工程测量坐标计算..

合集下载

建筑工程坐标计算方法

建筑工程坐标计算方法
下面是在CAD下的常用操作方法:
用命令id可以查看点的XYZ坐标 例如:
命令: '_id 指定点: X = 517.0964 Y = 431.1433 Z = 0.0000
命令: ID 指定点: X = 879.0322 Y = 267.6949 Z = 0.0000
用命令dist(快捷命令di)即可知道两点间的角度和距离 例如:
命令: '_dist 指定第一点: 指定第二点:
距离 = 397.1308,XY 平面中的倾角 = 335d41'46.7", 与 XY 平面的夹角 = 0d0'0.0" X 增量 = 361.9358, Y 增量 = -163.4483, Z 增量 = 0.0000
其中的“XY 平面中的倾角 = 335d41'46.7”是世界坐标系内的平面夹角,用450度减去这个值335d41'46.7"即是坐标方位角114°18′13.3〃。
建筑工程测量坐标计算方法:
设原点坐标为(x,y),那么计算坐标(x1ቤተ መጻሕፍቲ ባይዱy1)为 x1=x+s·cosθ y1=y+s·sinθ
其中θ为方位角,s为距离
CAD里计算方位角和距离:CAD默认的世界坐标系跟测量上用的坐标系是不同的。世界坐标系中的X即测量坐标系中的Y,世界坐标系中的Y即测量坐标系中的X。

工程测量坐标增量计算公式

工程测量坐标增量计算公式

工程测量坐标增量计算公式引言在工程测量中,我们经常需要计算出物体的坐标增量。

坐标增量是指物体在两个不同时刻或不同位置的坐标之差。

它在工程测量中具有重要的应用,可以用于测量物体的位移、形变等重要参数。

本文将介绍工程测量中常用的坐标增量计算公式。

坐标增量计算公式1. 平面坐标增量计算公式若已知点P在两个不同时刻的坐标分别为P1(x1, y1)和P2(x2, y2),其中(x1,y1)为起始坐标,(x2, y2)为终止坐标,则平面坐标增量Δx和Δy的计算公式为:Δx = x2 - x1Δy = y2 - y12. 空间坐标增量计算公式若已知点P在两个不同时刻的坐标分别为P1(x1, y1, z1)和P2(x2, y2, z2),其中(x1, y1, z1)为起始坐标,(x2, y2, z2)为终止坐标,则空间坐标增量Δx、Δy和Δz的计算公式为:Δx = x2 - x1Δy = y2 - y1Δz = z2 - z13. 坐标增量的直角坐标变换公式在实际工程测量中,有时需要将坐标增量从一个坐标系转换到另一个坐标系。

设已知点P在坐标系A和坐标系B中的坐标分别为P_A(x_A, y_A, z_A)和P_B(x_B,y_B, z_B),其中P_A和P_B为相同点在不同坐标系下的表示,则可以通过坐标变换公式将P_A的坐标增量(Δx_A, Δy_A, Δz_A)转换为P_B的坐标增量(Δx_B, Δy_B, Δz_B):Δx_B = a11 * Δx_A + a12 * Δy_A + a13 * Δz_AΔy_B = a21 * Δx_A + a22 * Δy_A + a23 * Δz_AΔz_B = a31 * Δx_A + a32 * Δy_A + a33 * Δz_A其中a11、a12、a13、a21、a22、a23、a31、a32、a33为坐标系变换矩阵的元素。

