初中数学数据的分析

合集下载

初中数学 第20章数据的分析 全章教案

初中数学 第20章数据的分析 全章教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材P127练习第1,2题。

2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

初中数学:数据分析

初中数学:数据分析

初中数学:数据分析引言概述:数据分析是数学中一个重要的概念,它帮助我们理解和解释各种数据,并从中提取有用的信息。

在初中数学中,数据分析是一个重要的学习内容,它帮助学生培养逻辑思维和解决实际问题的能力。

本文将从以下五个方面详细阐述初中数学中的数据分析。

一、数据收集:1.1 调查问卷:学生可以设计调查问卷,收集同学们的意见和喜好,然后通过统计和分析数据,得出结论。

1.2 实地调查:学生可以组织实地调查,例如调查学校附近的交通状况、环境污染等,然后通过数据分析,得出相关结论。

1.3 网络调查:学生可以利用互联网平台进行调查,例如调查同龄人对某一话题的看法,然后通过数据分析,得出调查结果。

二、数据整理:2.1 数据分类:学生需要将收集到的数据进行分类,例如按性别、年龄、地区等进行分类,以便后续的分析和比较。

2.2 数据排序:学生可以对数据进行排序,例如按照大小、时间等进行排序,以便更好地观察和分析数据的规律。

2.3 数据整理表格:学生可以利用表格的形式整理数据,例如制作频数表、柱状图、折线图等,以便更直观地展示数据。

三、数据分析方法:3.1 平均数:学生可以计算数据的平均数,以了解数据的集中趋势。

3.2 中位数:学生可以计算数据的中位数,以了解数据的中间位置。

3.3 极差和众数:学生可以计算数据的极差和众数,以了解数据的变异程度和出现频率。

四、数据应用:4.1 数据预测:学生可以利用已有的数据,通过合适的数学模型进行预测,例如预测未来几年的人口增长趋势。

4.2 数据比较:学生可以将不同数据进行比较,例如比较不同地区的气温变化,以了解其差异和相似之处。

4.3 数据解释:学生可以根据数据的分析结果,对现象进行解释,例如解释某一地区的人口增长原因。

五、数据伦理:5.1 数据隐私保护:学生在进行数据收集和分析时,应尊重他人的隐私权,避免泄露个人信息。

5.2 数据真实性:学生应确保收集到的数据真实可靠,避免伪造数据或者误导性数据。

初中数据分析教案

初中数据分析教案

初中数据分析教案1. 让学生了解数据分析的基本概念,包括频数、频率、百分比等。

2. 让学生掌握条形图、折线图、饼状图等图表的绘制方法,以及如何通过图表分析数据。

3. 让学生理解平均数、中位数、众数等描述数据中心趋势的指标,并学会计算和应用。

4. 培养学生运用数据分析解决实际问题的能力。

二、教学内容1. 数据分析基本概念:频数、频率、百分比。

2. 图表绘制方法:条形图、折线图、饼状图。

3. 数据中心趋势描述指标:平均数、中位数、众数。

4. 实际问题分析:运用数据分析解决生活中的问题。

三、教学过程1. 导入:通过生活中的实例,如天气、购物等,引出数据分析的重要性。

2. 基本概念讲解:频数、频率、百分比。

3. 图表绘制方法讲解:条形图、折线图、饼状图。

4. 数据中心趋势描述指标讲解:平均数、中位数、众数。

5. 实际问题分析:运用数据分析解决生活中的问题。

6. 课堂练习:让学生动手绘制图表,计算数据中心趋势指标,解决实际问题。

7. 总结:回顾本节课所学内容,强调数据分析在生活中的应用。

四、教学策略1. 采用实例导入,激发学生的学习兴趣。

2. 循序渐进地讲解基本概念、图表绘制方法和数据中心趋势描述指标,让学生易于理解和接受。

3. 结合生活实际,让学生学会运用数据分析解决实际问题。

4. 课堂练习环节,让学生动手操作,巩固所学知识。

5. 总结环节,回顾本节课所学内容,加深学生的记忆。

五、教学评价1. 学生能掌握数据分析的基本概念、图表绘制方法和数据中心趋势描述指标。

2. 学生能运用数据分析解决实际问题。

3. 学生对数据分析产生兴趣,愿意主动学习相关知识。

六、教学资源1. 教材、教案、课件。

2. 计算机、投影仪等教学设备。

3. 实际问题案例。

4. 练习题。

七、教学时间1课时(40分钟)。

人教版初中数学八年级下册《数据的分析》教学设计

人教版初中数学八年级下册《数据的分析》教学设计

人教版初中数学八年级下册《数据的分析》教学设计一. 教材分析人教版初中数学八年级下册《数据的分析》是学生在掌握了统计学基础知识后,进一步学习数据分析的章节。

本章主要内容包括数据的收集、整理、描述和分析。

通过对数据的分析,使学生能够了解数据的分布特征,掌握数据的处理方法,提高对数据的敏感度和分析能力。

教材通过实例引入,让学生在实际问题中感受数据分析的重要性,培养学生的实际应用能力。

二. 学情分析学生在八年级上册已经学习了统计学的基础知识,对数据的收集、整理、表示有了初步的了解。

但学生在数据分析方面的能力还有待提高,特别是在实际问题中的应用能力和对数据分析方法的理解。

此外,学生的数学思维能力和逻辑推理能力也需进一步培养。

三. 教学目标1.了解数据的分布特征,掌握数据的处理方法。

2.培养学生的数据分析能力,提高对数据的敏感度和分析能力。

3.培养学生将数学知识应用于实际问题的能力。

4.培养学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.数据的分布特征和处理方法的理解。

2.数据分析方法在实际问题中的应用。

3.数据的收集和整理。

五. 教学方法1.采用问题驱动的教学方法,让学生在解决实际问题中学习数据分析的方法。

2.使用案例教学法,通过具体的实例使学生理解和掌握数据分析的知识。

3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。

4.使用多媒体教学手段,提高学生的学习兴趣和效果。

六. 教学准备1.准备相关的教学案例和实例。

2.准备教学PPT,进行课件的制作。

3.准备练习题和测试题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个实际问题引出数据分析的重要性,激发学生的学习兴趣。

例如,以一次考试的成绩数据为例,提出如何分析这次考试的成绩分布,找出优秀的学生和需要改进的学生。

2.呈现(10分钟)讲解数据的分布特征和处理方法,通过PPT展示相关的图表和数据,让学生直观地了解数据的分布情况。

初中数学数据分析知识点整理

初中数学数据分析知识点整理

初中数学数据分析知识点整理数据分析是数学学科中的一门重要内容,在初中阶段,学生需要掌握一些基本的数据分析知识点。

本文将对初中数学数据分析的知识点进行整理,希望能帮助同学们更好地学习和理解这一部分知识。

1. 数据的收集和整理数据分析的第一步是收集和整理数据。

数据可以从实际问题中获取,可以是测量或观察得到的数字。

在初中阶段,常见的数据收集方式包括调查问卷、实验记录、观察记录等。

在整理数据时,需要将数据分类、排序和组织起来。

常见的方式包括制作表格、计算频数和制作直方图等。

2. 数据的表示和描述数据可以通过不同的方式来表示和描述。

常见的表示方式包括文字描述、图表和统计指标。

文字描述是最直接的方式,可以用来描述数据的特征、趋势和规律。

例如,“这个班级的学生身高主要集中在150cm至160cm之间”。

图表是更形象和直观的表示方式,包括折线图、柱状图、饼图等。

图表可以帮助我们更清晰地看到数据的分布和变化。

例如,制作一个柱状图来展示不同班级学生身高的分布情况。

统计指标是对数据进行数值化描述的方式,包括平均数、中位数、众数等。

这些指标可以帮助我们更准确地理解和描述数据的特征。

例如,计算一个班级学生身高的平均数,可以得到这个班级学生的平均身高是155cm。

3. 中心趋势的度量中心趋势是用来表示数据集中位置的指标。

常见的中心趋势度量有平均数、中位数和众数。

平均数是最常用的中心趋势度量,可以通过将所有数据相加并除以数据的个数得到。

平均数对数据的异常值比较敏感,当数据集中有异常值时,平均数可能不太准确。

中位数是将数据按大小顺序排列后位于中间位置的数值。

中位数对数据的异常值不敏感,能更好地反映数据的集中趋势。

众数是出现次数最多的数值。

如果有多个数值出现的次数相同,那么这些数值都是众数。

众数适用于描述离散型数据。

4. 变异程度的度量变异程度是用来表示数据分散程度的度量。

常见的变异程度度量有极差、方差和标准差。

极差是最大值与最小值之间的差异。

初中数学中考复习考点知识与题型专题讲解37 数据的分析(解析版)

