态
C.t1~t3时间小球向下运动,速度先增大后减少
D.t3~t4时间小球向上运动,速度在减小
【答案】AC
9.如图所示,质量相同的木块A、B用轻质弹簧连接,静止在光滑的水平面上,此时弹簧处于自然状态。
现用水平恒力F推A,则从力F开始作用到弹簧至弹簧第一次被压缩到最短的过程中
A.弹簧压缩到最短时,两木块的速度相同
B.弹簧压缩到最短时,两木块的加速度相同
C.两木块速度相同时,加速度a A<a B
D.两木块加速度相同时,速度v A>v B
【答案】ACD
【解析】
10.如图所示,滑块穿在水平横杆上并可沿杆左右滑动,它的下端通过一根细线与小球相连,小球受到水平向右的拉力F的作用,此时滑块与小球处于静止状态.保持拉力F始终沿水平方向,改变F的大小,使细线与竖直方向的夹角缓慢增大,这一过程中滑块始终保持静止,则()
A. 滑块对杆的压力增大
B. 滑块受到杆的摩擦力不变
C. 小球受到细线的拉力大小增大
D. 小球所受各力的合力增大
【答案】C
【解析】
11.矩形线圈绕垂直磁场线的轴匀速转动,对于线圈中产生的交变电流()
A.交变电流的周期等于线圈转动周期
B.交变电流的频率等于线圈的转速
C.线圈每次通过中性面,交变电流改变一次方向
D.线圈每次通过中性面,交变电流达到最大值
【答案】ABC
【解析】
试题分析:线圈绕垂直磁感线的轴匀速转动,产生正弦交流电,其周期等于线圈的转动周期,故A正确;频率为周期的倒数,故频率应相等线圈的转速;故B正确;在中性面上时,磁通量最大,但磁通量的变化率为零,即产生感应电动势为零,电流将改变方向,故C正确,D错误.
考点:考查了交流电的产生
12.质量为m的带电小球在匀强电场中以初速v0水平抛出,小球的加速度方向竖直向下,其大小为2g/3。
则在小球竖直分位移为H的过程中,以下结论中正确的是()
A. 小球的电势能增加了2mgH/3
B. 小球的动能增加了2mgH/3
C. 小球的重力势能减少了mgH/3
D. 小球的机械能减少了mgH/3
【答案】BD
13.将一小球以一定的初速度竖直向上抛出并开始计时,小球所受空气阻力的大小与小球的速率成正比,已知t2时刻小球落回抛出点,其运动的v–t图象如图所示,则在此过程中
A.t=0时,小球的加速度最大
B.当小球运动到最高点时,小球的加速度为重力加速度g
C.t2=2t1
D.小球的速度大小先减小后增大,加速度大小先增大后减小
【答案】AB
【解析】
【名师点睛】考虑空气阻力的竖直上抛运动,是具有向上的初速度,加速度变化的变加速直线运动,上升和下降过程并不对称,所以时间也不相等。
变加速运动问题,其解题关键仍是先进行受力分析,根据牛顿第二定律进行运动状态分析。
在分析变加速运动的某段过程时,虽然加速度变化、速度非线性变化,但可以使用平均值进行分析。
14.如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上,A、B间的动摩擦因数为,B 与地面间的动摩擦因数为,最大静摩擦力等于滑动摩擦力,重力加速度为g。
现对A施加一个水平拉力F,则
A.当时,A、B都相对地面静止
B.当时,A的加速度为
C.当时,A相对B滑动
D.无论F为何值,B的加速度不会超过
【答案】BCD
【解析】A与B间的摩擦力,地面对B的摩擦力,当时,A、B均静
止;设A、B恰好发生相对滑动时的拉力,则有,解得,故当
时,A相对B静止,二者以共同的加速度运动,A错误;当时,A相对B滑动,C正确;当时,A、B以共同的加速度运动,由牛顿第二定律可得,B正确;B所受合力的最大值,即B的加速度最大为,D正确。
【名师点睛】解决块–板问题的关键是受力分析——各接触面间摩擦力的大小(静摩擦力还是滑动摩擦力)、方向;运动状态分析——是否有相对滑动及各自的加速度大小和方向。
15.如图所示,光滑半球形容器固定在水平面上,O为球心。
一质量为m的小滑块,在水平力F的作用下静止于P点。
设滑块所受支持力为F N,OP与水平方向的夹角为θ。
下列关系正确的是()
A.F=mg
tan θ
B.F=mg tan θ
C.F N=mg
tan θ
D.F N=mg tan θ
【答案】A
【解析】
解法三:正交分解法。
将滑块受的力水平、竖直分解,如图丙所示,mg=F N sinθ,F=F N cosθ,
联立解得:F=mg