应用实例1. 测量建筑物形变在工程建设中,为了确保建筑物的稳定性和安全性,需要对建筑物的形变进行监测。

工程测量坐标怎么算

工程测量坐标怎么算

工程测量坐标的计算方法在工程测量中,确定地物或工程物体的位置和坐标是非常重要的。

通过测量,我们可以确定物体在水平面和垂直面上的位置,计算出其准确的坐标。

本文将介绍工程测量中常用的坐标计算方法。

1. 水平方向坐标计算1.1 几何坐标法几何坐标法主要是通过测量物体在水平面上的距离和方向来确定其坐标。

这种方法适用于小范围测量,通常使用全站仪、经纬仪、电子测距仪等仪器进行测量。

具体步骤如下:1.设置测站:选择一个稳定的点作为测站,并用全站仪或经纬仪记录其坐标作为基准点。

2.目标测量:使用测量仪器测量目标物体与测站之间的水平距离和方向角。

3.计算坐标:根据基准点坐标和测量距离、方向角,利用三角函数计算目标物体的坐标。

1.2 平差计算法平差计算法是一种通过多个测量点之间的相互关系来计算坐标的方法。

该方法适用于大范围的测量,可以消除个别测量误差对结果的影响,提高计算的准确性。

具体步骤如下:1.设置基准点:选择一个已知坐标的点作为基准点。

2.进行测量:使用仪器对各个目标测点进行水平测量,得到其相对于基准点的距离和方向角。

3.建立观测方程:将各个目标测点与基准点之间的距离和方向角建立观测方程。

4.进行平差计算:通过最小二乘法或最小二乘平差法对观测方程进行计算,得到各个目标测点的坐标。

2. 垂直方向坐标计算垂直方向的坐标计算主要是确定物体在垂直方向上的高程。

常用的计算方法有如下两种:2.1 水平法加测高法在这种方法中,首先测量目标物体与基准点的水平距离和方向角,然后测量目标物体的高程差。

通过这些测量数据,可以计算出目标物体的高程。

具体步骤如下:1.设置基准点:选择一个已知高程的点作为基准点。

2.进行水平测量:使用测量仪器测量目标物体与基准点之间的水平距离和方向角。

3.测量高程差:使用水准仪等仪器测量目标物体的高程差。

4.计算目标物体的高程:根据基准点的高程和水平距离、方向角、高程差,利用三角函数计算出目标物体的高程。

测量坐标计算公式是什么

测量坐标计算公式是什么

测量坐标计算公式是什么1. 引言在测量和定位领域,测量坐标计算公式是一种用于推导或计算物体在空间中的位置坐标的数学公式。

通过测量坐标计算公式,我们可以确定物体在三维空间中的位置,实现精确的定位和导航。

2. 二维坐标计算公式在二维平面坐标系中,我们通常使用直角坐标系表示一个点的位置。

假设我们有一个点P,其坐标为(x, y),其中x表示点P在x轴上的位置,y表示点P在y轴上的位置。

在二维坐标系中,我们可以使用以下公式计算点P的位置:•距离公式:假设点P的坐标为(x1, y1),点Q的坐标为(x2, y2),两点之间的距离可以通过以下公式计算:距离公式距离公式•中点公式:假设点P的坐标为(x1, y1),点Q的坐标为(x2, y2),点M 为P和Q的中点,其坐标可以通过以下公式计算:中点公式中点公式•勾股定理:假设点P的坐标为(x1, y1),点Q的坐标为(x2, y2),两点之间的距离可以通过勾股定理计算:勾股定理勾股定理3. 三维坐标计算公式在三维空间中,我们可以使用笛卡尔坐标系表示一个点的位置。

假设我们有一个点P,其坐标为(x, y, z),其中x表示点P在x轴上的位置,y表示点P在y轴上的位置,z表示点P在z轴上的位置。

在三维坐标系中,我们可以使用以下公式计算点P的位置:•距离公式:假设点P的坐标为(x1, y1, z1),点Q的坐标为(x2, y2, z2),两点之间的距离可以通过以下公式计算:距离公式距离公式•中点公式:假设点P的坐标为(x1, y1, z1),点Q的坐标为(x2, y2, z2),点M为P和Q的中点,其坐标可以通过以下公式计算:中点公式中点公式•线段相交公式:假设点P的坐标为(x1, y1, z1),点Q的坐标为(x2, y2, z2),线段AB的起始点为A,终止点为B,我们可以使用以下公式判断线段AB是否与平面PQ相交:线段相交公式线段相交公式4. 应用举例测量坐标计算公式在实际应用中具有广泛的应用。