初中数学中考复习考点知识与题型专题讲解37 数据的分析(解析版)

初中数学中考复习考点知识与题型专题讲解专题37 数据的分析【知识要点】考点知识一 数据的集中趋势算术平均数:简称平均数,记作“x̅”,读作“x 拔”。

公式:平均数= n 个数的和 个数 =nx x x n +⋅⋅⋅++21 【注意】分析平均数时,容易被数据的极值影响,导致错误的判断。

加权平均数概念:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则nn n w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.【注意】若各数据权重相同,则算术平均数等于加权平均数。

中位数的概念:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这个数据的中位数,如果数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数。

确定中位数的一般步骤:第1步:排序,由大到小或由小到大。

第2步:确定是奇个数据(n+12)或偶个数据(n 2个数和它后一个数(n 2+1)个数的平均数)。

第3步:如果是奇个数据,中间的数据就是中位数。

如果是偶数,中位数是中间两个数据的平均数。

众数的概念:一组数据中出现次数最多的数据就是这组数据的众数。

【注意】如果一组数据中有两个数据的频数一样且都是最大,那么这两个数据都是这组数据的众数,所以一组数据中众数的个数可能不唯一。

众数的意义:当一组数据有较多的重复数据时,众数往往能更好地反映其集中的趋势。

平均数、中位数、众数的区别:1、平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,在现实生活中较为常用.但它受极端值的影响较大。

2、 当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势。

但当各个数据的重复次数大致相等时,众数往往没有意义。

3.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点。

考点知识二 数据的波动方差的概念:在一组数据1x ,2x ,…,n x 中,各个数据与平均数的差的平方的平均数叫做这组数据的方差,记作.计算公式是:求一组数据方差的步骤:先平均、再做差、然后平方、最后再求平均数。

初中数学:数据分析

初中数学:数据分析

初中数学:数据分析引言概述:数据分析是数学中的一个重要分支,通过收集、整理、分析和解释数据,揭示数据背后的规律和趋势。

在初中数学中,数据分析是一个重要的学习内容,它帮助学生培养观察、分析和推理的能力,提高数学思维和问题解决能力。

本文将从数据的收集、整理、分析和解释四个方面,详细阐述初中数学中的数据分析内容。

一、数据的收集1.1 实地观察收集数据:学生可以通过实地观察收集数据,例如在学校操场上测量同学们的身高、体重等数据,并将数据记录下来。

1.2 问卷调查收集数据:学生可以设计问卷调查,收集同学们对某个问题的回答,例如收集同学们对于是否喜欢某个体育项目的数据。

1.3 网络调查收集数据:学生可以利用互联网进行调查,收集大量的数据,例如通过问卷星等在线调查工具收集同学们的意见和观点。

二、数据的整理2.1 数据的分类整理:学生可以将收集到的数据按照一定的特征进行分类整理,例如将同学们的身高按照高、中、矮三个类别进行分类。

2.2 数据的排序整理:学生可以将数据按照从大到小或从小到大的顺序进行排序整理,例如将同学们的体重按照从轻到重进行排序。

2.3 数据的表格整理:学生可以将数据整理成表格形式,方便进行比较和分析,例如将同学们的身高和体重整理成表格。

三、数据的分析3.1 数据的集中趋势分析:学生可以通过计算数据的平均数、中位数和众数等指标,分析数据的集中趋势,例如计算同学们身高的平均值,了解整体身高的情况。

3.2 数据的离散程度分析:学生可以通过计算数据的极差、方差和标准差等指标,分析数据的离散程度,例如计算同学们体重的标准差,了解体重的变化情况。

3.3 数据的相关性分析:学生可以通过计算数据的相关系数,分析数据之间的相关性,例如分析同学们的身高和体重之间的相关性,了解身高和体重之间的关系。

四、数据的解释4.1 数据的图表解释:学生可以利用图表形式展示数据,例如绘制柱状图、折线图等,直观地展示数据的特征和规律。

初中数学数据的分析

初中数学数据的分析

初中数学数据的分析在我们的日常生活中,数据无处不在。

从考试成绩到购物消费,从天气预报到人口统计,数据都扮演着重要的角色。

而在初中数学的学习中,“数据的分析”这一板块就是帮助我们学会如何有效地处理和理解这些数据,从而做出更明智的决策。

首先,我们来谈谈平均数。

平均数是一组数据的总和除以数据的个数。

比如说,一个班级里有 30 名学生,他们某次数学考试的成绩分别是 80 分、90 分、70 分……把这 30 个成绩加起来,再除以 30,得到的结果就是这个班级这次数学考试的平均成绩。

平均数能够让我们对一组数据的总体水平有一个大致的了解。

但平均数也有它的局限性。

假设一个班级里有 5 名学生,他们的数学成绩分别是 50 分、60 分、70 分、80 分和 100 分。

计算平均数为 70 分。

可是,这个 70 分并不能完全反映出每个学生的真实情况。

比如成绩为 50 分和 100 分的学生,与平均成绩相差较大。

这时候,我们就需要引入中位数和众数的概念。

中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是中位数;如果数据的个数是偶数,则中间两个数据的平均数就是中位数。

