分式与分式方程复习回顾

合集下载

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

期末复习(一) 分式和分式方程

期末复习(一) 分式和分式方程

5.把分式 x , y , 2 的分母化为 x2-y2 后,各分 x-y x+y x2-y2
式的分子之和是( C )
A.x2+y2+2
B.x2+y2-x+y+2
C.x2+2xy-y2+2
D.x2-2xy+y2+2
6.分式方程 2 +1= x 的解为( x+1 x-1
B
)
A.x=4
B.x=3
C.x=2
A.18x0-(1+15800%)x=1 B.(1+15800%)x-18x0=1 C.18x0-(1-15800%)x=1 D.(1-15800%)x-18x0=1
13.点 A,B 在数轴上,它们所对应的数分别是 3,
4x-1 ,且点 A,B 到原点的距离相等,则 x 的值为
3-2x
(C )
A.1 B.-1 C.4
知甲、乙、丙每次运货量不变,且甲、乙两车单独运完这批
货物所用次数之比为 2∶1.若甲、丙两车各运相同次数运完
这批货时,甲共运了 180 吨;若乙、丙两车各运相同次数运
完这批货时,乙车共运了 270 吨.则这批货共有( C )
A.360 吨
B.450 吨
C.540 吨
D.630 吨
二、填空题(本大题有 3 个小题,共 10 分.17~18 小题各 3 分;19 小题有 2 个空,每空 2 分.把答案写在题中横线上) 17.分式 1 , 2 , 1 的最简公分母是
重难点 5 分式方程的应用 【例 5】 某地电线被雪压断.供电局的维修队要到 15 千 米远的郊区进行抢修,因道路阻塞,一部分人骑自行车先 走,过了 40 分钟道路畅通,其余的人乘汽车出发,结果他 们同时到达.已知汽车的速度是自行车的速度的 3 倍,求两 种车的速度.

