误差及分析数据的统计处理(精)
滴定分析中的误差及数据处理
滴定分析中的误差及数据处理一、引言滴定分析是化学分析中常用的一种定量分析方法,通过滴定试剂与待测溶液发生反应,根据反应的化学方程式和滴定试剂的浓度,确定待测溶液中所含物质的浓度。
然而,在滴定分析过程中,由于实验条件、仪器设备、试剂质量等因素的影响,可能会产生误差。
本文将详细介绍滴定分析中可能浮现的误差来源,并探讨数据处理方法,以提高滴定分析的准确性和可靠性。
二、滴定分析中的误差来源1. 人为误差:操作不规范、读数不许确、试剂用量不精确等均会引入人为误差。
为减小人为误差,应严格按照实验操作规程进行操作,并使用精密仪器和准确的试剂。
2. 仪器误差:滴定过程中使用的仪器(如滴定管、容量瓶、分析天平等)存在一定的误差。
为减小仪器误差,应选择精确度高的仪器,并进行仪器校准和定期维护。
3. 滴定试剂误差:滴定试剂的浓度不许确、纯度不高等因素会导致滴定试剂误差。
为减小滴定试剂误差,应选择质量可靠的滴定试剂,并进行滴定试剂的浓度测定和纯度检验。
4. 环境误差:温度、湿度等环境因素对滴定分析结果也会产生一定影响。
为减小环境误差,应控制实验室的环境条件,并在实验过程中及时记录环境参数。
三、滴定分析中的数据处理1. 误差的计算:根据滴定分析中的误差来源,可以通过计算得出总误差。
常用的误差计算方法包括相对误差、绝对误差和标准偏差等。
2. 数据处理方法:在滴定分析中,通常需要进行多次滴定实验,取平均值来减小误差。
计算平均值时,应排除明显偏离的数据点,以提高数据的可靠性。
3. 不确定度的评定:滴定分析结果的不确定度是评价滴定分析准确性的重要指标。
可以通过重复滴定实验、计算标准偏差等方法来评定不确定度。
4. 统计方法的应用:在滴定分析中,可以应用统计方法来分析数据,如t检验、F检验等。
这些方法可以匡助我们判断滴定结果的显著性和可靠性。
四、结论滴定分析中的误差来源主要包括人为误差、仪器误差、滴定试剂误差和环境误差。
为减小误差,应注意操作规范、选择精密仪器和准确试剂,并控制实验环境。
化学分析中误差及分析数据的处理
xi x 100% x
精密度是几次平行测定结果之间相互接 近的程度。
偏差(deviation)是指单次测定结果与几次 测定结果的平均值之间的差值。
●当绝对偏差di相同时,被测物测定结果 的平均值x越大,相对偏差Er 就越小,表 示测定结果的精密度越高。
(4) 准确度和精密度的关系
以打靶为例:三人打靶,每人打十发子弹。
(1)系统误差偏低。重复测定时,它会重复出现。
① 方法误差(method error) ② 仪器误差(instrumental error) ③ 试剂误差(reagent error) ④ 主观误差(personal error)
(2)偶然误差特点:随机发生,难以控制。
由一些难以控制的因素造成的误差。 ●测量时环境温度、压力的变化。 ●仪器的不稳定。 ●操作时的不当心。 ●天气的阴、晴、雨、雪变化。
总体与样本:总体亦称母体,是指随机变量xi
的全体。样本(或子样)是指从总体中随机抽取 的一组数据。 样本平均值:对某试样平行测定n次的算术平均值。
(1)真实值、平均值与中位数
总体平均值:在消除系统误差后,对某试样平行 测定无穷多次的算术平均值。用于代表(但不一 定是)真实值 ③中位数(xm): 一组按大小顺序排好的测量数据的中间数据既为 xm。当n为偶数时,中位数为中间相邻的两个数 据的平均值。
2、误差产生原因
系统误差(可测误差)(determinate error)
由某种固定因素造成的误差。
偶然误差(随机误差或未定误差)(random error)
由某些偶然因素造成的误差。
过失误差(粗差)(mistake)
由于工作上粗枝大叶、不遵守操作规程 等造成的误差。
特点:使测定结果系统偏高或系统
第2章-误差和分析数据的统计处理-(1-2)
解:平均值
x
1 n
n i 1
xi
0.21 0.23
0.24 4
0.25
0.23
(%)
各次测定的偏差分别为
d1 0.21 0.23 0.02
d2 0.23 0.23 0 d3 0.24 0.23 0.01
d4 0.25 0.23 0.02
y=f(x)= 1 e-(x2-2)2 y为概率密度 x为测量值
2
21
正态分布曲线规律:
1. x=μ时,y值最大,体现 了测量值的集中趋势。大 多数测量值集中在算术平 均值的附近,算术平均值 是最可信赖值,能很好反映 测量值的集中趋势。μ反映 测量值分布集中趋势。
y
1
21
2
μ
0
可疑数值的取舍
1.格鲁布斯(Grubbs)法
检验过程: x1, x2, x3,, xn1, xn x和s
判断:
x异常 x
G计算
s
一定P下,若G计算 G0.95,n,则异常值舍弃;否则 保留
32
练习
例:测定某药物中钴的含量,得结果如下: 1.25,1.27,1.31,1.40μg/g,试问1.40这个数据是否 应该保留?