以上面那 5 名学生的成绩为例,从小到大排列为50 分、60 分、70 分、80 分、100 分,数据个数是奇数,中间的数 70 分就是中位数。

中位数不受极端值的影响,能更好地反映数据的中间水平。

众数则是一组数据中出现次数最多的数据。

比如在一组数据 2、2、3、3、4、4、4 中,4 出现的次数最多,那么 4 就是这组数据的众数。

众数可以帮助我们了解一组数据中哪个值最常见。

在实际应用中,我们需要根据具体情况选择使用平均数、中位数还是众数。

比如在招聘员工时,如果想了解员工的平均工作能力,可能会关注平均数;如果想知道大部分员工的工作水平,可能会看中众数;而在评估工资水平时,中位数可能更有参考价值。

除了这些基本的统计量,方差也是数据分析中的一个重要概念。

八年级数学成绩分析报告

八年级数学成绩分析报告

八年级数学成绩分析报告引言本文通过对八年级学生的数学成绩数据进行分析,以探讨学生在数学学科上的表现情况,为学生学习和教师教学提供参考。

数据收集与处理方法为了获得准确可靠的数据,我们收集了八年级所有学生在最近一次数学考试中的成绩数据,共计200名学生。

这些数据包括每位学生的得分、平均得分、最高得分、最低得分等信息。

在处理数据时,我们使用Excel进行统计分析,计算了平均分、标准差、及格率等指标。

成绩总体分布根据数据分析,八年级数学考试的平均分为80分,标准差为10分,最高分为98分,最低分为55分。

通过对成绩分布的直方图和箱线图分析,发现成绩呈正态分布,大部分学生的成绩集中在70-90分之间。

不同分数段学生表现分析1.90分以上的学生:有15%的学生获得90分以上的成绩,这部分学生表现突出,需要更多的挑战和激励,以保持学习动力。

2.80-89分的学生:占30%左右,成绩稳定,需要保持现状或进一步提升。

3.70-79分的学生:是总体人数最多的群体,约占40%,这部分学生可能存在一些基础知识掌握不牢固的问题,需要加强基础训练。

4.60-69分的学生:约占10%,这部分学生需要找出学习困难的原因,并及时给予帮助和指导。

5.60分以下的学生:占5%,这部分学生需要重点关注,寻找适合的学习方法和辅导资源,帮助他们提高成绩。

总结与建议从本次数学成绩分析可以看出,大部分学生的成绩集中在70-90分之间,整体表现尚可。

然而,还需要注意关注成绩优秀学生的发展空间和成绩较差学生的潜在问题,给予不同群体个性化的学习指导和帮助。

教师可以采取多样化的教学方法,提供额外辅导和培训资源,引导学生发现学习的乐趣和动力,共同努力提高整体数学学科水平。

以上是对八年级数学成绩的简要分析报告,希望有助于学生和教师更好地了解学生的学习情况,为教育教学工作提供参考。

初中数学教案数据的收集整理与分析

初中数学教案数据的收集整理与分析

初中数学教案数据的收集整理与分析一、引言数学教学是中小学教育中的重要组成部分,而教案则是数学教学中的重要工具。

数据的收集整理与分析对于完善教案、提高教学质量具有重要意义。

本文将介绍初中数学教案数据的收集、整理和分析方法,以期提供一种有效的教学辅助工具。

二、数据收集方法数据收集是教案制作的首要步骤,只有获得充分的数据,才能进行合理的教学设计。

以下是一些常用的数据收集方法:1. 学生调查:通过问卷或访谈的形式,了解学生对某个数学概念的理解程度、困惑点以及学习需求,从而为教案的制定提供依据。

2. 教材分析:深入研读教材,分析每个知识点的要点、习题类型和解题思路,了解教材的难点和重点,为教案的编写提供指导。

3. 教学经验总结:教师可以结合自己的教学经验,总结学生易错的知识点和解题方法,针对性地制定教案。

三、数据整理方法数据整理是为了方便教师查看和利用数据,提高教案的可操作性和实用性。

以下是一些常用的数据整理方法:1. 建立数据表格:将收集到的数据按照统一的格式整理成表格,包括学生姓名、学号、问题分类、解决办法等字段,方便查询和分析。

2. 制作图表:可以使用柱状图、折线图等可视化工具,将数据以图形的形式表现出来,直观地展示问题的分布和解决情况。

3. 分类整理:将收集到的数据按照问题的类型、学生的水平等进行分类整理,便于快速查找和分析。

四、数据分析方法数据分析是根据收集到的数据,对问题进行梳理和解析的过程。

以下是一些常用的数据分析方法:1. 统计分析:对数据进行统计,计算各类数据的频数、比例等统计指标,分析问题的普遍性和程度。

2. 对比分析:将不同学生、不同问题之间的数据进行对比,找出问题发生的规律和差异性,为教案的个性化设计提供依据。

3. 问题解析:根据数据分析的结果,深入挖掘问题的本质原因,通过查阅教材和学科研究文献,寻找相应的解决方法。

五、教案制定与调整在收集和分析完数据后,教师可以依据数据的结果,制定相应的教案,按照教学目标、教学内容、教学方法等进行逐步安排。

人教版苏科版初中数学—数据的分析(经典例题含答案)

人教版苏科版初中数学—数据的分析(经典例题含答案)

一、平均数(一)算数平均数据分析例题答案数例1.一组12个数据的平均数为28,其中一个数据为25.8,那么另外11个数据的平均数是.28.2例1.变式1.有m 个数的平均值是x ,n 个数的平均值是y ,则这m n +个数的平均值是.mx ny m n++例1.变式2.某住宅小区六月份中1日至6日每天用水量变化情况如图所示,那么这6天的平均用水量是(C )A.30吨B.31吨C.32吨D.33吨例1.变式3.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是(C)A .2B .2.8C .3D .3.3(二)加权平均数例2.某汽车配件厂在一个月(30天)中的零件产量如下:有2天是51件,3天是52件,5天是53件,9天是54件,6天是55件,4天是56件,1天是57件.则平均日产量是件.54例2.变式1.某班有50名学生,数学期中考试成绩为90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(保留小数点后第一位)()()190984127310651356245473.750x =⨯+⨯+⨯+⨯+⨯+⨯=分例2.变式2.再一次数学测试中,某班25名男生的平均成绩是86分,23名女生的平均成绩是82分,求这些学生的平均成绩。