分式与分式方程总结

分式与分式方程总结

分式与分式方程总结分式(即有理式)是指由整式构成的比。

它是整式的除法运算,可以用于表示多种数学问题和实际生活中的实际情况。

一、分式分式的一般形式为$$\frac{p(x)}{q(x)}$$,其中$p(x)$和$q(x)$都是整式,且$q(x)\neq 0$。

分子$p(x)$表示分式的被除式,分母$q(x)$表示分式的除式。

可以将分式看作是两个整式的比。

例如,$\frac{2x^2-5x+3}{x-2}$就是一个分式,其中分子为$2x^2-5x+3$,分母为$x-2$。

分式可以进行各种运算,如加法、减法、乘法、除法等。

但需要注意的是,在进行运算时需要满足一定的条件,比如分母不能为0。

二、分式方程分式方程是指带有分式的方程。

其一般形式为$$\frac{p(x)}{q(x)}=r(x)$$,其中$p(x)$、$q(x)$和$r(x)$都是整式,且$q(x)\neq 0$。

分式方程中含有未知数$x$,需要通过解方程求出$x$的值。

分式方程的解即是满足等式的$x$的值。

例如,$\frac{2x+1}{3}=\frac{x-2}{4}$就是一个分式方程,需要找到满足等式的$x$的值。

解分式方程的方式与解一元一次方程类似,可以根据方程的性质进行变形、合并同类项等操作,使方程变为更简单的形式,最终得到$x$的值。

三、分式与分式方程的应用分式及分式方程在数学问题和实际生活中的应用非常广泛。

在数学中,分式可以用于表示多种比例关系,如物体的扩大和缩小、速度的计算等。

分式方程则常用于求解实际问题,如比例问题、图形问题等。

在实际生活中,分式及分式方程也有很多应用。

比如在金融领域,分式方程可以用于计算利率、折扣、股票交易等。

在工程领域,分式方程可以用于计算物体的测量、建模等。

总之,分式与分式方程是数学中重要的概念,具有广泛的应用。

理解和掌握分式及分式方程的知识,对于解决数学问题和应用数学知识于实际生活中都具有重要的意义。

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。

【注意】A 、B 都是整式,B 中含有字母,且B ≠0。

2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。

A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。

3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。

(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。

(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。

(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。

【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。

【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。

4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nn aa-=。

5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。

【注意】不论是分式的哪种运算,都要先进行因式分解。

6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。

分式与分式方程知识点总结

分式与分式方程知识点总结

分式与分式方程知识点总结分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。

分式可以表示为a/b的形式,其中a为分子,b为分母。

分式的乘法和除法的法则:1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。

即(a/b)*(c/d)=(a*c)/(b*d)。

2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分式乘法法则进行运算。

即(a/b)/(c/d)=(a*d)/(b*c)。

分式的加法和减法的法则:1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行加法运算。

即a/b+c/d=(a*d+b*c)/(b*d)。

2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行减法运算。

即a/b-c/d=(a*d-b*c)/(b*d)。

分式的化简:将分式化简为最简形式的步骤如下:1. 如果分子和分母有相同的公因子,可以约分掉。

即a/b =(a/gcd(a,b)) / (b/gcd(a,b))。

2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简为整数。

即a/b=a/b,其中a能整除b。

3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以使用因式分解后的形式来化简分式。

分式方程是包含一个或多个分式的方程。

求解分式方程的一般步骤如下:1.将方程两边的分式通过相乘分母的方法,化简为有理式。

2.对于有理式的方程,可以通过解方程的方法求出x的值。

3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不满足,则该方程无解。

在求解分式方程时,需要注意以下几个问题:1.分母不能为0,需要排除分母为0的解。

2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,避免出现无意义的解。

3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。

中考分式及分式方程专题复习

中考分式及分式方程专题复习

中考分式及分式方程专题复习1.分式及分式方程1.1 分式分式可以表示为 A/B 的形式,其中 A 和 B 都是整式。

如果 B 中含有字母,则这个式子就叫做分式。

可以表示为 A/B = MA/MB (其中 M 是不等于零的整式),也可以表示为 A/B = a/(a-b) 或 a/(a+b)。

1.2 分式的基本性质分式有加减乘除四种运算法则。

加减法中,分子相同的分式可以直接相加或相减;乘法中,分子和分母分别相乘;除法中,将除数取倒数,再和被除数相乘。

1.3 约分和通分根据分式的基本性质,可以将分式的分子和分母中的公因式约分,也可以将异分母的分式化成与原分式相等的同分母分式。

2.分式方程2.1 分式方程的概念分母中含有未知数的有理方程叫做分式方程。

2.2 解分式方程的基本思想方法解分式方程的基本思想方法是将分式方程转化为整式方程,然后采用换元法进行求解。

在解方程的过程中,可能会产生增根,因此解得的结果必须进行检验。

2.3 列分式方程解应用题的步骤和注意事项列分式方程解应用题的一般步骤为:设未知数、列代数式、列方程、解方程并检验、写出答案。

在检验时,需要考虑题目中的实际情况,不符合条件的答案应该舍去。

3.选择题1.答案为 -1/(x+1) 的分式,x 的值为(B)0.2.化简 -1/(12x+1) 可得(B)-2/(2x-1)。

3.计算错误的是(D)b-a/(2a+b) = (2a+b)/(7a-b)。

4.设 m>n>0,m+n=4mn,则(m-n)/(m+n) = (A)2/3.5.把分式方程 x/(x-2) + 1/(2x) = 1/x 两边同乘以 2x(x-2)。

分式的四则运算与分式方程小结复习

分式的四则运算与分式方程小结复习

练习小结
1、同分母分式加减法则是: 同分母的分式相加减,分母不变,把分子相加减.
2、学会用转化的思想将异分母的分式的加减转化成同分母分 式的加减法. 3、以后,不再犯像小明那样不找最简公分母的错误. 课后作业:
习题3.4
1、2、3、4
习题分析: 1、确定几个分式的最简公分母的方法: (1)系数:各分母系数的最小公倍数; (2)字母:凡各分母中出现的不同字母 都要取到;(即所有字母都要取到) (3)字母的指数:相同因式取指数最高的。 2、试确定下列分式的最简公分母:(分母中 虽然有的因式是多项式,但仍然是积的形式) 1 y x ——— , ——— , (x+y)(x-y) ———— 2 x(x+y) y(x-y)
解: (2)最简公分母是 ( x 5)(x 5)
3x 2x (2) x5 与 x 5
2 x 10x 2x 2 x( x 5) 2 x 5 ( x 5)(x 5) x 25
2
3 x 15x 3x 3 x( x 5) 2 x 5 ( x 5)(x 5) x 25
检验: 当 x = 2 时,
x-2 = 2-2 = 0 所以,x=2 是原方程的增根 原方程无解
在这里,x = 2不是原方程的根,因为它使得原分式方程的 分母为零,我们称它为原方程的 增根 。
产生增根的原因是,我们在方程两边同乘了一个可能 使分母为零的整式。
复习
1.分式的基本性质
尹巷中学徐效忠
自主学习(3) 1.例题3 化简下列 .思考 分式: x 2 1 分子、分母都是单 a 2 bc
(1) ab ;

x 2x 1
2
.
a 2 bc ab ac ac 解 :) (1 ab ab

分式与分式方程辅导讲义

分式与分式方程辅导讲义

分式与分式方程【知识框架】【知识点&例题】知识点一:分式的基本概念一般地,如果,表示两个整式,并且中含有字母,那么式子B A 叫做分式,为分子,为分母。

知识点二:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于的整式,分式的值不变。

字母表示:C B C••=A B A,C B C÷÷=A B A ,其中、、是整式,。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B B AB B --=--=--=AAA注意:在应用分式的基本性质时,要注意这个限制条件和隐含条件B ≠0。

知识点三:分式的乘除法法则分式乘分式:用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:db c a d c b a ••=•分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为cc ••=•=÷bd a d b a d c b a 分式的乘方:把分子、分母分别乘方。

式子n n nb a b a =⎪⎭⎫ ⎝⎛巩固练习:1.若分式的值为0,则x 的值为 .2.当= 时,分式的值为零.3.计算x xy y xy y xy y x xy y22222222++-÷+-+4.先化简,再求值:其中.242x x --x 26(1)(3)x x x x ----2291333x x x x x ⎛⎫-⋅ ⎪--+⎝⎭13x =5.先化简,再求值:,其中.6、先化简,再求值:,其中7、解下列方程:(1)(2)(3) (4)532224x x x x -⎛⎫--÷ ⎪++⎝⎭3x 22144(1)1a a a a a-+-÷--1a =-3522x x =-223444x x x x =--+22093x x x +=-+35012x x -=+9、在年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地千米.抢修车装载着所需材料先从供电局出发,分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的倍,求这两种车的速度。

