基于深度学习的网络入侵检测方法[发明专利]
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专利名称:基于深度学习的网络入侵检测方法
专利类型:发明专利
发明人:金梅,薛静芳,张立国,李佳庆,秦芊,王磊,申前,孟子杰,耿星硕
申请号:CN202110750388.7
申请日:20210702
公开号:CN113572742B
公开日:
20220510
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于深度学习的网络入侵检测方法,该方法训练过程为:将获取的数据集输入待训练的卷积神经网络模型,通过待训练的卷积神经网络模型提取网络流量特征;再通过空间金字塔模型“卷积层+上采样层+下采样层”反复提取网络流量更丰富的特征,得到多尺度的有效特征层;最后通过逻辑回归预测网络入侵分类置信度,使用逻辑分类模型预测类别,将真实框与预测框通过误差模型计算真实框与预测框的损失误差;然后通过反向梯度进行反复迭代优化,将损失误差最小的待训练的网络入侵检测模型作为训练好的网络入侵检测模型;本发明方法进一步提高了网络入侵的检测精度和速度,提高了对未知攻击的检测能力,降低了误报率。
申请人:燕山大学
地址:066004 河北省秦皇岛市海港区河北大街西段438号
国籍:CN
更多信息请下载全文后查看。