(结果精确到0.01分)()8625822384.082523x ⨯+⨯=≈+分例2.变式3.某公司欲招聘一名推销员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下:(百分制)候选人面试笔试甲9087乙8494(1)如果公司认为面试和笔试成绩同等重要,谁将被录取?()()90+872=88.5=84+942=89.x x =÷÷∴甲乙,乙会被录取(2)如果公司认为,作为推销员,面试成绩应该比笔试成绩更重要,并分别赋予它们6和4的权.计算甲、乙两人各自的平均成绩,看看谁将被录取.()()906+87410=88.8=846+94410=88.x x =⨯⨯÷⨯⨯÷∴甲乙,甲会被录取(三)一组数据经过一定变化得到的一组新数据的平均数例3.已知数据1210,,x x x 的平均数为a ,111230,,x x x 的平均数为b ,那么1230,,x x x 的平均数为.102030a b+例3.变式1.有3个数据的平均数为6,有7个数据的平均数是9,则这10个数的平均数是.例3.变式2.已知数据12345,,,,x x x x x 的平均数为a ,则数据123454,4,4,4,4x x x x x 的平均数为;1234542,42,42,42,42x x x x x -----的平均数为.8.1例3.变式3.已知数据x 1,x 2,x 3的平均数为a ,数据y 1,y 2,y 3的平均数是b ,则数据3x 1+y 1,3x 2+y 2,3x 3+y 3的平均数为(D )A .3+a +bB .3(a +b )C .a +bD .3a +b二、中位数与众数(一)中位数例4.学校团委组织“阳光助残”捐款活动,九年级(1)班学生捐款情况如下表:捐款金额/元5102050人数/人10131215则学生捐款金额的中位数是(D )A.13元B.12元C.10元D.20元例4.变式1.已知一组数据23,27,20,18,x ,12,若它们的中位数是21,那么数据x 是(B )A.23B.22C.21D.20例4.变式2.已知一组数据20,20,x ,15的中位数与平均数相等,那么这组数据的中位数是(D )A.15 B.17.5C.20D.20或17.5例4.变式3.已知数据a ,a ,b ,c ,d ,b ,c ,c ,且a <b <c <d ,则这组数据的中位数、平均数分别为(A )A .223,28b c a b c d++++B .223,28a c a b c d++++C .222,8a b c d c +++D .233,8a b c d a +++(二)众数例5.下列说法中错误的是(C )A.一组数据的平均数、众数和中位数可能是同一个数B.一组数据的众数可能有多个C.数据中的中位数可能不唯一D.众数、中位数和平均数是从不同的角度描述了一组数据的集中趋势例5.变式1.某青年排球队12名队员的年龄情况如下表,则12名队员年龄的(D)年龄(岁)1819202122人数14322A.众数是20岁,中位数是19岁B.众数是19岁,中位数是19岁C.众数是19岁,中位数是20.5岁D.众数是19岁,中位数是20岁例5.变式2.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是(A )A .180度,160度B .160度,180度C .160度,160度D .180度,180度例5.变式3.为了丰富课外活动,班委会准备利用周日组织全班同学去观看一场球类比赛,为了吸引更多的同学参与,事先做了“你最喜欢的球类活动”问卷调查,获得的信息如图所示,假如你是这个班级的体育委员,你会组织观看的比赛是(C)A.足球比赛B.篮球比赛C.排球比赛D.乒乓球比赛(三)平均数、中位数及众数的特征例6.某男子篮球队在10场比赛中,投球所得的分数分别为80,86,95,86,79,65,98,86,90,81,则该球队10场比赛得分数的众数为,中位数为.8686例6.变式1.一名射击运动员连续射靶10次,其中3次射中10环,5次射中9环,1次射中8环,1次射中7环,则平均每次射中环数为环,这次射击中环数的众数为环,这次射击中环数的中位数是环.999例6.变式2.为了了解中学生穿鞋的鞋号情况,对某中学七年级(2)班的20名女生所穿鞋号统计如下:那么由这20名女生的鞋号组成的一组数据的平均数是,中位数是,众数是,鞋厂最感兴趣的是数.22.5522.523众例6.变式3.下表是食品营养成分表的一部分:(每100克食品中可食部分营养成分的含量)蔬菜种类绿豆芽白菜油菜卷心菜菠菜韭菜胡萝卜(红)碳水化合物(克)4344247在表中提供的碳水化合物的克数所组成的数据中,中位数是克,平均数是克.44(四)平均数、中位数及众数的综合例7.当5个整数从小到大排列时,其中位数为4,如果这个数据组的唯一众数是6,则这5个整数可能的最大的和是(A)A.21B.22C.23D.24例7.变式1.10位学生分别购买如下尺码的鞋子:20,20,21,22,22,22,22,23,23,24(单位:cm),这组数据的平均数、中位数、众数三个指标中鞋店老板最喜欢的是.众数例7.变式2.已知一组数据:-2,-2,3,-2,x,-1.若这组数据的平均数是0.5,则这组数据的中位数是.-1.5例7.变式3.如下图,反映了某校初中三年级甲、乙两班学生的体育中考成绩.(1)不用计算,根据统计图,请判断哪个班级学生的体育成绩好一些.(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?请写出来.(3)如果依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,请分别计算甲、乙两班学生体育成绩的平均值.(1)甲班;(2)中,中;(3)()()155+1065+207511858957850555+1065+207510855957550x x ⨯⨯⨯+⨯+⨯==⨯⨯⨯+⨯+⨯==甲乙分分三、从统计图分析数据的集中趋势(一)根据统计图中的数据求平均数、中位数和众数例8.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图.则这组数据的众数和平均数分别是(C )A.7,7B.8,7.55C.7,7.55D.8,6例8.变式1.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分四个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(C)A.2.25B.2.5C.2.95D.3例8.变式2.如图是我市某景点6月份1-10日每天的最高气温折线统计图,由图中信息可知该景点这10天的最高气温的中位数是℃.26例8.变式3.同学们对戒烟方式进行调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)这次调查中同学们一共调查了多少人?(2)请你把两种统计图补充完整(3)求以上五种戒烟方式人数的众数.(1)这次调查中同学们调查的总人数为20÷10%=200(人).(2)统计图如图(扇形统计图与条形统计图).(3)以上五种戒烟方式人数的众数是20.四、数据的离散程度(一)极差、方差、标准差例9.数据2,3,3,5,7的极差是(D)A.2B.3C.4D.5 2.例9.变式1.数据90,91,92,93的标准差是.5 2例9.变式2.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是环,方差为.82例9.变式3.甲、乙两台机床同时加工直径为100mm的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据(单位:mm)如下:甲机床:99,100,98,100,100,103;乙机床:99,100,102,99,100,100.(1)分别求出上述数据的平均数及方差;甲平均数为100mm,方差为7 3.乙平均数为100mm,方差为1.(2)根据(1)计算结果,说明哪一台机床加工这种零件更符合要求.因为甲乙平均数相同,乙的方差更小,所以乙机床加工这批零件更符合要求.(二)运用平均数、中位数、众数、方差进行综合评价例10.为了从甲、乙、丙三位同学中选一位或两位选手参加数学竞赛,下表是甲、乙、丙三位同学前五次数学测验的成绩(成绩满分100分):测验(次)12345甲(分)70819896100乙(分)6585858798丙(分)6070959798(1)请你填写甲、乙、丙三位同学前五次的数学成绩统计表(下表)平均数中位数方差甲89135.2乙8485丙95251.6平均数:84,中位数:96,方差:113.6.(2)如果只选派一名学生参加数学竞赛,你认为应该派谁?请说明理由;略.提示:根据甲、乙两学生的射击环数的平均数、众数、方差来进行合理评价,只要有道理即可例10.变式1.一次科技知识竞赛,两组学生的成绩如下表所示:已经算得两个组的平均分都是80分,请根据学过的统计知识,进一步判断两个组在这次竞赛中的成绩谁优谁次,并说明理由.解:甲组成绩的众数90分,乙组成的众数为70分,从成绩的众数看,甲组成绩好些.s 2甲=1251013146+++++×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172,s 2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256,因为s 2甲<s 2乙,所以甲组成绩较好.甲、乙两组成绩的中位数、平均分都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,所以从这一角度看,甲组成绩较好.甲组成绩高于90(含90分)的有14+6=20(人),乙组成绩高于90(含90分)的有12+12=24(人),因为乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6人,从这一角度看,乙组成绩较好.例10.变式2.为了从甲、乙两名学生中选择一人参加法律知识竞赛,在相同条件下对他们的法律知识进行了10次测验,成绩如下(单位:分)(1)请填写下表:(2)利用(1)的信息,请你对甲、乙两个同学的成绩进行分析.解:(1)第二行从左到右依次填:84:14.4,第三行从左到右依次填:90;0.5.(2)甲、乙成绩的中位数、平均数都是84.①甲成绩的众数是84,乙成绩的众数是90,从成绩的众数看,乙的成绩好;②甲成绩的方差是14.4,乙成绩的方差是34,从成绩的方差看,甲的成绩相对稳定;③甲成绩85分以上(不含85分)的频率为0.3,乙成绩85分以上(不含85分)的频率为0.5,从85分以上的频率看,乙的成绩好.例10.变式3.随着某市社会经济的发展和交通状况的改善,该市的旅游业得到了高速发展.某旅游公司对该市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的统计表和统计图(如图).组别个人年消费金额x /元频数(人数)A x ≤200018B 2000<x ≤4000aC 4000<x ≤6000bD 6000<x ≤800024E x >800012合计120根据以上信息解答下列问题:(1)a =________,b =________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3000名员工,请你估计个人旅游年消费金额在6000元以上的人数.解:(1)36;30补全条形统计图如图:(2)C (3)因为24120=0.2,12120=0.1,所以估计个人旅游年消费金额在6000以上的人数为3000×(0.2+0.1)=900(人)。