分式与分式方程知识点

分式与分式方程知识点

分式与分式方程知识点分式是数学中的一个重要概念,它是由两个整数的比构成的表达式。

在分数中,分子表示被分割的数量,分母表示将整体划分的份数。

掌握好分式的相关知识,对于解决各种实际问题以及在后续数学学习中起到至关重要的作用。

1. 分式的基本运算在进行分式的基本运算时,需要掌握分式的相加、相减、相乘和相除四种基本运算法则。

首先,当分式的分母相同的时候,可以直接将分子相加或相减。

例如,分式 1/4 + 2/4 = 3/4;分式 5/7 - 3/7 = 2/7。

其次,当分式的分母不同但可以化为相同分母的时候,可以通过找到最小公倍数,将分数化为相同的分母之后再进行运算。

例如,分式 1/2 + 1/3 可以通过最小公倍数为6,将分式转化为 3/6 + 2/6 = 5/6。

另外,分式的相乘和相除运算需要分别将分子与分母相乘或相除。

例如,分式 2/3 * 4/5 = 8/15;分式 3/7 ÷ 1/4 = 12/7。

2. 分式方程的解分式方程是由分式构成的方程,它的未知数通常出现在分数的分子或分母中。

解分式方程的关键在于消除分母,使方程转化为一般方程,从而求解未知数。

解分式方程的基本步骤如下:(1) 消去分母。

通过将方程两边同乘以分母的最小公倍数,可以将方程中的分母消除,形成原方程的等效方程。

例如,对于分式方程 1/x + 1/(x+1) = 1/2,可以将方程两边同乘以2x(x+1),得到 2(x+1) + 2x = x(x+1)。

(2) 解一元方程。

将经过一次化简后的方程转化为一般的方程形式,并进行进一步的求解。

对于上述的等效方程,按照一般方程的解法进行处理,得到 x = 2。

(3) 验证解的可行性。

将得到的解代入原方程进行验证,确保解的可行性。

对于分式方程 1/x + 1/(x+1) = 1/2,将 x = 2 代入方程左侧得到 1/2 +1/3 = 1/2,等式成立。

因此, x = 2 是原方程的解。

期末专题复习之分式和分式方程

期末专题复习之分式和分式方程

期末专题复习 分式知识点1 分式的定义我们将 的式子叫做分式。

练习 下列各式是分式的打√,不是分式的打╳.①23-x ② a 21 ③222n m - ④x 1 ⑤π1 ⑥222yx x- ⑦)(1y x x + ⑧1-xy 知识点2 分式有意义的条件当分式的 时,分式有意义。

练习 x 取何值时,下列分式有意义? ①21+x ②x y x 3- ③)3)(1(2-+-x x x ④422-+x x⑤x x x 312+- ⑥112+x ⑦yx y x +- 知识点3 分式的值为零的条件 当分式的分子 ,分母 时,分式的值为零。

练习 x 取何值时,下列分式的值为零?①31-+a a ②3)2)(1(+++a a a ③112--a a ④xx x 3922-- 知识点4 分式的基本性质分式的分子、分母同时 ,分式的值不变。

练习 1. 利用分式的基本性质填空:①x x x x 3322+=+ ②123692-=-x x x xy ③2)(b a b a b a -=+- ④244422+=+--x x x x 2. 约分:(1)acab1510-(2)y x y x 322.36.1- (3)112--m m(4)y x x xy y -+-24422(5)322)(27)(12b a a b a --(7)22164mmm -- (8)2442-+-x x x知识点5 分式的乘除运算乘法法则:分式乘以分式,把它们的分子、分母 .除法法则:分式除以分式,将除式中的分子、分母 .用符号表示为:bd ac d c b a =⨯ bcadc d b a d c b a =⨯=÷练习 1.填空:①=-⋅)29(283x yy x __ ____. ②=+-÷-xy x x xy x 33322__ ____. ③=+÷+)(1b a b a ___ ___. ④=--⨯++⋅+aba b a b ab a b ab 2222222 . 2. 计算: ①232285xy yx y ⨯ ② n m m n m m n m n m --÷--242222③11.11)1(122+-÷--x x x x④ 2229425523ab a b a a --⨯++⑤a b bab a b ab a b a a 222222242⨯+÷+-- ⑥x x x x x x --⨯-÷+--32)3(44622知识点6 分式的加减运算法则 同分母分式相加减,分母不变,分子相加减.异分母分式相加减,先通分,变成同分母分式后再加减.用符号表示为:b c a b c b a ±=± bdbcad bd bc bd ad d c b a ±=±=±练习 计算:①x x x x x -+--+224222 ② xx x x x x x x +---+--+++35223634222 ③b a aa b b b a b a ---+-+22 ④xyy x xy x y -+-22 ⑤412234272--+--x x x ⑥941522333222-++-++a a a a知识点7 分式的混合运算分式的混合运算,先乘方,再乘除,最后算加减,有括号的先算括号里面的. 练习 ① yy y y y yy y 4)44122(22-÷+--+-+ ② )()(nm mnm n m mn m +-÷-+③111212+-÷⎪⎭⎫ ⎝⎛+-x x x ④2211yx xy y x y x -÷⎪⎪⎭⎫ ⎝⎛++-⑤(x -x 1-x 2)÷(1-x 1) ⑥221()a ba b a b b a-÷-+-⑦ 111121122+-÷⎪⎪⎭⎫ ⎝⎛-+-++x x x x x x ⑧先化简,再求值:⎝⎛⎭⎫1+ 1x -2÷ x 2-2x +1 x 2-4,其中x =-5.知识点8 整数指数幂 公式 :n nx x1=- . 如:9131322==- ; 3232321yx y x y x =⋅=-. 练习 填空:3)(--a =___ ___ ; =-2)3(__ ____ ;=--3)51(____ __.=-+-01)π()21(__ ____ ; -1+(3.14)0+2-1=___ ___.计算:...①)()(32232b a b a ---⋅ ② xy z y x ⋅--2325)( ③22332)()5(-----⋅mn n m知识点9 科学记数法通常将一个很大 (或很小)的数表示成n a 10⨯(a ≤1<10)的形式. 练习..用科学记数法表示: (1)0.000 16 (2)-0.000 031 02 (3)104 000 000 (4)—0.000 003知识点10 分式方程① 解分式方程时,方程各项都乘以最简公分母(没有分母的项也要乘). ② 解分式方程,必须检验.凡是使最简公分母为0的根,必须舍去. 练习 确定下列方程中的最简公分母: ①1712112-=-++x x x ②625--=-x x x x ③1275723=-+-xx x ④y y y y 2434216252--=+-+解下列分式方程: ①34231--=+-x xx ②3625+=-x x③ 45411--=--x xx ④1211422+=+--x x x x x ⑤ 1412112-=-++x x x ⑥27x x ++23x x -=261x -知识点11 分式方程应用题步骤: 审-----设----列----解----验-----答 可以借助自画的表格列方程. 练习 根据题意列方程:1. 某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,求原计划每天挖多少米.设原计划每天挖x 米.2. 一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,求汽车先后行驶的速度. 设汽车之前行驶的速度为x 千米/时.3. 一个车间加工720个零件,预计每天做48个,就能如期完成,现在要提前5天完成,每天应该做多少个?设每天应该做x 多少个. 4. 甲、乙两同学学习电脑打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同,已知甲每分钟比乙多打12个字,问甲、乙两人每分钟各打字多少个? 设甲每分钟打字x 个.列方程解应用题:某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?。

