最新初中数学命题与证明的技巧及练习题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学命题与证明的技巧及练习题附答案
一、选择题
1.下列命题是真命题的是()
A.若x>y,则x2>y2B.若|a|=|b|,则a=b C.若a>|b|,则a2>b2D.若a<1,则a>1
a
【答案】C
【解析】
【分析】根据实数的乘方,绝对值的性质和倒数的意义等,对各选项举反例分析判断后利用排除法求解.
【详解】A. x>y,如x=0,y=-1,02<(-1)2,此时x2 B. |a|=|b|,如a=2,b=-2,此时a≠b,故B选项错误; C. 若a>|b|,则a2>b2,正确; D. a<1,如a=-1,此时a=1 a ,故D选项错误, 故选C. 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,本题主要利用了实数的性质. 2.下列命题中正确的是(). A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D 【解析】 【分析】 根据相似三角形进行判断即可. 【详解】 解:A、所有等腰三角形不一定都相似,原命题是假命题; B、两边成比例的两个等腰三角形不一定相似,原命题是假命题; C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题; D、有一个角是100°的两个等腰三角形相似,是真命题; 故选:D. 【点睛】 本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理. 3.下列各命题的逆命题是真命题的是 A.对顶角相等B.全等三角形的对应角相等 C .相等的角是同位角 D .等边三角形的三个内角都相等 【答案】D 【解析】 【分析】 分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断. 【详解】 A 、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A 选项错误; B 、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B 选项错误; C 、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C 选项错误; D 、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D 选项正确. 故选D. 【点睛】 本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理. 4.下列命题中是假命题的是( ). A .同旁内角互补,两直线平行 B .直线a b ⊥r r ,则a 与b 相交所成的角为直角 C .如果两个角互补,那么这两个角是一个锐角,一个钝角 D .若a b ∥,a c ⊥,那么b c ⊥ 【答案】C 【解析】 根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题; 根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题; 根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C. 5.下列命题: ①两条直线被第三条直线所截,同位角相等; ②两点之间,线段最短; ③相等的角是对顶角; ④直角三角形的两个锐角互余; ⑤同角或等角的补角相等. 其中真命题的个数是() A.2个B.3个C.4个D.5个 【答案】B 【解析】 【分析】 【详解】 解:命题①两条平行线被第三条直线所截,同位角相等,错误,为假命题; 命题②两点之间,线段最短,正确,为真命题; 命题③相等的角是对顶角,错误,为假命题; 命题④直角三角形的两个锐角互余,正确,为真命题; 命题⑤同角或等角的补角相等,正确,为真命题, 故答案选B. 考点:命题与定理. 6.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设() A.三角形的三个外角都是锐角 B.三角形的三个外角中至少有两个锐角 C.三角形的三个外角中没有锐角 D.三角形的三个外角中至少有一个锐角 【答案】B 【解析】 【分析】 反证法的步骤中,第一步是假设结论不成立,反面成立. 【详解】 解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角, 故选B. 【点睛】 考查了反证法,解此题关键要懂得反证法的意义及步骤 .在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定. 7.下列命题中,是真命题的是() A.将函数y=1 2 x+1向右平移2个单位后所得函数的解析式为y= 1 2 x B.若一个数的平方根等于其本身,则这个数是0和1 C.对函数y=2 x ,其函数值y随自变量x的增大而增大