初中数学:数据分析

初中数学:数据分析

初中数学:数据分析标题:初中数学:数据分析引言概述:数据分析是数学中一个重要的分支,它涉及收集、整理、分析和解释数据的过程。

在初中阶段,学生可以通过学习数据分析,培养逻辑思维能力和数学解决问题的能力。

本文将从数据的收集、整理、分析、解释和应用五个方面来探讨初中数学中的数据分析。

一、数据的收集1.1 通过观察收集数据:学生可以通过观察周围的事物,如记录每天的气温、降雨量等数据。

1.2 通过实验收集数据:学生可以设计实验来收集数据,如测量不同种类植物的生长速度。

1.3 通过调查问卷收集数据:学生可以设计问卷调查来收集数据,了解同学们的兴趣爱好等信息。

二、数据的整理2.1 数据的分类:将收集到的数据按照不同的特征进行分类,如将学生的身高数据按照男女分开。

2.2 数据的整理:对数据进行整理,如计算平均值、中位数、众数等统计量。

2.3 数据的呈现:将整理好的数据以表格、图表等形式呈现出来,更直观地展示数据的特征。

三、数据的分析3.1 数据的比较:通过对数据进行比较,找出数据之间的规律和差异,如比较不同班级学生的成绩情况。

3.2 数据的关联:寻找数据之间的关联性,如探究学生的学习时间和成绩之间是否存在关联。

3.3 数据的预测:通过已有数据来预测未来的趋势,如根据过去几年的降雨量来预测未来的气候变化。

四、数据的解释4.1 解释数据的含义:对数据进行解释,说明数据背后的含义和规律,如解释一组数据的变化趋势。

4.2 解释数据的原因:分析数据的原因,找出数据背后的影响因素,如分析学生成绩下降的原因。

4.3 解释数据的应用:探讨数据在实际生活中的应用,如数据分析在商业决策中的应用。

五、数据的应用5.1 数据的决策:通过数据分析来做出决策,如根据销售数据来确定产品的推广策略。

5.2 数据的预测:利用数据分析来预测未来的趋势,如根据市场数据来预测未来的销售额。

5.3 数据的优化:通过数据分析来优化流程和提高效率,如通过分析学生学习数据来优化教学方法。

初中数学数据分析知识点(详细全面)[参考]

初中数学数据分析知识点(详细全面)[参考]

初中数学数据分析知识点(详细全面)[参考]一、统计分析知识1、描述性统计分析(1)图形法:原始数据用直方图、散点图、条形图、饼图等图表的方法进行描述性分析。

(2)参数描述法:把一份统计资料用一组变量数学特征来描述,特征是算术平均数、中位数、众数、标准差、变异系数、四分位数、累计频率等。

2、概率论和统计学分析(1)概率分布:了解概率论中的样本空间、随机变量、分布函数,多项式分布、泊松分布、正态分布等概率分布的特征以及这些分布的实际应用。

(2)统计分析:例如假设检验,通过比较样本数据与某个统计假设模型的假设得出的结果,通过以上的方法可以判断一组实验数据背后的原因分布。

(3)回归分析:是利用多种数据对某一现象进行精确预测,即运用拟合系数、方程计算出最合适的结果,以此来预测实际数据。

二、分类统计知识1、分类的概念:什么是数据的分类,数据的分类是指将数据按照相同的属性分为不同的类别,以便更准确的描述它们的特征。

2、多变量分类:当需要对多变量进行分类时,需要使用相应的算法来完成,例如朴素贝叶斯分类算法、K近邻(KNN)算法、决策树分类算法等。

3、分类统计分析:是指通过统计决策理论和数据挖掘技术,从大量原始数据中提取特征,利用特征把所给出的数据进行聚类分类,以此来提取出有对调控作用的潜在信息,以便对一定问题作出有效回应。

三、数据分析技术1、数据挖掘:数据挖掘是一种从大型数据库中提取有价值知识的过程,通过聚类分析、回归分析、决策树分析等技术,从大量数据中提取出结构化和非结构化的重要信息,以此来对事件的根源进行精确分析。

2、数据建模:是一种以数据分析为基础,应用矩阵运算、数据库技术等,建立综合的数学模型,预测某些事件的趋势和状态的过程。

该方法能精准的预测出某种状况下数据的变化情况,以此来预测实际操作结果。

3、统计建模:是一种利用统计学理论,把多种特征变量视为一个公式,求解该公式,以此获得预测结果的方法,主要运用诸如线性回归、卡方检验和逻辑斯蒂回归等一系列统计学方法。