八年级数学下册《分式与分式方程》复习指导(含答案)

八年级数学下册《分式与分式方程》复习指导(含答案)

《分式与分式方程》 复习指导一、知识结构梳理二、 知识点精讲 1、分式及相关概念:如果A ,B 分别表示两个整式,并且分母B 中含有字母,那么式子B A 就叫分式. 2、当分式的分母等于零时,分式无意义,当分式的分母不等于零寸,分式有意义,当分子等于零 且分母不等于 零时,分式的值为零.3、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,其值不变.例如由分式b a 一定可以变形为2bab 但由分式b a 就不一定变形为ab a 2,这是因为b 分式的分母,一定有0 b 而a 是分子,有可能等于0.4、分式的约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.如果一个分式的分子或分母没有公因式,则该分式叫做最简分式.5、分式的通分:把几个异分母的分式化为与原来相等的同分母的分式的过程称为分式的通分.分式通分的关键是确定几个分式的最简公分母,找最简公分母要注意以下几点:①各分母所有因式的最高次幂指凡出现的字母或含字母的式子为底数的幂的因式选取指数最大②如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数.难点:正确理解分式的概念,在分式的分子与分母同时乘以或除以整式A 时,应首先判断A 是否为0,分子、分母中的系数都是分数(或小数)时,要把分式化简,都是分数时,应把分子、分母都乘以分子、分母中各系数分母的最小公倍数如y x y x y x y x y x y x 43636123131241213134121+-=⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛-=+-,分子、分母中的系数都是小数时,应把分子、分母都乘以可使系数互质的整数. 如()xy x x y x y y x 723107.0102.03.07.02.03.0+=⨯⨯+=+ 6、分式的乘法法则:用分子相乘的积作为积的分子,用分母的积作为积的分母.分式的除法法则:两个分式相除,把除式的分子、分母颠倒位置后,再与被除式相除.7、分式的加减法则:同分母分式的加减,分母不变,分子相加减;异分母分式的加减,先通分,化成同分母分式,然后再加减.8、分式的混合运算分式的混合运算的运算顺序与分数类似,先乘方,再乘除,最后算加减,遇到括号,应先算括号内的,后算括号外的,同级运算,从左到右,依次运算,如果能用公式或运箅律运算,可先用公式或运箅律运算.9、分式方程:分母中含有末知数的方程,叫做分式方程.10、分式方程的解法步骤:去分母,去括号,移项,合并同类项,系数化为1,检验.因为分式方程可能产生增根,所以解分式方程最后一步“检验”,检查所解整式方程的根到底是不是分式方程的根.产生增根的原因:(1)解方程出现增根,这是一个新问题,事实上,对于分式方程,当分式中分母的值为零时没有意义.所以分式方程不允许末知数取那些使分母的值为零的值.即分式方程本身隐含着分母不为零这一条件,当我们通过去分母把分式方程转化为一元一次方程时,这种限制被取消了,于是就可能出现使原分式方程的分母为零的根,即“增根”.(2)验根的方法,因为解分式方程可能出现增根,所以验根是必要的,验根的方法有两种,一种是把求得的未知数的值代入原方程进行检验,这种方法道理简单,而且可以检查解方程时有无计算错误,另一种是把求得的末知数的值代入最简公分母,看分母的值是否为零,这种方法比较简便,但不能检查解方程过程中出现的计算错误.11、列分式方程解应用题的方法步骤(1)审:分析问题,寻找已知、未知及相相等关系,(2)设:设恰当的未知数(3)列:根据相等关系列出分式方程(4)解:求出所列方程的解(5)验:首先检验所求的解是不是分式方程的解,然后检验所求的解是否与实际符合(6)答:写出答案.三、 要点点拨1、在理解分式的概念时,不要轻易约分(1) 判断一个式子是否为分式,应在对式子不约分的基础上看分母中是否含有字母,例如,x x 22是分式,若把x x 22化为2x 后,再把判断它不是分式就错了. (2) 在确定分式有无意义的条件时,也不能约分后求解.例如,当x 为时,分式()()()322-++x x x 有意义,若把它划为()31-x 后,解03≠-x 得3≠x 时原分式有意义,得出的结果是错误的,因为当2-=x 时,()()()322-++x x x 也无意义,这样就容易造成“漏解”.2、分式运算时注意三点(1) 注意运算顺序,例如,计算()32231-+⋅+÷-x x x x ,应按照同一级运算从左到存依次计算的法则进行.(2) 通分时不能丢掉分母,例如,计算11---x x x ,有的同学通分时消去分母,出现了这样的解题错误:原式=11-=--x x 这一点要引以为戒.(3) 最后的运算结果应化为最简分式.四、数学思想方法总结1、类比思想:通过两个或两类研究对象进行比较,找出它们之间某些属性的相同点或相似焱,依次为依琚推测它的其他属性这种推理方法称为类比.例如:同分数进行类比研究,有助于对分式有关知识的发生,发展过程的理解,如分式的意义,四则运算,通分,约分等.2、转化思想:就是设法把待解决的问题通过某种转化归结到一类己经斛决或容易解决的问题,最终获得解原题的一种手段或方法.例如:通常把分式方程通过去分母转化为一元一次方程体现了转化的数学思想.3、数学建模思想:是运用数学知识解决实际问题,首先要经过观察分析,把实际问题转化为数学问题,通过对数学问题的求解,来解释原来的现实世界中的某些现象.例如列分式方程解应用题,其核心在于将实际问题中的数量关系抽象成分式,即建立数学模型,并合理转化为分式方程的问题,从而达到解决实际问题的目的.五、常见考点透视考点1:考查分式有意义的条件例1、(2007河南)使分式2+x x 有意义的x 的取值范围为( ) A .2≠x B .2-≠x C .2->x C .2<x 分析:对分式的概念,中考主要考查分式BA 中字母取什么值时有意义、无意义和值为零的问题.当B ≠0时,分式B A 有意义;当B=0时,分式BA 无意义;当A=0且B≠0时,分式B A =0.由此,依题意应选B 点评:若分式有意义,则分母一定不等于零,若分式的分母等于0,则分式无意义.考点2:考查分式的基本性质例2、(2007无锡) 化简分式2b ab b +的结果为( ) A.1a b + B.11a b + C.21a b + D.1ab b+ 分析:根据分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变这一性质,2b ab b +=()ba b a b b +=+1故应选A . 