4 1
相对标准偏差
Sr
S x
100%
0.017 0.23
100%
7.4%
12
误差的分类及减免误差的方法
根据误差产生的原因及其性质分: • 系统误差(可测误差):
由某种固定的原因造成的误差
• 随机误差(偶然误差):
由某些难以控制、无法避免的偶然因素造成
第二章 误差与分析数据的统计处理
《分析化学》第二章
随机误差
1. 随机误差 由于某些难以控制和无法避免的原因所造成的
误差。如温度、湿度、电流强度等的偶然波动,给试验结果 带来的影响。
2. 随机误差的特点
①分布对称可抵偿:绝对值相同的正负误差出现机会相等, 它们的总代数和等于0; ②单峰且有界:小误差出现的机会大,大误差出现的机会小, 极大误差出现的机会趋于零。
《分析化学》第二章
分 析 化 学
Analytical Chemistry
西北大学化学与材料科学学院
《分析化学》第二章
第二章 误差与分析数据的统计处理
《分析化学》第二章
2-1 定量分析中的误差 2-2 分析结果的数据处理
内容
2-3 误差的传递 2-4 有效数字及其运算规则 2-5 标准曲线的回归分析
吸光度A
0 0.032
0.02 0.135
0.04 0.187
0.06 0.268
0.08 0.359
0.10 0.435
试列出标准曲线的回归方程并计算未知试样中Mn的含量。
0.5 0.4 0.3 0.2 0.1 0 0 0.05 0.1 0.15 y = 3.9543x + 0.0383 R 2 = 0.9953
《分析化学》第二章
第二章
小
结
2.1 误差的基本概念: 准确度与精密度、误差与 偏差、系统误 差与随机误差;
2.2 有限数据的统计处理:
异常值的检验(Q检验法,G检验法);
2.4 有效数字:定义、修约规则、运算规则 。 2.5 标准曲线的回归分析
《分析化学》第二章
本章作业
P27---P28
习题2、6、10、11
G计算 x x1 s
分析化学实验中误差及分析数据的处理
* 有界性:大误差出现概率很小,误差很大的测量 值,往往由过失误差造成的。对这种数据应作适 当处理。
标准正态分布曲线 N(0 ,1 ) 为了将不同精密度的正态分布曲线统一起来, 令u=x-u/σ为横坐标表示的正态分布曲线
u
x
横坐标:u 纵坐标:误差出现的概率大小。
二. 随机误差的区间概率
特点:
随机性(大小、正负不定) 不可消除(原因不定) 但可减小(测定次数↑,一般平行测定3- 4次) 分布服从统计学规律(正态分布) (三)过失误差 由于操作者的过失而引起的误差(损失试 样、加错试样、记录或计算错误等 )--错 误。
(四)如何提高分析结果准确度?
减少误差的方法
1. 选择合适的分析方法 根据待测组分的含量、性质、试样的组成及对 准确度的要求。 2. 减少测量误差 控制取样量 : 天平称量取样 0.2g (为什么?)以 上,滴定剂体积大于20mL(为什么?)。 3. 增加平行测定次数,减小偶然误差 化学分析中通常要求平行测定3~4次。 4. 消除系统误差
二.精密度与偏差
1.几个定义
精密度 一组平行测定值相互接近的程度。
偏差 是衡量数据精密度高低的尺度。偏差越小,
数据的分散性越小,测定值的精密度越高。
第一组 第二组 1.10 1.10 1.12 1.18 1.11 1.15 1.11 1.13 1.10 1.16
在实际分析中,真实值难以得到,常以多次平行测定结果
平均偏差
| d | | d 2 | | d 3 | | d 4 | | d n | d 1 n
| d
i 1
n
i
|
n
相对平均偏差:
d d r 100% X
误差分析和数据处理
误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。
这说明在测定中有误差。
为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。
1。
1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值.通常一个物理量的真值是不知道的,是我们努力要求测到的。
严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。
科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。
故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。
(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值.一般我们称这一最佳值为平均值。
常用的平均值有下列几种:(1)算术平均值这种平均值最常用。
凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。