初中数学数据的分析

初中数学数据的分析

初中数学数据的分析数据分析是数学中重要的一部分,通过对数据的收集、整理和分析,可以帮助我们更好地理解和解决实际问题。

在初中数学中,数据分析是一个重要的内容,本文将围绕初中数学数据的分析展开讨论。

一、数据的收集与整理首先,在进行数据分析之前,我们需要先收集数据。

数据可以通过实际观察、调查问卷、实验等方式来获得。

以调查问卷为例,我们可以制定一份问卷来收集感兴趣的数据,比如收集同学们的身高、体重等信息。

收集到数据后,我们需要对数据进行整理。

整理数据的目的是为了更好地理解和分析数据。

常用的数据整理方式有:排序、制作频数表、绘制统计图表等。

二、数据的分析与解读1. 数据的统计量分析数据的统计量是对数据进行概括和描述的指标。

在初中数学中,最常见的统计量有:平均数、中位数、众数、极差和标准差等。

平均数是一组数据中所有数据的和除以数据的个数,用于表示数据的集中趋势。

中位数是将一组数据按大小排序后位于中间位置的数,用于表示数据的中间值。

众数是一组数据中出现次数最多的数,用于表示数据的典型值。

极差是一组数据中最大值与最小值的差,用于表示数据的离散程度。

标准差是一组数据各个数据值与平均数之差的平方的平均数的平方根,用于表示数据的波动程度。

通过计算数据的统计量,我们可以更好地理解数据的特征和规律。

2. 数据的图表分析除了统计量分析,图表分析也是一种常用的数据分析方法。

绘制图表可以直观地展示数据的变化趋势和规律。

常见的图表有:条形图、折线图、饼图等。

条形图适用于比较不同类别的数据大小,折线图适用于展示数据的变化趋势,饼图适用于表示不同类别数据在总体中的比例。

通过观察和分析图表,我们可以清楚地了解数据的分布情况和相互关系。

三、数据分析在实际生活中的应用除了在数学学科中应用,数据分析在现实生活中也有广泛的应用。

比如,在商业领域中,通过对销售数据的分析可以找出销售的热门产品,调整销售策略,提高销售额。

在医学研究中,通过对大量病例的数据分析,可以找出病情的规律,指导临床治疗。

初中数学:数据分析

初中数学:数据分析

初中数学:数据分析引言概述:初中数学是学生在数学学科中的一门重要课程,其中数据分析是数学的一个重要组成部份。

通过数据分析,学生可以学会如何采集、整理和解读数据,从而匡助他们在实际生活中做出正确的决策。

本文将从五个大点出发,详细阐述初中数学中的数据分析。

正文内容:1. 数据的采集与整理1.1 采集数据的方法:学生可以通过观察、实验、调查等方式采集数据。

观察可以匡助学生获得客观的数据,实验可以让学生进行控制变量的实验设计,调查可以让学生了解他人的观点和意见。

1.2 数据的整理与分类:学生需要将采集到的数据进行整理和分类,以便更好地进行分析。

他们可以使用表格、图表等工具将数据进行可视化,从而更直观地了解数据的特点和规律。

2. 数据的描述与分析2.1 描述数据的中心趋势:学生可以使用平均数、中位数和众数等指标来描述数据的中心趋势。

平均数可以反映数据的平均水平,中位数可以反映数据的中间位置,众数可以反映数据的浮现频率最高的值。

2.2 描述数据的离散程度:学生可以使用范围、方差和标准差等指标来描述数据的离散程度。

范围可以反映数据的变化范围,方差和标准差可以反映数据的离散程度大小。

2.3 数据的比较与对照:学生可以使用比较运算符(如大于、小于、等于)和比例等指标来比较和对照不同数据集之间的差异和相关性。

3. 数据的应用与解读3.1 数据的应用:学生可以将数据分析应用于实际生活中的问题,如统计学生的身高、体重等信息,分析商品的销售情况等。

通过数据的应用,学生可以更好地理解和解决实际问题。

3.2 数据的解读:学生需要学会从数据中提取实用的信息和结论,并进行合理的解释。

他们可以使用逻辑推理和数学推理的方法,对数据进行解读和分析。

总结:通过初中数学中的数据分析学习,学生可以培养数据思维和分析问题的能力。

他们不仅可以学会如何采集、整理和解读数据,还可以通过数据分析来解决实际问题。

此外,数据分析也为学生今后的学习和工作提供了基础,使他们能够更好地理解和应用数学知识。

初二数据的分析所有知识点总结和常考题练习含答案

初二数据的分析所有知识点总结和常考题练习含答案

])()()[(1222212x x x x x x n S n -++-+-= 初二数据的分析所有知识点总结和常考题知识点:1.加权平均数:权的理解:反映了某个数据在整个数据中的重要程度;学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法;2.中位数:将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;3.众数:一组数据中出现次数最多的数据就是这组数据的众数;4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差;5.方差:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定;6.方差规律: x 1,x 2,x 3,…,x n 的方差为m,则ax 1,ax 2,…,ax n 的方差是a 2 m; x 1+b, x 2+b,x 3+b,…,x n +b 的方差是m7. 反映数据集中趋势的量:平均数计算量大,容易受极端值的影响;众数不受极端值的影响,一般是人们关注的量;中位数和数据的顺序有关,计算很少不受极端值的影响;8.数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流常考题:一.选择题共14小题1.我市某一周的最高气温统计如下表:最高气温℃ 25 26 27 28天 数 1 1 2 3则这组数据的中位数与众数分别是A .27,28B .27.5,28C .28,27D .26.5,272.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.53.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时4.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁6.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.7.2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,358.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁9.为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差10.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是5411.某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分12.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是2013.一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,14.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁二.填空题共14小题15.数据﹣2,﹣1,0,3,5的方差是.16.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.17.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是.18.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.19.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.单位:m这六次成绩的平均数为7.8,方差为.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差填“变大”、“不变”或“变小”.20.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工57000木工46000瓦工55000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差填“变小”、“不变”或“变大”.21.一组数据:2015,2015,2015,2015,2015,2015的方差是.22.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为.23.已知一组数据:6,6,6,6,6,6,则这组数据的方差为.注:计算方差的公式是S2=x1﹣2+x2﹣2+…+xn﹣224.有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是.25.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第组.组别时间小时频数人第1组0≤t<0.512第2组0.5≤t<124第3组1≤t<1.518第4组 1.5≤t<210第5组2≤t<2.5626.一组数据1,4,6,x的中位数和平均数相等,则x的值是.27.统计学规定:某次测量得到n个结果x1,x2,…,xn.当函数y=++…+取最小值时,对应x的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为.28.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的数据的方差是.三.解答题共12小题29.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率没有弃权票,每位职工只能推荐1人如图所示,每得一票记作1分.1请算出三人的民主评议得分;2如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;精确到0.013根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用30.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.1已求得甲的平均成绩为8环,求乙的平均成绩;2,2观察图形,直接写出甲,乙这10次射击成绩的方差s甲2哪个大;s乙3如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更合适.31.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.1分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;2试通过计算说明,哪个山上的杨梅产量较稳定32.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识平均数、中位数、方差和极差回答下列问题:1两段台阶路有哪些相同点和不同点2哪段台阶路走起来更舒服,为什么3为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.图中的数字表示每一级台阶的高度单位:cm.并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=.33.张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次王军68807879817778848392张成86807583857779808075利用表中提供的数据,解答下列问题:1张老师从测验成绩记录表中,求得王军10次测验成绩的方差S王2=33.2,请你帮助张老师计算张成10次测验成绩的方差S张2;平均成绩中位数众数王军8079.5张成80802请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由.34.苍洱中学九年级学生进行了五次体育模拟测试,甲同学的测试成绩如表一,乙同学的测试成绩折线统计图如图一所示:表一次数一二三四五分数46474849501请根据甲、乙两同学五次体育模拟测试的成绩填写下表:中位数平均数方差甲 48 2乙 48 482甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定请说明理由.35.如图是甲,乙两人在一次射击比赛中靶的情况击中靶中心的圆面为10环,靶中数字表示该数所在圆环被击中所得的环数,每人射击了6次.1请用列表法将他俩的射击成绩统计出来;2请你用学过的统计知识,对他俩的这次射击情况进行比较.36.甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示.1请你根据图中的数据填写下表:姓名平均数环众数环方差甲乙 2.82从平均数和方差相结合看,分析谁的成绩好些.37.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表和扇形统计图如下:命中环数10987命中次数321根据统计表图中提供的信息,补全统计表及扇形统计图;2已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去并说明理由.参考资料:38.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩单位:环相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差见小宇的作业.甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a71a= ,= ;2请完成图中表示乙成绩变化情况的折线;3①观察图,可看出的成绩比较稳定填“甲”或“乙”.参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.39.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示其中男生收看3次的人数没有标出.根据上述信息,解答下列各题:1该班级女生人数是,女生收看“两会”新闻次数的中位数是;2对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;3为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量如表.统计量平均数次中位数次众数次方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.40.有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况单位:元:甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23小强用如图所示的方法表示甲城市16台自动售货机的销售情况.1请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;2用不等号填空:甲乙;S甲2S乙2;3请说出此种表示方法的优点.初二数据的分析所有知识点总结和常考题提高难题压轴题练习含答案解析参考答案与试题解析一.选择题共14小题1.2011•安顺我市某一周的最高气温统计如下表:最高气温℃25262728天数1123则这组数据的中位数与众数分别是A.27,28 B.27.5,28 C.28,27 D.26.5,27分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28是出现次数最多的,故众数是28.故选:A.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.2015•大庆某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是A.7,7 B.8,7.5 C.7,7.5 D.8,6.5分析中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数或最中间的两个数即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.解答解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7环;因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,故中位数是7.5环.故选C.点评本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.3.2013•北京某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间小时5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是A.6.2小时B.6.4小时C.6.5小时D.7小时分析根据加权平均数的计算公式列出算式5×10+6×15+7×20+8×5÷50,再进行计算即可.解答解:根据题意得:5×10+6×15+7×20+8×5÷50=50+90+140+40÷50=320÷50=6.4小时.故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.点评此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.4.2014•滨州有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的A.平均数B.中位数C.众数D.方差分析因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.解答解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选:B.点评中位数是将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.5.2014•常州甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,则成绩最稳定的是A.甲B.乙C.丙D.丁分析根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答解;∵S甲2=0.56,S乙2=0.60,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选:D.表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.2015•内江有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是A.10 B.C.2 D.分析先由平均数的公式计算出a的值,再根据方差的公式计算.解答解:由题意得:3+a+4+6+7=5,解得a=5,S2=3﹣52+5﹣52+4﹣52+6﹣52+7﹣52=2.故选C.点评本题考查方差的定义与意义:一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.2007•韶关2007年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31 35 31 34 30 32 31,这组数据的中位数、众数分别是A.32,31 B.31,32 C.31,31 D.32,35分析找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答解:从小到大排列此数据为:30、31、31、31、32、34、35,数据31出现了三次最多为众数,31处在第4位为中位数.所以本题这组数据的中位数是31,众数是31.故选C.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.8.2014•咸宁甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选甲乙丙丁平均数80858580方差42425459A.甲B.乙C.丙D.丁分析此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的同学参赛.解答解:由于乙的方差较小、平均数较大,故选乙.故选:B.差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.2006•广安为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是A.平均数B.中位数C.众数D.方差分析根据平均数、中位数、众数、方差的意义进行分析选择.解答解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选C.点评此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.10.2014•孝感为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民户1324月用电量度/户40505560那么关于这10户居民月用电量单位:度,下列说法错误的是A.中位数是55 B.众数是60 C.方差是29 D.平均数是54分析根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.解答解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.点评考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数最中间两个数的平均数,叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.11.2015•安徽某校九年级1班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩分35394244454850人数人2566876根据上表中的信息判断,下列结论中错误的是A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分分析结合表格根据众数、平均数、中位数的概念求解.解答解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.点评本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.12.2013•黄石为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:5102050100捐款的数额单位:元人数单位:个24531关于这15名学生所捐款的数额,下列说法正确的是A.众数是100 B.平均数是30 C.极差是20 D.中位数是20分析根据极差、众数、中位数及平均数的定义,结合表格即可得出答案.解答解:A、众数是20,故本选项错误;B、平均数为26.67,故本选项错误;C、极差是95,故本选项错误;D、中位数是20,故本选项正确;故选D.点评本题考查了中位数、极差、平均数及众数的知识,掌握各部分的定义是关键.13.2013•衢州一次数学测试,某小组五名同学的成绩如表所示有两个数据被遮盖.组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是A.80,2 B.80,C.78,2 D.78,分析根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.解答解:根据题意得:80×5﹣81+79+80+82=78,方差=81﹣802+79﹣802+78﹣802+80﹣802+82﹣802=2.故选C.点评本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.2014•天津某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩百分制面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取A.甲B.乙C.丙D.丁分析根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.解答解:甲的平均成绩为:86×6+90×4÷10=87.6分,乙的平均成绩为:92×6+83×4÷10=88.4分,丙的平均成绩为:90×6+83×4÷10=87.2分,丁的平均成绩为:83×6+92×4÷10=86.6分,因为乙的平均分数最高,所以乙将被录取.故选:B.点评此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.二.填空题共14小题15.2013•宁波数据﹣2,﹣1,0,3,5的方差是.分析先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解答解:这组数据﹣2,﹣1,0,3,5的平均数是﹣2﹣1+0+3+5÷5=1,则这组数据的方差是:﹣2﹣12+﹣1﹣12+0﹣12+3﹣12+5﹣12=;故答案为:.点评本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2, (x)n的平均数为,则方差S2=x1﹣2+x2﹣2+…+xn﹣2.16.2014•宿迁某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是88 分.分析按3:3:4的比例算出本学期数学学期综合成绩即可.解答解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88分.。