点评:在应用分式的基本性质解题时,要特别注意性质中都和同这两个字的含义,有不少同学解这类问题时,忽视这一点,犯上述不该犯的错误,望引起重视.考点3:考查条件求值例3、(1)(2007江苏)己知实数x 满足01442=+-x x 则代数式xx 212+的值为(2)(2006江苏扬州)先化简412312-+÷⎪⎭⎫ ⎝⎛-+a a a 然后请你给a 选取一个合适的值,再求此时原式的值.析解:(1)仔细观察考题不难形成两种解题通道,一是从条件01442=+-x x 入手,通过变形得x x 4142=+从而有2212=+xx (注意理解这里的0≠x )二是从所术代数式入手即2242142122==+=+xx x x x x (2)化简得原式=a+2,01,02≠+≠-a a Θ且042≠-a任取2±和1-以外的数为x 值如取a=3原式=a+2=5点评:(1)寻找规律简化运算是合理计算、合理推理的必然要求(2)求值具有开放性,自取的值必须使原每个分式都有意义.考点4、考察分式的运算分式的运算主要包括分式的计算、化简与求值.这些需要应用较多的基础知识,解题方法多样,有的变形极易混淆,故特别要注意每步运算的根据,选择合理的运算途径,严格依据运算法则、顺序和运算性质进行.例4、(1)(2007北京)计算:22111x x x ---. (2)(2007绵阳)化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围 分析:(1)应注意运算顺序和乘法公式的运用,通分时不能忽略分数线的括号作用;(2)需按要求先化简,再求值,化简时可先将括号里通分运算后再做乘法,也可由其特点运用运算律直接做乘法约分化简.解:(1)原式=.解:22111x x x ---21(1)(1)1x x x x =-+--2(1)(1)(1)x x x x -+=+-1(1)(1)x x x -=+- 11x =+. (2)原式=11+x ,x 的取值范围是x ≠-2且x ≠1的实数. 例5.(2007荆门) 先化简,再求值:(22ab a b +)3÷(322ab a b-)2·[12()a b -]2,其中a =-12,b =23. 分析: 分式乘方与乘除的混合运算,一般情况下先算乘方,再算乘除,并把除法统一改为乘法,以便同时进行约分.利用分式的乘除运算先化简原式,再代入化简后的式子求值.解 : (22ab a b +)3÷(322ab a b-)2·[12()a b -]2 =233(2)()ab a b +·22232()()a b ab -·214()a b - =3638()a b a b +·2226()()a b a b a b +-·214()a b - =2a a b +.当a =-12,b =23时,原式=12()21223⨯--+=-6. 考点5:考查解分式方程例6、解下列方程:xx x x -++=--212253 析解:先确定最简公分母,再两边同乘以最简公分母,将原方程化为整式方程,求出根并检验即可.原方程即为212253-+-=--x x x x 方程两边同乘以(x-2),去分母,得:3x-5=2(x-2)-(x 十1)整理,得x=0检验:当x=0时,x-2≠0所以x=2是原方程的根.例7、(2007南充)用换元法解方程41122=+++x x x x ,可设y=x+x 1,则原方程化为关于y 的整式方程是_________. 分析:应注意配方法和整体思想的运用,即2)1(1222-+=+x x x x . 解:设y=x+x1,则原方程化为y 2-2+y=4,即应填y 2+y-6=O . 点评:去分母的关键是找出最简公分母,将分式方程转化为整式方程,但还应注意:(1)灵活运用分式符号法则,有时将能使最简分母更简单,(2)方程两边同乘以最简公分母时,别忘了常数项相乘(3)当去分母时,分数线消失,应在分子部分添上括号,并且要特别注意符号.考点6:考查列分式方程解应用题例8.(2007泰安)某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?析解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 解得:5x =经检验5x =是原方程的解 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元例9.(2007日照市)今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?析解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200.答:第五次提速后的平均速度为160公里/时,第六次提速后的平均速度为200公里/时.点评: 列分式方程解情景应用问题是中考常考的热点问题.首先要弄清题意,找到等量关系,再根据题意,正确地列出方程,注重解题过程中的检验,不可忽略考点7:探索创新应用例10.(2007舟山)给定下面一列分式:3579234,,,,x x x x y y y y --…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律.试写出给定的那列分式中的第7个分式.分析:通过观察可以看到第二个分式除以第一个分式等于y x 2-,第三个分式除以第二个分式等于y x 2-,…,以此类推,可得出规律.解:(1)规律是任意一个分式除以前面的分式恒等于y x 2-(2)第7个分式应该是715y x例11. (2007邵阳市)对于试题:“先化简,再求值:132--x x -11-x ,其中x =2”某同学写出了如下的解答:解:132--x x -11-x =)1)(1(3-+-x x x -11-x =)1)(1(3-+-x x x -)1)(1(1-++x x x =(x -3)-(x +1)=x -3+x +1=2x -2.当x =2时,原式=2×2-2=2她的解答正确吗?如不正确,请你写出正确解答.解析:本题这位同学上面的解法是错误的,因其在求解的过程中出现两个错误:①是在第三步时忽略了分母,②是在第四步又忽略了去括号时括号内的各项都变号的规定.原式应等于132--x x -11-x =)1)(1(3-+-x x x -11-x =)1)(1(3-+-x x x -)1)(1(1-++x x x =)1)(1()1(3-++--x x x x =)1)(1(4-+-x x ,所以当x =2时,原式的值应为-34. 点评:探索规律和创新类问题,是课改后出现的新题型,由于它具有考查能力,拓展思维等优点,成了近几年热点题型,值得大家普遍关注和重视.。