n x n x x x x ni in ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数.(2)均方根平均值n x n x x x x n i in∑=++==1222221 均(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。
∑∑=++++++===n i i n i ii n n n w x w w w w x w x w x w w 11212211式中;n x x x 21、—-各次观测值;n w w w 21、—-各测量值的对应权重。
分析化学(误差和分析数据的处理)
S y Sz y z
2
2
23
分析天平称量时,单次的标准偏差为0.10mg,求减 量法称量时的标准偏差。
W W1 W2
2 2 2 S S1 S2 0 . 10 0 . 10 0.14mg 2
3.测量值的极值误差 在分析化学中,若需要估计整个过程可能出现的 最大误差时,可用极值误差来表示。它假设在最 不利的情况下各种误差都是最大的,而且是相互 累积的,计算出结果的误差当 然也是最大的,故称极值误差。
大概率 事件
5
若无明显过失,离群值不可随意舍弃, 常用的取舍检验方法有: (1)Q 检验法 1)将所有测定值由小到大排序, 其可疑值为X1或Xn
x1 , x 2 ,x n
2)求出极差
R X n X1
3)求出可疑值与其最邻近值之差 x2 - x1 或 xn - xn-1
4)求出统计量Q
6
x n x n 1 Q x n x1
5)查临界值QP,n
或
x 2 x1 Q x n x1
6) 若Q > QP.n,则舍去可疑值,否则应保留。
过失误 差造成
不同置信度下的Q值表
测定次数n 3 4 5 6 7 8 9
偶然 误差 所致 10
Q(90%) Q(95%)
Q(99%)
0.94 0.97
0.99
0.76 0.84
0.93
第一节
一、系统误差
误差
定义:由于某种确定的原因引起的误差,也称
可测误差
特点: 分类:
①重现性
②单向性
③可测性
溶解损失 终点误差
1.方法误差:
误差及数据分析的统计处理
误差及数据分析的统计处理
3. 说明 (1) 绝对误差相等,相对误差并不一定相同; (2) 同样的绝对误差,被测定的量较大时,相对误差就比较小 , 测定的准确度也就比较高;
(3) 用相对误差来表示各种情况下测定结果的准确度更为确切;
(4) 绝对误差和相对误差都有正值和负值。正值表示分析结果 偏高,负值表示分析结果偏低; (5) 实际工作中,真值实际上是无法获得; 常用纯物质的理论值、国家标准局提供的标准参考物质的证
误差及数据分析的统计处理
3. 精密度 (1)精密度:在确定条件下,将测试方法实施多次,求出
所得结果之间的一致程度。精密度的大小常用偏差表示。
( 2)精密度的高低还常用重复性( Repeatability )和再现性 (Reproducibility)表示。 重复性 (r) :同一操作者,在相同条件下,获得一系列结果 之间的一致程度。 再现性(R):不同的操作者,在不同条件下,用相同方法获 得的单个结果之间的一致程度。
有限次测定无法计算总体标准差 σ 和总体平均值 μ, 则偶然误差并不完全服从正态分布,服从类似于正态 分布的 t 分布( t 分布由英国统计学家与化学家 W.S.Gosset提 出,以Student的笔名发表)。 t 的定义与 u 一致
x t s n
误差及数据分析的统计处理
t 分布曲线
t 分布曲线随自由度 f ( f = n - 1)而变,当 f >20时,
dr
xi x x
100%
误差及数据分析的统计处理
算术平均偏差(Average Deviation):
1 n 1 n d d i xi x n i 1 n i 1
相对平均偏差表示为:
d d r 100% x
第二章_误差及数据分析的统计处理--分析化学-检验
一、误差的种类、性质、产生的原因及减免
系统误差也叫可测误差,它是定量分析误差的主要 来源,对测定结果的准确度有较大影响。
(1) 特点
a.对分析结果的影响比较恒定; b. 在 同 一 条 件 下 , 重 复 测 定 , 重复出现; c.影响准确度,不影响精密度;
d.可以减小或消除。
产生的原因?
产生的原因
b.滴定管读数
0.4 0.3 0.2 0.1
u xm
y: 概率密度 x: 测量值 μ: 总体平均值 x-μ: 随机误差 σ : 总体标准差
0 -4 -3 -2 -1 0
s
1
2
3
4
-3s -2s -s m-3s m-2s m-s
m
68.3% 95.5% 99.7%
0
s 2s 3s m+s m+2s m+3s
x-m x
u
图3-1标准正态分布曲线
随机误差分布服从正态分布—无限多次测定
特点:
1. 极大值在 x = μ 处. 2. 拐点在 x = μ ± σ 处. 3. 于x = μ 对称. 4. x 轴为渐近线.
随机误差分布的性质: 1.对称性 2.单峰性 3.有界性 4.抵偿性
表1.