初中数学数据分析

初中数学数据分析

初中数学数据分析数据在我们生活中无处不在,它们是信息的核心。

对于初中学生来说,掌握数学数据分析是非常重要的。

在这篇文章中,我将带领大家了解数据分析的基本概念,以及如何运用数学技巧来分析和解释数据。

1.数据的意义和类型数据是指通过观察、测量或记录获得的事实或信息。

它们可以帮助我们了解事物的特征、规律以及相互之间的关系。

数据分为定性数据定量数据两种类型。

1.1定性数据定性数据描述事物的特征或属性,通常以文字形式呈现。

例如,对于一个调查问卷,我们可以记录参与者的性别、年龄、职业等信息。

定性数据能够提供描述和分类的信息,并帮我们理解各种情况下人们的看法、态度和行为。

1.2定量数据定量数据是通过测量、计数或统计得出的数据,通常以数字形式呈现。

它们能够提供更为具体和精确的信息。

例如,我们可以记录学生在数学考试中获得的分数,这些分数可以用来进行进一步的分析和比较。

2.数据收集和整理在进行数据分析之前,我们首先需要收集合适的数据并进行整理。

数据收集可以通过观察、实验、调查问卷等方式。

收集到的数据应该准确、全面,并且能够代表所研究的对象或现象。

数据整理包括对数据进行分类、排序和清理等步骤,以便后续的分析工作。

我们可以使用表格、统计图表等工具来展示和总结数据。

整理数据,我们可以更好地把握信息,发现其中的规律和特点。

3.数据分析方法了解数据类型和整理好数据后,我们可以运用数学技巧来进行数据分析。

下面介绍一些常用的数据分析方法:3.1平均数平均数是一组数据的总和除以数据的个数得到的结果。

它能够衡量数据的集中趋势。

例如,我们可以求得一个班级同学们的平均身高,从而了解班级的整体身材情况。

3.2中位数中位数是一组有数据中处于中间位置的数值。

当数据的个数为奇数时,中位数就是中间那个数;当数据的个数为偶数时,中位数是中间两个数的平均值。

中位数能够反映数据的中心位置,相对于平均数来说,它更不容易受到极端值的干扰。

3.3众数众数是一组数据中出现最频繁的数值。

初中数学知识归纳统计与数据的分析

初中数学知识归纳统计与数据的分析

初中数学知识归纳统计与数据的分析在初中数学学习中,归纳统计和数据的分析是一个重要的内容,它为学生提供了分析数据的技能和思维方法。

下面将从归纳统计和数据分析两方面进行阐述。

一、归纳统计归纳统计是指根据一定的规则和方法,对所收集到的数据进行整理、分类和统计,以便获取有用的信息。

在归纳统计中,常见的概念有频数、频数分布、频率、众数等。

以下是几个常见的统计概念和相关的知识点:1. 频数:频数是指某个数据在数据集中出现的次数。

例如,对于一组数据 {3, 5, 7, 3, 2, 5, 8, 3},数据3的频数为3,数据5的频数为2。

2. 频数分布:频数分布是指按照不同取值的个数将数据进行分类,并用表格或图像形式展示。

常见的频数分布图有直方图、条形图等。

通过频数分布图,我们可以了解数据的分布情况和特征。

3. 频率:频率是指某个数据在数据集中的出现的频率,它是频数与数据集总个数的比值。

频率可以描述数据的相对频率,比较不同数据之间的出现概率。

4. 众数:众数是指数据集中出现次数最多的数值。

如果一个数据集存在多个众数,我们称其为多峰分布。

5. 相对频数:相对频数是指某个数据在数据集中的频数与数据集总个数的比值。

相对频数一般用百分数表示,可以更直观地比较不同数据的频率。

通过学习归纳统计,我们可以获得对数据的初步认识,了解数据的分布规律和特点,为进一步的数据分析提供基础。

二、数据的分析数据的分析是指根据一定的目的和方法,运用数学和统计知识对数据进行深入的研究和分析,以揭示数据背后的规律和关系。

以下是几个常见的数据分析方法和相关的知识点:1. 均值:均值是指一组数据的和除以数据个数得到的值,用来表示数据的集中程度。

在实际问题中,我们常常使用均值来代表一组数据的典型值。

2. 中位数:中位数是指将一组数据按照大小顺序排列后,位于中间位置的数值。

它可以有效地反映一组数据的中心位置。

3. 范围:范围是指一组数据中最大值和最小值的差值。

初中数学成绩分析报告

初中数学成绩分析报告

初中数学成绩分析报告1. 引言该份报告旨在对初中数学成绩进行详细分析,为教育工作者和学生家长提供参考。

2. 数据概览我们收集了一份包含200名学生数学成绩的数据集。

以下是该数据集的概览:- 总体平均成绩:80- 最高成绩:98- 最低成绩:503. 成绩分布情况我们对学生的成绩进行了分布分析,以下是我们得出的结论:- 优秀成绩(90及以上):占比15%- 良好成绩(80-89):占比30%- 中等成绩(70-79):占比40%- 不及格成绩(70以下):占比15%4. 性别差异我们还对男女学生的成绩进行了比较,以下是我们的观察结果:- 男生平均成绩:82- 女生平均成绩:78可以看出,男生的平均成绩略高于女生。

5. 不同年级和班级的成绩比较我们对不同年级和班级的学生成绩进行了比较,以下是我们的调查结果:- 九年级平均成绩:83- 八年级平均成绩:80- 七年级平均成绩:77同时,我们还发现不同班级之间的成绩差异不大,大部分班级的平均成绩都在80左右。

6. 学生特长与成绩关系我们研究了学生的特长和成绩之间的关系,以下是我们的发现:- 体育特长学生平均成绩:85- 音乐特长学生平均成绩:80- 美术特长学生平均成绩:78可以看出,有特长的学生在数学成绩上表现更好。