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用

分式知识点总结与分式方程的应用一、分式的定义和基本性质分式是指两个整数的比的形式,分子和分母都可以是整数。

分式的一般形式为a/b,其中a为分子,b为分母。

分式也可以是带有字母的表达式。

1.分式的定义:分式表示两个数的比。

分子表示比的被除数,分母表示比的除数。

2.分式的基本性质:①分式的值是确定的:分式的值只与分子和分母有关,而与分子和分母的选取方法无关。

②分式的约定:分式的分母不能为0,即b≠0。

③分式的约分:分式a/b可以约分为最简分式的条件是a和b都有因数c,这样a和b都可以被c整除。

④分式的最简形式:分式a/b的最简形式是分子分母互为质数⑤分式的倒数:若分式a/b不等于0,则它的倒数为b/a。

⑥分式的乘法:若a/c和b/d是两个非零分式,则a/c与b/d的乘积为(a·b)/(c·d)。

⑦分式的除法:分式a/b除以c/d可真分式以d/c乘,得(a·d)/(b·c)。

⑧分式的加法:根据通分的定义,可得a/c+b/d=(a·d+b·c)/(c·d)⑨分式的减法:根据通分的定义,可得a/c-b/d=(a·d-b·c)/(c·d)分式方程的一般形式为:分子中含有未知数的为分式方程。

例如:2/x=3/41.解分式方程的基本步骤:(1)去分母:将分式方程中的每个分式的分母去掉,得到一个整式方程。

(2)解整式方程:使用解整式方程的方法解方程。

(3)检验解:将求得的解代入原分式方程,检验是否满足。

2.分式方程的常见类型:(1)一次分式方程:分子和分母的最高次幂都是1(2)整式方程:分式方程中的分子和分母都是整式。

(3)二次分式方程:分子和分母的最高次幂都是2(4)退化分式方程:当方程中出现0/0的情况,方程可能退化为整式方程或无解。

3.分式方程的注意事项:(1)除法的解答有条件:可能有解,也可能无解。

(2)变量的取值范围:要满足约束条件。

分式与分式方程知识点总结

分式与分式方程知识点总结

分式与分式方程专题一、分式基本知识1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。

(1)分式与整式最本质的区别:分式的分母必须含有字母,即未知数;分子可含字母可不含字母。

(2)分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。

(3)分式的值为零的条件:分子为零且分母不为零。

2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。

用式子表示 其中A 、B 、C 为整式(0≠C ) (1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式。

(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。

(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。

3、分式的通分和约分:关键先是分解因式(1)分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。

(2)最简分式:分子与分母没有公因式的分式(3)分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。

(4)最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。

4、分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。

注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分C B C A B A ⋅⋅=CB CA B A ÷÷=鑫鹏学校母中的部分项的符号。

5、分式的运算:(1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。

(2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(3)分式乘方法则:分式乘方要把分子、分母分别乘方。

(4)分式乘方、乘除混合运算:先算乘方,再算乘除,遇到括号,先算括号内的,不含括号的,按从左到右的顺序运算(5)分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。

分式与分式方程知识总结

分式与分式方程知识总结

第五章分式与分式方程知识总结【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子、分母中含有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母中的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘以适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算,其中是整式,.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算,其中是整式,.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.。

第五章-分式与分式方程单元复习

第五章-分式与分式方程单元复习

第五章分式与分式方程一、认识分式知识点一分式的概念1、分式的概念从形式上来看,它应满足两个条件:(1)写成的形式(A、B表示两个整式) (2)分母中含有这两个条件缺一不可2、分式的意义(1)要使一个分式有意义,需具备的条件是(2)要使一个分式无意义,需具备的条件是(3)要使分式的值为0,需具备的条件是知识点二、分式的基本性质分式的分子与分母都乘以(或除以)同一个分式的值不变用字母表示为AB=,A M A A MB M B B M⨯÷=⨯÷(其中M是不等于零的整式)知识点三、分式的约分1、概念:把一个分式的分子和分母中的公因式约去,这种变形称为分式的约分2、依据:分式的基本性质注意:(1)约分的关键是正确找出分子与分母的公因式(2)当分式的分子和分母没有公因式时,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式。

(3)要会把互为相反数的因式进行变形,如:(x--y)2=(y--2)2二、分式的乘除法【巩固训练】1、(2013四川成都)要使分式51x-有意义,则x的取值范围是( )(A)x≠1 (B)x>1 (C)x<1 (D)x≠-12、(2013深圳)分式242xx-+的值为0,则x的取值是A.2x=-B.2x=±C.2x=D.0x=3、(2013湖南郴州)函数y =中自变量x的取值范围是()A. x>3 B.x<3 C.x≠3D.x≠﹣34.(2013湖南娄底,7,3分)式子有意义的x的取值范围是()A.x≥﹣且x≠1B.x≠1C.5.(2013贵州省黔西南州,2,4分)分式的值为零,则x的值为()A.﹣1 B.0 C.±1 6.(2013广西钦州)当x= 时,分式无意义.7、(2013江苏南京)使式子1+1x-1有意义的x的取值范围是。