称为置信区间:真 实值在指定概率下 出现的区间 随机误差的区间概率
第二章:误差及数据分析的统 计处理
主要内容
3.1 定性分析误差 3.2 有效数字及其应用 3.3 分析数据处理与分析结果的表示方法
在任何测量中误差都是客观存在的
§ 3-1 定量分析中的误差
1.误差及其产生的原因
分析结果与真实值之间的差值称为误差。分析结果 大于真实值,误差为正;分析结果小于真实值,误差为 负。 根据误差的性质与产生的原因,可将误差分为系 统误差和偶然误差两类。
第2章 误差及分析数据的统计处理(完成)
第2章误差及分析数据的统计处理2.1 有效数字及其运算规则2.1.1有效数字指在分析工作中实际能测到的数字,它包括所有的准确数字和最后一位可疑数字。
在有效数字中, 只有最后一位数是不确定的,可疑的。
有效数字位数由仪器准确度决定,它直接影响测定的相对误差。
在科学实验中,对于任一物理量的测定,其准确度都是有一定限度的,例如:读取滴定管的刻度,甲得到23.43ml,乙得到23.42ml,丙得到23.44ml,这些四位数字中,前三位都是很准确的,第四位是估读出来的,所以稍有差别,称为可疑数字,但是它并不是臆造的,这4位数字都是有效数字。
有效数字就是实际能测到的数字,其位数的多少,反映测量的精确程度。
1.零的作用:在1.0008中,“0” 是有效数字;在0.0382中,“0”定位作用,不是有效数字;在0.0040中,前面3个“0”不是有效数字,后面一个“0”是有效数字。
在3600中,一般看成是4位有效数字,但它可能是2位或3位有效数字,分别写3.6×103,3.60×103或3.600×103较好。
注意:1.单位变换不影响有效数字的位数。
例如:1.0L=1.0×103ml ,不能写成1000ml2. pH ,pM ,lgc ,lgK 等对数值,有效数字的位数取决于小数部分(尾数)位 数,因整数部分代表该数的方次。
如pH=11.20,有效数字的位数为两位。
3. 有效数字的位数,直接与测定的相对误差有关。
例:测定某物质的含量为0.5180g ,即0.5180±0.0001g 相对误差%02.0%10051801±=⨯±=Er课堂练习:一、下列数据包括几位有效数字:(1)0.0330 (2)10.030(3)0.01020(4)8.7×10-5(5)PKa=4.74(6) PH=10.00二、见课后题第11页11题2.1.2 有效数字的运算规则2.1.2.1有效数字的修约规则在处理数据过程中,涉及到的各测量值的有效数字位数可能不同,因此需要按下面所述的计算规则,确定各测量值的有效数字位数,有效数字确定后,就要将它后面多余的数字舍弃,此过程称为“数字修约”。
2 误差及分析数据的统计处理
例2:
用碘量法测定某铜合金中铜的百分含量,得 到两批数据,每批有10个。测定的平均值为 10.0%。各次测量的偏差分别为:
第一批di:+0.3, -0.2, -0.4*, +0.2, +0.1, +0.4*, 0.0, -0.3, +0.2, -0.3 第二批di:0.0, +0.1, -0.7*, +0.2, -0.1,-0.2, +0.5*, -0.2, +0.3, +0.1
因此,在实际工作中,常用样本的平均值 x 对总体 平均值μ进行估计。统计学证明,平均值的标准偏 差 x 与单次测定值的标准偏差σ之间有下述关系。
x
ห้องสมุดไป่ตู้
n
s n
(n→∞)
(2-11)
对于有限次的测定,则有:
sx
(2-12)
式中 s x 称样本平均值的标准偏差。由以上两式 可以看出,平均值的标准偏差与测定次数的平方根 成反比。因此增加测定次数可以减小随机误差的影 响,提高测定的精密度。 除了偏差之外,还可以用极差R来表示样本平 行测定值的精密度。极差又称全距,是测定数据中 的最大值与最小值之差,其值愈大表明测定值愈分 散。由于没有充分利用所有的数据,故其精确性较 差。偏差和极差的数值都在一定程度上反映了测定 中随机误差影响的大小。
低;在判断滴定终点颜色时,有的人对某种颜色的变
化辨别不够敏锐,偏深或偏浅等所造成的误差。
二、偶然误差
偶然误差也叫不可测误差,产生的原因与系统误 差不同,它是由于某些偶然的因素(如测定时环境的温 度、湿度和气压的微小波动,仪器性能的微小变化等) 所引起的,其影响有时大,有时小,有时正,有时负。 偶然误差难以察觉,也难以控制。但是消除系统误差 后,在同样条件下进行多次测定,则可发现偶然误差 的分布完全服从一般的统计规律: (一)大小相等的正、负误差出现的几率相等; (二)小误差出现的机会多,大误差出现的机会少, 特别大的正、负误差出现的几率非常小、故偶然误差 出现的几率与其大小有关。
分析化学2 误差及分析数据的统计处理
2.1 定量分析中的误差
二 、偏差与精密度
1.精密度定义:精密度表示同一测量中,各次 平行测定结果的相互接近程度。
精密度的高低用偏差衡量 偏差越小,精密度越高
分析化学 1/17/2014
23:45
2 误差及分析数据的统计处理
2.1 定量分析中的误差
2. 偏差的表示
绝对偏差和相对偏差 绝对偏差d :单次测定值(x)与平均值( x )之差
0
x x-
测量值的正态分布 随机误差的正态分布
23:45
分析化学 1/17/2014
2 误差及分析数据的统计处理
2.1 定量分析中的误差
10 5 0 15.80
y
15.90
16.00
16.10
16.20
x
25.0 20.0 15.0
总体标准偏差 相同, 总体平均值不同 原因: 1、总体不同 2、同一总体,存在系统 误差 总体平均值相同,总 体标准偏差不同 原因: 同一总体,精密度不同
2、精密度高,不一定准确度就高。
动画
分析化学 1/17/2014
23:45
2 误差及分析数据的统计处理
2.1 定量分析中的误差
四、误差的分类及减免误差的方法
(一)系统误差(可定误差): 由可定原因产生 1. 产生原因 a.方法误差:方法不恰当产生 b.试剂误差:试剂中含被测组分或不纯组分产生 c. 仪器误差:测量仪器本身缺陷造成的误差 d.操作误差: 操作方法不当引起 2.性质: 重复性:重复测定重复出现 单向性:(大小、正负一定 ) 恒定性:(原因固定)
y
10.0 5.0 0.0 15.80
分析化学 1/17/2014
15.90
浙江大学分析化学 2.误差及分析数据的统计处理
系统误差产生的原因
a.方法误差—— 选择的方法不够完善 例: 重量分析中沉淀的溶解损失; 滴定分析中指示剂选择不当。 b.仪器误差——仪器本身的缺陷 例: 天平两臂不等,砝码未校正; 滴定管,容量瓶未校正。
系统误差产生的原因:
c.试剂误差—— 所用试剂有杂质 例:去离子水不合格; 试剂纯度不够(含待测 组份或干扰离子)。 d.主观误差—— 操作人员主观因素造成 例:对指示剂颜色辨别偏深 或偏浅;滴定管读数不准。
如何判断是否存在系统误差
• 对照试验(标准试样,标准物质) • 加入回收实验 在没有标准样品可 供分析的情况下,人们可采用加入 回收实验检查方法的准确度。 • 回收率= (X2-X1)/X加入 • X1_ 加入前测定值__ • X2 加入后测定值 • X加入加入量
取5mL水样在10mL容量瓶中用水稀释至刻度后, 用滴定法测得铜离子为100 mmol/L 3; 另取5 mL 相同的水样,加入10mL容量瓶中后, 再加入1ml 浓 度为1mol/L的铜离子标准溶液后,用水稀释至刻度, 用滴定法测得铜离子含量为191 mmol/L, 求回收 率.