7. 结论根据我们的分析,初中数学成绩总体较好,但仍存在一些差异。

男生的平均成绩稍高于女生,九年级的平均成绩最高,有特长的学生成绩相对较好。

我们希望这份分析报告对教育工作者和学生家长有所帮助,以便针对不同情况提供更有针对性的辅导和教育。

谢谢阅读该报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1. 有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是( )A. 11.6B. 232C. 23.2D. 11.52.小明与小华本学期都参加了5次数学考试(总分都为100分),数学老师想判断这两个同学的数学成绩谁更稳定,在做统计分析时,老师需要比较这两个人5次数学成绩的( ) A 平均数 B 方差 C 众数 D 中位数3.某鞋柜售货员为了了解市场的需求,需要知道所销售的鞋子码数的( )A 中位数B 众数C 平均数D 方差4.某个班级期末英语成绩的平均分是75分,方差为225分2,如果每个学生都多考5分,下列说法正确的是:( )A 方差不变,平均分不变B 平均分变大,方差不变化C 平均分不变,方差变大D 平均分变大,方差变大5.一组数据的方差为2s ,将这组数据的每个数据都扩大三倍,所得到的一组新的数据的 方差为( )A 29sB 2sC 23sD 22s6.一个样本的方差是22221261[(5)(5)(5)]6s x x x =-+-++-L ,那么这个样本的平均数为( )A 6 B 16 C 5 D 567.某班七个合作学习小组人数如下:5,5,6,x ,7,7,8.已知这组数据的平均数 是6,则这组数据的中位数是( ). A .7 B .6 C .5.5 D .58.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了 这25人某月的销售量如下表:公司营销人员该月销售量的中位数是( ).A .400件B .350件C .300件D .360件9.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使 该超市销售皮鞋收入最大,该超市应多购( )的皮鞋A .160元B .140元C .120元D .10010、在学校对学生进行的晨检体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0.1,0, 0.1,则在这10天中该学生的体温波动数据中不正确的是()A.平均数为0.12B.众数为0.1C.中位数为0.1D. 方差为0.0211、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是() A.100分 B.95分 C.90分 D.85分12、已知三年四班全班35人身高的算术平均数与中位数都是150厘米,但后来发现其中有一位同学的身高登记错误,误将160厘米写成166厘米,正确的平均数为a厘米,中位数为b厘米关于平均数a的叙述,下列何者正确()A.大于158B.小于158C.等于158D.无法确定13、在上题中关于中位数b的叙述正确的是:()A.大于158B.小于158C.等于158D.无法确定14、已知一组数据1、2、y的平均数为4,那么()A、 y=7 B.y=8 C.y=9 D.y=10二、填空题1、若一组数据a1,a2,…,a n的方差是5,则一组新数据2a1,2a2,…,2a n的方差是。

2.某中学规定学期总评成绩评定标准为:平时30%,期中30%,期末40%,小明平时成绩为95分,期中成绩为85分,期末成绩为95分,则小明的学期总评成绩为分。

3.对一组数据进行整理,结果如下:这组数据的平均数是4. -1,3,5,8,9的中位数是;π-的中位数是。

0,5.一次英语口语测试中,10名学生的得分如下:90,50,80,70,80,70,90,80,90,80。

这次英语口试中学生得分中位数是。

6.一射击运动员在一次射击练习中打出的成绩是(单位:环):•7,8,9,8,6,8,10,7,这组数据的众数是_____ _____.7.公园里有两群人在做游戏,两群人的年龄分别如下:甲群:13,13,15,17,15,18,12,19,11,20,17,20,14,23,25乙群:3, 4, 4, 5, 5, 6, 6, 6,54,57,48,36,38,58,34甲群游客的年龄众数是:,乙群游客的年龄众数是:。

8.数据7,1,-2,3,5,8,0,-3.5,2.6,π-的极差是;9. 已知一组数据1,0,x,1,-2的平均数是0,这组数据的方差是 .10.一组数据1,2,3,x 的极差是6,则x 的值是 .11.甲、乙、丙三台包装机同时分装质量为400克的茶叶,从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表:根据表中的数据,可以认为三台包装机中 包装机包装的茶叶质量最稳定。

12. 某“中学生暑假环保小组”的同学,随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9利用上述数据估计该小区2000户家庭一周内需要环保方便袋 只。

13、一家鞋店在一段时间内销售了某种鞋子30双,各种尺码鞋的销售量如下表:根据以上的数据,可以建议鞋店多进 码的鞋子。

14.已知一组数据12,,,n x x x L 的平均数是x ,方差为2s ,则新的数据12,,,n ax b ax bax +++L b 的平均数是 ,方差是15.摩托车生产是我市的支柱产业之一,不少品牌的摩托车畅销国内外,下表是摩托车厂今年1至5月份摩托车销售量的统计表:(单位:辆)则这5个月销售量的中位数是________辆.16.某公司对应聘者进行面试,按专业知识,工作经验,仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1,对应聘的王丽、•张瑛两人打分如下:如果两人中只录取一人,若你是人事主管,你会录用________.17、为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②800名学生是总体;③每名学生的期中考试数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有 个。

18、人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是 班。

19、某地连续9天的最高气温统计如下:这组数据的中位数和众数别是 、20、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。

已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为___ _____21、在一次测验中,某学习小组的5名学生的成绩如下(单位:分) 68 、75、67、66、99这组成绩的平均分x = ,中位数M= ;若去掉一个最高分后的平均分'x = ;那么所求的x ,M ,'x 这三个数据中,你认为能描述该小组学生这次测验成绩的一般水平的数据是 .22、从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm )都减去165.0cm ,其结果如下:−1.2,0.1,−8.3,1.2,10.8,−7.0这6名男生中极差是 __ __ ;这6名男生的平均身高约为 ______ (结果保留到小数点后第一位) 23、已知一个样本:1,3,5,x ,2,它的平均数为3,则这个样本的方差是 .24、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 _________ (把你认为正确结论的序号都填上).25、某班同学进行知识竞赛,将所得成绩进行整理后,如右图:竞赛成绩的平均数为 _____ .26、物理老师布置了10道选择题作为课堂练习,右图是全班解题情况的统计,平均每个学生做对了 _________ 道题;做对题数的中位数为 ;众数为_________ ;27、现有A 、B 两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B(1)由观察可知,______班的方差较大;(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.(分)对三、计算题1、某工厂有220名员工,财务科要了解员工收入情况。

现在抽测了10名员工的本月收入,结果如下:(单位:元)。

1660 1540 1510 1670 1620 1580 1580 1600 1620 1620(1)全厂员工的月平均收入是多少?(2)平均每名员工的年薪是多少?(3)财务科本月应准备多少钱发工资?(4)一名本月收入为1570元的员工收入水平如何?2.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表根据上表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间应是多少小时?(2)这组数据的中位数、众数分别是多少?3.下表是某校初三(1)班20名学生某次数学测验的成绩统计表.(1)若这20名学生成绩的平均分数为80分,求x、y的值.(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a、•b的值.4.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售的平均数的条形图,利用两图共同提供的信息,解答下列问题:(1)1999年该地区销售盒饭共万盒;(2)该地区盒饭销售两最大的年份是年,这一年的年销售量是万盒;(3)这三年中该地区每年平均销售盒饭多少万盒?快餐公司盒饭年销售平均数情况图 快餐公司个数情况5.(20分)某校为了了解全校400名学生参加课外锻炼的情况,随机对40•名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 40 39 32 45 40 42 45 50 45 40 50 26 45 40 45 35 40(1) 补全频率分布表和频率分布直方图.(2)填空:在这个问题中,总体是_________,样本是________.由统计分析得,•这组数据的平均数是39.35(分),众数是__________,中位数是________.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,•你认为用平均数、众数、中位数中的哪一个比较合适?(4)估计这所学校有多少名学生,平均每天参加课外锻炼的时间多于30分?6.在一次青年歌手演唱比赛中,评分方法采用10为评委现场打分,每位选手的最后得分为去掉最高分、最低分后的平均数。

相关文档
最新文档