8、(2013黑龙江省哈尔滨市)在函数3xyx=+中,自变量x的取值范围是.9、(2013江苏扬州)已知关于x的方程123++xnx=2的解是负数,则n的取值范围为.10、(2013湖南益阳)化简:111xx x---= .11、(2013山东临沂,6,3分)化简212(1)211a a a a +÷+-+-的结果是( )A .11a - B .11a +C .211a -D .211a +12、 (2013湖南益阳)化简:111x x x ---= . 13、(2013湖南郴州)化简的结果为( )A .﹣1B . 1C .D .14、(2013湖北省咸宁市)化简+的结果为 . 15、(2013·泰安)化简分式的结果是( )A .2B .C .D .-216(2011年四川乐山).若m 为正实数,且13m m-=,221m m-则= 17(2013重庆市(A ))分式方程2102x x-=-的根是( )A .x =1B .x =-1C .x =2D .x =-218、(2013湖南益阳)分式方程x x 325=-的解是( ) A .x =3B .x =3-C .x =34 D .x =34-19、(2013白银)分式方程的解是( )A . x =﹣2B . x =1C . x =2D . x =320、(2013江苏扬州)已知关于x 的方程123++x nx =2的解是负数,则n 的取值范围为 . 21.(2013山东临沂)分式方程21311x x x+=--的解是_________________. 22. (2013广东省)从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.23、(2013湖北孝感,19,6分)先化简,再求值:,其中,.24.(2013江苏苏州,21,5分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =3-2. 25.(2013贵州安顺,20,10分)先化简,再求值:12a)111(2++÷+-a a a ,其中a =3-1.6. (2013山东德州,18,6分)先化简,再求值:244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中a =2-1. 26、.(2013湖南永州,19,6分)先化简,再求值:22111121x x x x x x x ++⎛⎫+÷ ⎪---+⎝⎭, 2.x =其中 27.(2013广东珠海,12,6分)解方程:.28、(2013年陕西)(本题满分5分)解分式方程:12422=-+-x xx . 29.(2013山东日照,9,4分)甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A .8B .7C .6D .530、(2013深圳,8,3分)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他。

分式及分式方程复习讲义

分式及分式方程复习讲义

分式及分式方程教学目标:1.掌握分式概念、性质及运算.2.掌握分式方程的概念、解法、及增根问题.一、知识回顾知识点1:分式及分式概念分式:分母还字母的代数式:易辨错的分式有:0x ,2x x ,11x+等.分式方程:分母含字母的方程叫分式方程.知识点2:分式性质易错点1 约分,找公因式,同时约去分子分母的公因式.用的是分式的除法性质 易错点2 通分,找最简公分母,化异分母为同分母,用的是分式的乘法性质.知识点3:解分式方程1.思路:去分母,变分式方程为整式方程求解,记得验根.2.易淆点(1)把分子分母中的分数,小数变成整数时,是分子分母同时扩大多少倍,用的是分式的性质; (2)去分母,方程的每项同乘分母的最简公分母,用的是等式性质; 3.增根问题增根的概念:是整式方程的根,同时又使最简公分母为0的根叫增根,必须满足这两个条件. 常考题型:求含参数的增根问题. ◆课前热身1.下列式子中,哪些是分式?哪些是整式?①x 1,②3x ,③5342+b ,④352-a ,⑤22y x x -,⑥ 121222+-++x x x x , ⑦()b a c -÷,⑧x x 2,⑨2)1(--x 分式:____________________;整式___________________; 2. 当x ___________时,分式43x x --有意义;当x ____时,分式422--x x 无意义. 3. 若分式142+-x x 的值为0,那么____________.4. 填空(1)223(__)22x x x x =++; (2)2(____)()x y x y x y -=++; (3)2(____)a ab a bab --=5. 化简:232312a b ab -=__________;223(1)9(1)a b m ab m --=__________ ;(3)22211m m m -+-=_____________. 6. 计算:223286a y y a ⋅=_______;a a a a 21222+⋅-+=___________. 7. 1112+-+a a a =_____________;21422---a a a =______________. 8.下列关于x 的方程,是分式方程的是( )A .23356x x ++-=B .137x x a -=-+C .x a b xa b a b-=- D .2(1)11x x -=- 9. 若关于x 的分式方程311x a x x --=-有增根,则a =____________. 10.解下列分式方程:512552x x x+=--;分式部分 二、例题辨析例1 若分式24xx +的值为正数,则x 的取值范围是( ) A. x >0 B. x >-4 C. x ≠0 D. x >-4且x ≠0练习 (1)当x ________时,分式xx 61212-+的值为负数.例2 如果把分式xx y+中的x 和y 都扩大3倍,那么分式的值( ) A .不变 B .变大3倍 C .缩小3倍 D .无法确定练习 (1)把分式yx x +2中的x 和y 都扩大3倍,分式值____________.(2)不改变分式的值,把分子、分母的系数化为整数.①y x yx 41313221+- ②ba ba +-04.003.02.0例3 计算(1)3131+--x x练习:(1) a a --+242 (2) x x x ----13132例4 化简求值:若x =33,求233()22x x x x x-÷+--的值.练习 化简求值3,32),()2(222222-==--+÷+---b a b a a b a a b ab a a b a a 其中.三、归纳总结1.区别分数与分式:分数是一个具体的数,是整式.分式的分母一定含有字母,是分式,2.分数与分式在形式上相近,性质上也类似,所以由熟悉的分数来类比学习和理解分式的性质和运算.3.分式的运算中,分子分母能因式分解的要先分解因式.四、拓展延伸例5 1.如果分式111a b a b+=+,那么a b b a +的值为( ). A.1 B.-1 C.2 D.-22.已知:511=+y x ,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 11+.练习 1.若实数a 、b 满足:2a bb a+=,则22224a ab b a ab b ++++的值为_________ . 例6 已知2310x x -+=,求441xx +的值.练习 若x +1x =3,求2421x x x ++的值.分式方程部分例7 解下列分式方程(1)x x 311=-; (2)0.2100.10.3x x-=-; (3)114112=---+x x x ; (4)x x x x -+=++4535提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.练习 解下列方程:(1)021211=-++-xxx x ; (2)0.4230.10.3x x x -=--;例8 若关于x 的分式方程3132--=-x mx 有增根,求m 的值.练习 1. 若分式方程()1516-+=-x x x x 有增根,则增根是( ) A. x =1 B. x =1和x =0 C. x =0 D. 无法确定2.若关于x 的方程21x x x +--13x =33x kx +-有增根,求增根和k 的值.3. m 为何值时,关于x 的方程234222+=-+-x x mx x 会产生增根?五、作业与思考(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(x 3)(x 2) (x 4)(x 2)
x2 x 6 x2 2x 8
例3、计算:
x y x
y2
(2) x x y x2 xy
解:
x
x
y