-1 U 1
-2 U 2
测定值的置信区间
u =( x- )/ u =±1 x=± 68.3% u=±2 x=±2 95.5% u=±3 x=±3 99.7
置信度表示测定值落在某 一定范围内的概率。 例如:在u分别为1,2,3时,测 定值落在(μ ± u )范围 (置信范围) 内的概率分别为 68.3, 95.5和99.7%
平均偏差(d) =(0.1+0.1+0+0.1+0.1)/5=0.08 乙组 平均值=3.0 d1=-0.2, d2=0, d3=0, d4=0, d5=0.2 平均偏差(d) =(0.2+0+0+0+0.2)/5=0.08
误差及数据处理(精)
(二) 有效数字的整化(或修约) (2) 若 5 后面均为“0”,则看保留下的 末位数是奇数还是偶数。
5 前为奇则进一, 5 前为偶则舍弃。
27.1850 保留四位有效数字 27.18 0.215 保留两位有效数字 0.22
16.4050 保留四位有效数字
(二) 有效数字的整化(或修约) (2) 若 5 后面均为“0”,则看保留下的 末位数是奇数还是偶数。
5 前为奇则进一, 5 前为偶则舍弃。
27.1850 保留四位有效数字 27.18 0.215 保留两位有效数字 0.22
16.4050 保留四位有效数字 16.40
目前,常采用数理统计方法来处理测定数据。 我们将研究对象的全体称为总体;自总体中随 机抽出的一部分样品称为样本;样本的数目称 为样本容量。
(二) 精密度与偏差
样本的标准偏差 S :
n
(xi x)2
S i1 n1
式中(n-1)称为自由度,用 f 表示
(三) 准确度与精密度的关系
系统误差 (主要来源)
1.当尾数≤4,舍去;当尾数≥6,进位;
0.53664 保留四位有效数字 0.5366
0.58346 保留四位有效数字 0.5835
2.当尾数=5时 (1) 若 5 后还有数字,则应进位
18.06501保留四位有效数字 18.07
(二) 有效数字的整化(或修约) (2) 若 5 后面均为“0”,则看保留下的 末位数是奇数还是偶数。
准确度
偶然误差
精密度
A、B、C、D 四个分析工作者对同一铁标样 (WFe=37.40%)中的铁含量进行测量,得结果如图 示,比较其准确度与精密度。 A
B
C D
36.00 36.50 测量点
第二章 误差及分析数据的统计处理
(3)、有界性:小误差测量值出现的机会大,大误差 测量值出现的机会小,极大误差的测定值出现的 机会更小。实际测定的结果总是被限制在一定的 范围内波动。 (4)、抵偿性:误差的算术平均值的极限为零。
有关随机误差分布规律的正态分布曲线将在后 面详细介绍。 (三)过失误差 这种误差不同于上面讨论的两类误差,它是由 于操作者粗心大意或操作失误造成的。在分析工 作中应避免这类误差的发生。
f对t分布的影响实质上反映的是测量次数n对t分布 的影响 。 从图可以看出:t分布曲线一般总要比标准正态分布 曲线 “矮胖”,这表明有限次测量的分布要更分散。
2=0.023
y x x-
概率密度 个别测量值 随机误差
1=0.047
15.90 15.95 16.00 16.05 16.10 16.15 16.20
0
x-
x
测量值的正态分布
随机误差的正态分布
把一个普通的正态分布转换为标准正态分布, 设 u x μ u称为标准正态变量
σ
x为测定值,µ 为总体平均值,σ总体标准偏差。
此时高斯方程就转化为只有变量u的函数表达式,
即
1 y (u) e 2
-
u2
2
此式就是标准正态分布曲线方程,从形式上看,标准正 态分布与 0, 1 的正态分布完全相同,所以标准 正态分布记作N(0,1)。各种不同的正态分布都可以 通过上述变化而转换成标准正态分布。以u值为横坐 标,误差出现的概率为纵坐标,当测定次数无限多时, 得到随机误差标准正态分布曲线,如p12,图2-2。
从这两批数据的个别测定值的偏差来看,第二批 较分散,因为其中有两个较大的偏差(上角标* 者)。所以用平均偏差反映不出这两批数据的好坏。 从表中第三列的计算可以看出:将偏差平方后再加 和,所得结果分别为0.72、0.99,清楚看出两批数 据的差异。 总体标准偏差(均方根偏差) ( x - )
分析化学-误差及分析数据的处理
运算式 系统误差
偶然误差
极值误差法
标准偏差法
最大可能
实际情况
✓加减法传递绝对误差;乘除法传递相对误差
练习
例:设天平称量时的标准偏差 s = 0.10mg,求称量试样 时的标准偏差sm 。
解: m m1 m2 , sm s12 + s22 2s2 0.14mg
练习
例:用移液管移取NaOH溶液25.00mL,以0.1000mol/L的
2 0.01
RE%
100% 0.1%
V
V 20mL
续前
3.增加平行测定次数,一般测3~4次以减小偶然误 差
4.消除测量过程中的系统误差
1)与经典方法进行比较
2)校准仪器:消除仪器的误差
3)空白试验:消除试剂误差
4)对照试验:消除方法误差
5)回收实验:加样回收,以检验是否存在方法误差 试验: 试样 + 溶剂 + 试剂