tanθ,F N=mg
sinθ。
解法四:封闭三角形法。
如图丁所示,滑块受的三个力组成封闭三角形,解直角三角形得:F =
mg tan θ,F N =mg sin θ
,故A 正确。
16.在物理学发展的过程中,许多物理学家的科学研究推动了人类文明的进程.在对以下几位物理学家所作科学贡献的叙述中,正确的说法是
A .在对自由落体运动的研究中,伽利略猜想运动速度与下落时间成正比,并直接用实验进行了验证
B .牛顿应用“理想斜面实验”推翻了亚里士多德的“力是维持物体运动的原因”观点
C .胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比
D .亚里士多德认为两个从同一高度自由落下的物体,重物体与轻物体下落一样快
【答案】C
二、填空题
17.有一正弦交流电,它的电压随时间变化的情况如图所示,则电压的峰值为________ V ;有效值为________ V ;交流电的;频率为________ Hz.
第22题 第23题
【答案】10 v ;
V 或7.07 v ; 2.5Hz 【解析】
试题分析:由图可知,该交流电的电压最大值为:10
m U V =,所以有效值为:U ==,周期为0.4s ,
所以有:1 2.5f Hz T
== 考点:正弦式电流的图象和三角函数表达式;正弦式电流的最大值和有效值、周期和频率
18.输送1.0×l05瓦的电功率,用发1.0×l04伏的高压送电,输电导线的电阻共计1.0欧,输电导线中的电流是 A ,输电导线上因发热损失的电功率是 W 。
【答案】10;100
【解析】由UI P =,得输电导线中的电流U
P I =
=10A 输电导线上因发热损失的电功率: r I P 2==100×1=100W 19.把带电量的电荷从A 点移到B 点,电场力对它做功。
则A 、B 两点间的电势差
为_______V ,若A 点的电势为0,B 点的电势为_______V ,该电荷在B 点具有的电势能
为_______J 。
【答案】 (1). 200 (2). -200 (3). -8×
10-6 【解析】由题意,电荷从A 点移到B 点时电场力做的功8×
10-6J .则A 、B 两点间的电势差
;因U AB =φA -φB ,若A 点的电势为0,B 点的电势为-200V ;该电荷在B 点具有的电势能:
三、解答题
20.传送带与水平面夹角30°,皮带以25 m/s 的速率运动,皮带轮沿顺时针方向转动,如图所示。
今在传送带上端A 处无初速地放上一个质量为m =0.5 kg 的小物块,它与传送带间的动摩擦因数为
,若传送带A 到
B 的长度为30 m ,g 取10 m/s 2,则物体从A 运动到B 的时间为多少?
【答案】t =2.2 s
【解析】设从物块刚放上直到与皮带达到共同速度25 m/s ,物体位移为s 1,加速度a 1,时间t 1,因物块速度小于皮带速度大小
根据牛顿第二定律有:,方向沿斜面向下
由于,所以物体将以速度v做匀速直线运动
故匀速运动的位移为
所用时间
则总时间为
【名师点睛】该题目的关键就是要分析好各阶段物块所受摩擦力的大小和方向,并对物块加速到与传送带有相同速度后,物块会怎么样运动进行判断。
21.如图所示,两平行金属导轨位于同一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下。
一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v 匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好。
已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略。
求
(1)电阻R消耗的功率:
(2)水平外力的大小。
【答案】见解析
【解析】
解法二 (1)导体棒切割磁感线产生的电动势
E = Blv
由于导轨与导体棒的电阻均可忽略,则R 两端电压等于电动势: U =E
则电阻R 消耗的功率
P R =U 2R
综合以上三式可得
P R =B 2l 2v 2R
(2)设水平外力大小为F ,由能量守恒有
Fv =P R +μmgv
故得F =P R v +μmg =B 2l 2v R
+μmg 。