工程测量坐标正反算公式

工程测量坐标正反算公式

工程测量坐标正反算公式工程测量坐标正反算公式是指基于已知控制点坐标和测量仪器测量数据,通过计算获得被测物体或地形的坐标点。

在这个过程中,正算指的是从控制点计算被测点坐标的过程,而反算则是从已知被测点坐标计算控制点坐标的过程。

在本文中,我将详细介绍工程测量坐标正反算公式的原理和实际应用场景。

一、工程测量坐标正反算公式原理工程测量坐标正反算公式的原理主要是基于三角测量和距离测量原理。

三角测量法利用三角形的几何关系,通过测量三角形内角或边长,计算出三角形的各个顶点坐标。

而距离测量法则是通过测量被测物体或地形与仪器的距离,然后利用三角函数计算出被测物体或地形的坐标。

在实际工作中,测量仪器主要有全站仪、经纬仪、水准仪和电子测距仪等。

全站仪是一种常用的测量仪器,它可以测量水平角、垂直角和斜距,并输出相应的坐标值。

而经纬仪则是一种测量方位角和高度差的仪器,它常用于野外导线路线测量;水准仪则用于测量高差,电子测距仪则用于测量地形点到仪器的直线距离。

在进行工程测量坐标正反算时,需要先确定控制点坐标。

控制点分为基准控制点和工作控制点,基准控制点是指通过已知的测量结果或GPS测量等方式已知其坐标的点,而工作控制点则是在进行实测工作时测量得到的坐标点。

基准控制点与工作控制点之间的坐标关系构成了控制网络,该网络是工程测量的基础。

对于工程测量坐标正算来说,可以利用如下公式计算:X = XC + D × cos(V)Y = YC + D × sin(V) × cos(H)Z = ZC + D × sin(V) × sin(H) + hX、Y、Z为被测点的坐标;XC、YC、ZC为控制点的坐标;D为控制点与被测点的距离;V为控制点与被测点之间的垂直角;H为控制点与被测点之间的水平角;h为控制点与被测点之间的高差。

该公式利用三角函数计算出被测点的坐标,精度高且适用于不同的测量场景。

工程测量技术培训(坐标计算)

工程测量技术培训(坐标计算)

待求:A
B的方位角 AB ,
间距DAB
DAB (xBxA)2(yByA)2 AB ta1n(yByA)(xBxA)
坐标的递推公式
xi xi1xi xi1si cosi)( yi yi1yi yi1si sini)(
累加后可得
i
xi X A
sk cos( k )
k 1
i
yi YA
式中 l = | Li- L0 |
四、曲线桥梁布置及坐标计算 4.1梁的布置 设在曲线上的钢筋混凝土简支梁式桥,每孔 梁仍是直的,于是各孔梁中线的连接线成为 折线,以适应梁上曲线线路之需要。但若按 图1 所示布置,使线路中线与梁的中线在梁 端相交,则由图可以看出,线路中线总是偏 在梁跨中线的外侧,当列车过桥时,外侧那
T=Rtgα/2