2000 0.1547
第三节 有限量测量数据的统计处理
一、偶然误差的正态分布 二、t分布 三、平均值的精密度和置信区间 四、可疑数据的取舍 五、显著性检验
一、偶然误差的正态分布
正态分布的概率密度函数式
y f (x)
x
10.43
甲举的例相:对误差大,但相对平均偏差较小;说明 精有密一度标虽样然含较有好SiO,2(但%)测标定准不值为够6准1.3确2,。让甲、乙两
位化验员测此标样,得到如下结果:
乙的相甲对(%误)差较6少1.51,虽然61相.52对平均61.偏50 差比甲大, 但对于乙化(%学)分析6来1.36讲是可61以.30接受的61.;33 因此,乙
HCL溶液滴定之,用去30.00mL,已知用移液管移
误差及数据分析的统计处理
误差及数据分析的统计处理
n = 5 时: x 1 .1 % 2 1 .1 % 5 1 .1 % 1 1 .1 % 6 1 .1 % 2 1 .1 % 3 5
s (xx)2 0.022 n1
查表 2-2,得 t95% = 2.78。
2 .7 8 0 .022 W C r1 .1% 3 5 1 .1% 30 .0% 3
误差及数据分析的统计处理
例: 分析铁矿中铁含量,得如下数据:
37.45% , 37.20% , 37.50% , 37.30% , 37.25% 计算此结果的平均值、平均偏差、标准偏差、变异系数。 计算:
x 3 . 4 % 7 5 3 . 2 % 7 0 3 .5 % 7 0 3 . 3 % 7 0 3 .2 % 7 5 3 .3 % 7 4 5
误差及数据分析的统计处理
(3)操作误差 例 : 分 析 天 平 , E=±0.0001g ,
使其Er<0.1%,则称量的物质最 少为多少g?
(4)主观误差
(Personal Errors),如观察颜 色偏深或偏浅,第二次读数总是 想与第一次重复等造成。
误差及数据分析的统计处理
系统误差的判断——回收实验
误差及数据分析的统计处理
产生原因
(1)方法误差(Method Errors): ——对照实验 如反应不完全;干扰成分的影响;指示剂选择不当; 对照试验:选择一种标准方法与所用方法作对比或选择与 试样组成接近的标准试样作试验,找出校正值加以校正。 (2)仪器和试剂误差: ——空白实验 试剂或蒸馏水纯度不够; 空白试验:指除了不加试样外,其他试验步骤与试样试验 步骤完全一样的实验,所得结果称为空白值。
28.62, 28.59, 28.51, 28.48, 28.52, 28.63
分析化学中的误差与数据处理(精)
第3章分析化学中的误差与数据处理一、选择题1.下列叙述错误的是()A.误差是以真值为标准的,偏差是以平均值为标准的,实际工作中获得的所谓“误差”,实质上仍是偏差B.对某项测定来说,它的系统误差大小是不可测量的C.对偶然误差来说,大小相近的正误差和负误差出现的机会是均等的D.标准偏差是用数理统计方法处理测定的数据而获得的2.四位学生进行水泥熟料中SiO2 , CaO, MgO, Fe2O3 ,Al2O3的测定。
下列结果(均为百分含量)表示合理的是()A.21.84 , 65.5 , 0.91 , 5.35 , 5.48 B.21.84 , 65.50 , 0.910 , 5.35 , 5.48C.21.84 , 65.50 , 0.9100, 5.350 , 5.480 D.21.84 , 65.50 , 0.91 , 5.35, 5.483.准确度和精密度的正确关系是()A.准确度不高,精密度一定不会高B.准确度高,要求精密度也高C.精密度高,准确度一定高D.两者没有关系4.下列说法正确的是()A.精密度高,准确度也一定高B.准确度高,系统误差一定小C.增加测定次数,不一定能提高精密度D.偶然误差大,精密度不一定差5.以下是有关系统误差叙述,错误的是()A.误差可以估计其大小B.误差是可以测定的C.在同一条件下重复测定中,正负误差出现的机会相等D.它对分析结果影响比较恒定6.滴定终点与化学计量点不一致,会产生()A.系统误差B.试剂误差C.仪器误差D.偶然误差7.下列误差中,属于偶然误差的是()A.砝码未经校正B.容量瓶和移液管不配套C.读取滴定管读数时,最后一位数字估计不准D.重量分析中,沉淀的溶解损失8.可用于减少测定过程中的偶然误差的方法是()A.进行对照试验B.进行空白试验C.进行仪器校准D.增加平行试验的次数9.下列有效数字位数错误的是()A.[H+]=6.3×10-12mol/L (二位) B.pH=11.20(四位)C.CHCl=0.02502mol/L (四位) D.2.1 (二位)10.由计算器算得9.250.213341.200100⨯⨯的结果为0.0164449。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 误差及分析数据的统计处理1.已知分析天平能称准至±0.1 mg ,要使试样的称量误差不大于±0.1 %,则至少要称取试样多少克?解:两次称量读数最大误差为±0.2mg30.210100%0.1%0.2gm m -⨯⨯=≅样样故4.水中Cl —含量,经6次测定,求得其平均值为35.2 mg·L -1,s = 0.7 mg·L -1,计算置信度为90 %时平均值的置信区间。