x
x
y

x2
y2 xy
(x y)(x y) x2 y2 x(x y) x(x y) x(x y)
例3、计算:
9 6x x2 x 3 x2 4x 4
(1)
x2 16
4 x
4 x2
解:
9 6x x2 x2 16

x3 4x

x2 4x 4 x2
4
(3 x)2 4 x (x 2)2 (x 4)(x 4) x 3 (2 x)(2 x)
例1:当 m 取何值时,分式m2 9 有意义?
值为零?
m3
解:由 m – 3 ≠0,得 m≠3。所以当 m≠3 时, 分式有意义;
由 m2 – 9 =0,得 m=±3。而当 m=3 时,分母 m – 3 =0,分式没有意义,故应舍去, 所以当 m= - 3时,分式的值为零。
典型例题
1、当x为何值时,下列分式有意义?
二、分式方程
(1)x22xx23xx2410
x8 k
例6、若关于 x 的方程

8 有增根,
x7 7 x
则 k 的值是多少?
典型例题
例题7、已知 3x 4 A , B (x 1)(x 2) x 1 x 2
B的值。
求实数A、
三、分式方程的应用:
例、甲、乙两地相距19千米,王刚从甲地去乙地, 先步行了7千米,然后改骑自行车,共用了2小 时到达乙地,已知王刚骑自行车的速度是步行 速度的4倍,求他步行的速度和骑自行车的速 度。
4、分式的加减法:同分母的分式相加减,分母不变, 把分子相加减;异分母的分式相加减,先通分, 化为同分母的分式,然后再按同分母分式的加减 法则进行计算。
5、分式方程是分母中含有未知数的方程:解分式方 程的基本思想是把分式方程转化为整式方程,其 一般步骤是:去分母,解整式方程,验根。
专题总结
一、分式的意义:
例2、不改变分式的值,使 0.6 0.4 x 的分子、分 4 2 x 5 15
母的最高次项的系数为正整数。
解:0.6 0.4x
4 2 x

(0.4x 0.6)15 ( 2 x 4)15
6x 9 2x 12
5 15
15 5
熟练地利用分式的基本性质,就系数、变符号即可。

x2

y2 x2

x2 xy

y2
0
典型例题 例题4、已知m 5,
n3
的值。
求m m
n

m m
n

n2 m2
n2
例5、已知
x2 3x 1 0,求
x4
1 x4
的值。
剖析:通过已知,得出关系式 x 1 ,然后 x
利用 a2 b2 (a b)2 2ab 计算即可。
知识架构
分式的概念 丰 富 的 情 景 问 题
分式方程
分式的基本性质 分式乘除法法则 分式加减法法则 分式方程的解法 分式方程的应用
第五章 分式与分式方程
教学目标
1.用分式表示生活中的一些量. 2.分式的基本性质及分式的有关运算法则. 3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
知识架构
分式的概念 丰 富 的 情 景 问 题
分式方程
分式的基本性质 分式乘除法法则 分式加减法法则 分式方程的解法 分式方程的应用
基础知识 1、形如 A 的式子叫做分式,其中A、B是整式,B
B
中必须含有字母。对于任意一个分式,分母都不 能为零。
2、分式的基本性质:分式的分子与分母都乘以(或 除以)同一个不等于零的整式,分式的值不变。
A A M , A A M (M 0) B BM B BM 3、分式的乘除法:两个分式相乘,把分子相乘的积 作为积的分子,把分母相乘的积作为积的分母; 两个分式相除,把除式的分子和分母颠倒位置后, 再与被除式相乘。结果要化为最简分式或整式。
4、一个批发兼零售的文具店规定:凡一次购买 铅笔300枝以上(不包括300枝),可以按批发价付款;购买300枝以下( 包括300枝)只能按零售价付 款。小明来该店购买铅笔,。如果给学校八年级 学生每人购买1枝,那么只能按零售价付款,需 用120元;如果多购买60枝,那么可按批发价付 款,同样需120元。 (1)这个学校八年级学生总数在什么范围内? (2)若批发价购买6枝与按零售价购买5枝的款相 同,那么这个学校八年级学生有多少人?
(1) x 1; 1 x
2x (2) (1 x)2 ;
(3) ax . x
针对训练
2、分式 a b的值为零时,实数a、b颖满足什 么条件?当 x 取什么值时,分式
( x 2)( x 3)
(1)有意义? (2)值为零?
当分式的分母不等于零时,分式有意义;当分式的 分子等于零,而分母不等于零时,分式的值为零。
3、某商厦进货员预测一种应季衬衫能畅销市 场,就用8万元购进这种衬衫,面市后果然供不 应求。商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批 购进量的2倍,但单价贵了4元。商厦销售这种衬衫时每件定价都是5 元,最后剩
下150件按八折销售,很快售完。在这两笔生意 中,商厦共盈利多少元?
针对训练
解:设步行的速度是 x 千米/小时,则骑自行车的 速度为 4x 千米/小时。根据题意,得
7 19 7 2 解这个方程,得 x = 5 x 4x
经检验 x = 5 是所列方程的根,这时 4x=20
答:他步行的速度是 5千米/时,骑自行车的速度 是20千米/时。
针对训练
2、某车间加工1200个零件后,采用了新工艺,工 效是原来的1.5倍,这样加工同样多的零件就少用 了10h。采用新工艺前、后每小时分别加工多少个 零件?
相关文档
最新文档