因为α很小,故 tgα/2=α/2=1/2(i1-i
2),所以 T=1/2 R(i1-i2)=R/2 Δi ⒉竖曲线长度 L
由于曲折角α很小,所以 L≈2T ⑶ ⒊竖曲线上各点高程及外矢距 E 由于α很小,故可以认为曲线上各点的 y 坐标方向与半径方向一 致,也认为它是切
线上与曲线上的高程差。从而得 (R+y)2=R^2+x^2 故 2Ry=x^2-y^2 又 y^2 与 x^2 相比较,其值甚微,可略去 不计。故有 2Ry=x^2 ,所以
五、竖曲线计算 5.1基本概念 线路纵断面是由许多不同坡度的坡段连接成的,为了缓和坡度在变坡点处的急剧 变化,使列车能平稳通过,在坡段间设臵曲线连接, 这种连接不同坡段的曲线 称为竖曲线。坡度变化之点称为变坡点。 竖曲线有凸形与凹形两种。顶点在曲线之上者为凸形竖曲线;反之称为凹形竖曲 线。连接两相邻坡度线的竖曲线,可以用圆曲线,也 可以用抛物线。目前,我 国铁路上多采用圆曲线连接。 5.2 竖曲线的测设(圆曲线) 如图 1,竖曲线与平面曲线一样,首先要进行曲线要素的计算。 由于允许坡度 的数值不大,纵断面上的曲折角α可以认为 α=Δi=i1-i2 ⑴,式中,i1、i2 为两相邻的纵向坡度值; Δi为变坡点的坡 度代数差。 曲线要素除了半径 R 及纵向转折角α外,还有: ⒈竖曲线切线长度 T

工程测量坐标计算公式

工程测量坐标计算公式

工程测量坐标计算公式在工程测量中,坐标计算是一项核心任务。

通过测量仪器和先进的计算方法,可以准确测算出各点的坐标值,为工程设计和施工提供重要的数据支持。

1. 三角测量法三角测量法是工程测量中常用的一种测量方法。

它基于三角形的几何性质,通过测量已知边长和夹角,计算出未知边长和角度,并进而确定点的坐标。

三角测量法中常用的计算公式有以下几种:1.1 正弦定理正弦定理用于计算三角形的边长和角度关系。

对于任意三角形ABC,已知边长a、b和夹角C,可以通过以下公式计算出夹角A和B的正弦值:sinA / a = sinB / b = sinC / c1.2 余弦定理余弦定理用于计算三角形的边长和角度关系。

对于任意三角形ABC,已知边长a、b和夹角C,可以通过以下公式计算出夹角A和B的余弦值:cosC = (a^2 + b^2 - c^2) / (2ab)1.3 正切定理正切定理用于计算三角形的角度关系。

对于任意三角形ABC,已知边长a、b 和夹角C,可以通过以下公式计算出夹角A和B的正切值:tanA = (b * sinC) / (a - b * cosC)2. 直角坐标系转换在工程测量中,常常需要将已知点的直角坐标系转换到其他坐标系。

以下是常见的坐标系转换公式:2.1 极坐标系转直角坐标系对于平面上的点P,已知其极径r和极角θ,可以通过以下公式计算其在直角坐标系下的坐标(x,y):x = r * cosθy = r * sinθ2.2 直角坐标系转极坐标系对于平面上的点P,已知其直角坐标(x,y),可以通过以下公式计算其在极坐标系下的坐标(r,θ):r = √(x^2 + y^2)θ = atan2(y, x)其中,atan2函数是一个带有两个参数的反正切函数,可以避免参数带来的符号问题。

3. 平面直角坐标系旋转在工程测量中,有时需要将已知点的坐标系进行旋转。

以下是平面直角坐标系绕原点逆时针旋转α度后的旋转公式:x' = x * cosα - y * sinαy' = x * sinα + y * cosα其中,(x,y)是原坐标系下的点坐标,(x’,y’)是旋转后的坐标。