解:n=6,35.2x =,s=0.7 查t 表,P=90﹪,t 表=2.01535.2 2.015μ=±=35.2±0.6置信区间为(34.6~35.8)mg •L -1。
8.用两种不同方法测得数据如下: 方法Ⅰ:n 1 = 6 1x = 71.26 % s 1 = 0.13 % 方法Ⅱ:n 2 = 92x = 71.38 % s 2 = 0.11 %判断两种方法间有无显著性差异?解:判断两种方法有无显著性差异,可用t 检验法但首先要求两种方法精密度差别不大,才能进行比较,即通过F 检验法判别之,2222(0.13) 1.40(0.11)s F s ===大小 查F 表 f s 大=6–1 f s 小=9–1 F 表=3.69 则F 计<F 表 说明二者精密度无大差别。
可计算合并方差0.11871.26 1.017 1.900.118 1.9312s n t +n ====⨯=合计查t 表,f =9+6–2,P=0.95,t 表=2.16 故t 计< t 表,两种方法无显著差异。
12.为了判断测定氯乙酸含量的方法是否可行。
今对一质量分数为99.43 %的纯氯乙酸进行测定,测定10次数据如下:97.68,98.10,99.07,99.18,99.41,99.42,99.70,99.70,99.76,99.82,试对这组数据(1) 进行有无异常值检查;(2) 将所得平均值与已知值进行t 检验,判断方法是否可行; (3) 表示分析结果;(4) 计算该法重复性,以近似表达两次平行测定间的允许差。
解:(1) 用Grubbs 法判断97.68是否该舍弃:n = 10 x = 99.184%0.732s ===%199.18497.682.050.732x x t s --===计()95102.18n t %==表 t 计<t 表故97.68应保留。
如按照Q 值法检验211010.19698.1097.6899.8297.68x x Q x x --===--计()90100.41n Q %==表Q 计< Q 表同样应保留97.68。
异常值的检验最好使用Grubbs 法。
(2) 平均值99.184与已知值99.43进行t 检验,判断方法的可行性。
1.063t ==计()95102.262n t %==表 t 计<t 表说明此法可行。
不存在系统误差。
(3) 分析结果的表示99.184 2.2620.52499.180.52x x ts x μ=±=99.184±=±=±±= (4) 重复性0.732r ==2.070=以此表示两次平行测定之间的允许差。
3 滴定分析1.已知浓硝酸的相对密度 1.42,其中含 HNO 3约为70%,求其浓度。
如欲配制 1升0.25mol ·L -1 HNO 3溶液,应取这种浓硝酸多少毫升?解:1-HNO L •mol 16=63%70×42.1×1000=3c欲配制 1升0.25mol ·L -1 HNO 3溶液,应取这种浓硝酸的体积为:016.016.125.0211=⨯==c V c V L=16mL 8.用同一KMnO 4标准溶液分别滴定体积相等的FeSO 4和H 2C 2O 4溶液,耗用的KMnO 4标准溶液体积相等,试问FeSO 4和H 2C 2O 4两种溶液浓度的比例关系4FeSO c :422O C H c 为多少?解:MnO 4-+8H ++5Fe 2+=Mn 2++5Fe 3++4H 2OMnO 4-~5Fe 2+5C 2O 42-+2MnO 4-+16H +=10CO 2+2Mn 2++8H 2O 2MnO 4-~5C 2O 42-∴ 2Fe 2+~C 2O 42- ∵FeSO 4和H 2C 2O 4溶液体积相等 ∴4FeSO c :422O C H c =2:111.计算下列溶液的滴定度,以g ·mL -1表示:(1)以0.2015 mol ·L -1HCl 溶液,用来测定Na 2CO 3,NH 3; (2)以0.1896 mol ·L -1NaOH 溶液,用来测定 HNO 3,CH 3COOH 。
解:(1)HCl CO Na 2132n n =l HC NH 3n n = 1CO Na HCl HCl /CO Na m L g 01068.01000299.1052015.0100023232-⋅=⨯⨯=⨯⨯=M c T1NH HCl HCl /NH m L g 003432.0100003.172015.0100033-⋅=⨯=⨯=M c T(2)3HNO NaOH n n = C O O HCH NaOH 3n n = 1HNO NaOH NaOH /HNO m L g 01195.0100001.631896.0100033-⋅=⨯=⨯=M c T1COOHCHNaOH NaOH /COOH CH mL g 01138.0100004.601896.0100033-⋅=⨯=⨯=M c T15.在1 L 0.2000 mol·L -1HCl 溶液中,需加入多少毫升水,才能使稀释后的HCl 溶液对CaO 的滴定度T CaO / HCl =0.005000 g·mL -1?解:设需加xL 水HCl CaO 21n n =VcM T +⨯⨯⨯=-1110213CaO HCl /CaO 12005.008.562.0103-⨯⨯⨯=-V =0.1216L=121.6mL4 酸碱滴定法 习题 4-11.下列各种弱酸的p K a ,已在括号内注明,求它们的共轭碱的p K b :(1) HCN (9.21);(2)HCOOH (3.74);(3)苯酚(9.95);(4)苯甲酸(4.21)。
解:对于一元弱酸,a w bK K K =,a b p 0014p K .K -=(1)p K b =14.00-9.21= 4.79; (2)p K b =14.00-3.74= 10.26; (3)p K b =14.00-9.95= 4.05; (4)p K b =14.00-4.21= 9.79;6.计算下列水溶液的pH (括号内为p K a )。
(1)0.10 mol·L -1乳酸和0.10 mol·L -1乳酸钠(3.76);(2)0.01 mol·L -1邻硝基酚和0.012 mol·L -1邻硝基酚的钠盐(7.21); 解:(1) 已知:76.3=p L •mol 1.0=L •mol 1.0=a -1b -1a K c c ,,计算用缓冲溶液的最简式来可以使][OH ][H ,][H ][OH b a ∴->>->>-++-c c []763pH L mol 1010010010H 1763763b a a...c c K..=⋅=⨯=⨯=---+)( (2)已知:。
,,21.7p L mol 012.0L mol 01.0a -1b -1a =⋅=⋅=K c c 先利用缓冲溶液的最简式计算:[]29.7=pH L •mol 10×1.5=012.001.0×10=×=H 1-8-21.7baa +)(c c K287pH ][OH ][H ],[H ][OH b a .c c =∴->>->>-++-简式计算。
结论:可以使用缓冲溶液的最再利用判别式判断:12.将一弱碱0.950 g 溶解成100 mL 溶液,其pH 为11.0,已知该弱碱的相对分子质量为125,求弱碱的p K b 。
解:1b b b L 0mol 076.01001251000950.0-⋅=⨯⨯=⋅=V M m c 由[]b b OH K c =-,得()b b p 21pOH c lg K -=b b lg pOH 2pc K +=9.4=0076.0lg +)0.11-0.41(×2=p b K习题4-21.用0.01000 mol·L -1HNO 3溶液滴定20.00 mL 0.01000 mol·L -1NaOH 溶液时,化学计量点时pH 为多少?化学计量点附近的滴定突跃为多少?应选用何种指示剂指示终点?解:化学计量点时NaOH 全部中和,溶液的主要组成是NaNO 3,这时pH=7.00。
加入HNO 3溶液19.98mL ,即化学计量点前0.1%时:溶液的主要组成为:NaOH (剩余),[]8.70pH L mol 1000598190020020010000OH 16NaOH =⋅⨯=+⨯==---.....c,剩余加入HNO 3溶液20.02mL ,即化学计量点后0.1%时:液的主要组成为:HNO 3(过量), []305pH L mol 1000502200020020010000H 16,过HNO 3......c=⋅⨯=+⨯==--+量突跃pH 范围为8.70~5.30,可用酚酞、甲基红、溴百里酚蓝、中性红等指示剂。
5.有一三元酸,其p K l =2,p K 2=6,p K 3=12。
用NaOH 溶液滴定时,第一和第二化学计量点的pH 分别为多少?两个化学计量点附近有无滴定突跃?可选用何种指示剂指示终点?能否直接滴定至酸的质子全部被中和?解:设三元酸为H 3A ,(1)第一化学计量点时,溶液的主要组成是H 2A -,为两性物质,此时[]46221p p 21pH H 2121a a 1a a =+=+==+)()(,K K K K第一化学计量点附近有突跃,可用甲基橙为指示剂。
(2)第二化学计算点时,溶液的主要组成是HA 2-,为两性物质,此时[]912621p p 21pH H 3232a a 2a a =+=+==+)()(,K K K K第二化学计量点附近有突跃,可用酚酞为指示剂。
(3)因为,8a 103-<cK 所以不能直接滴定至质子全部被中和。
习题4-35.称取粗铵盐1.075 g ,与过量碱共热,蒸出的NH 3以过量的硼酸溶液吸收,再以0.3865 mol·L -1HCl 滴定至甲基红和溴甲酚绿混合指示剂终点,需33.68 mL HCl 溶液,求试样中NH 3的质量分数和以NH 4Cl 表示的质量分数。