《工程施工测量》坐标计算

《工程施工测量》坐标计算

《工程施工测量》坐标计算工程施工测量是指在工程建设过程中对各种位置、尺寸、高程等进行测量和计算的工作。

其中,坐标计算是测量工作的重要内容之一、坐标计算旨在确定一些点的平面坐标或者空间坐标,并利用这些坐标进行工程设计、施工和验收等工作。

坐标计算的基本原理是通过测量获取各点的坐标数据,然后利用计算方法进行数学计算得出点的坐标。

常见的坐标计算方法有平差计算法、微分计算法和三角计算法。

平差计算法是通过观测数据的处理求解出未知点的坐标。

其基本思想是根据观测数据建立相关方程组,并通过最小二乘法求解。

平差计算法通常包括三个步骤:建立方程、求解方程组和检查与分析。

建立方程时,需要根据观测数据的类型确定方程的形式,如平面坐标观测通常采用距离方程,而空间坐标观测通常采用坐标方程。

求解方程组时,可以采用高斯消元法、逆平差法等方法进行计算。

检查与分析时,需要对计算结果进行检查,判断计算精度是否符合要求,并对计算误差进行分析。

微分计算法是通过已知点的坐标和测量数据,在测区域内进行坐标计算的方法。

其基本思想是通过观测数据的微分运算,计算出所需的未知点的坐标。

微分计算法通常包括两个步骤:设定原点和计算坐标。

设定原点是确定测区域中的一个已知点作为空间原点,然后在该点建立一套坐标系。

计算坐标时,通过测量数据的微分运算,计算出未知点的坐标。

具体的计算方法有高程分布的微分计算、立体观测的微分计算和等值线的微分计算等。

三角计算法是通过测量三角形的边长和角度来计算点的坐标。

其基本思想是根据三角函数的相关定理和公式,利用测量数据求解未知点的坐标。

三角计算法通常包括两个步骤:测量三角形和计算坐标。

测量三角形时,通过测量三角形的边长和角度,来获取所需的观测数据。

计算坐标时,利用测量数据和三角函数的关系,通过计算公式来求解未知点的坐标。

常用的三角计算法有正弦定理、余弦定理和正切定理等。

坐标计算在工程施工测量中具有重要的作用。

它可以提供工程设计和施工中所需的位置、尺寸和高程等参数,为工程建设提供基础数据。

工程测量坐标正反算通用程序(终极篇)

工程测量坐标正反算通用程序(终极篇)

第五篇坐标正反算通用程序(终极篇)1. 坐标正算主程序(命名为ZBZS)第1行:Lbl 0:”K=”?K:”BIAN=”? Z:”α=”?B第2行:Prog “A”第3行:”X=”:N+Zcos(F+B)◢第4行:”Y=”:E+Zsin(F+B)◢第5行:”F=”:F►DMS◢第6行:Goto 0K——计算点的里程BIAN——计算点到中桩的距离(左负右正)α——取前右夹角为正2. 坐标反算桩号和偏距主程序(命名为ZBFS)第1行:”X1=”? C:”Y1=”?D:”K1=”?K第2行:Lbl 0:Prog “A”第3行:Pol(C-N,D-E):Icos(F-J)→S:K+S→K第4行:Abs(S)>0.0001=>Goto 0第5行:”K1=”:K◢第6行:”BIAN=”:Isin(J-F)→Z◢X1——取样点的X坐标Y1——取样点的Y坐标K1——输入时为计算起始点(在线路内即可),输出时为反算点的桩号Z——偏距(左负右正)注:在9860或9960中需将第3行替换为Pol(C-N,D-E): List Ans[1]→I :List Ans[2]→J:Icos(J-F)→S:K+S →K,正反算主程序所有输入赋值多加一赋值符号(→),其他所有除数据库外的程序均保持不变3. 计算坐标子程序(命名为XYF)为了简洁,本程序由数据库直接调用,上述中的正反算主程序不直接调用此程序第1行:K-A→S:(Q-P)÷L→I第2行:N+∫(cos(F+X(2P+XI)×90÷π),0,S)→N第3行:E+∫(sin(F+X(2P+XI)×90÷π),0,S)→E第4行:F+S(2P+S I)×90÷π→F第5行:F<0=>F+360→F: F>360=>F-360→F4. 数据库(命名为A)第1行:K≤175.191=>Stop(超出后显示Done)第2行:175.191→A:428513.730→N:557954.037→E:92°26′40″→F:0→P:1/240→Q:70.417→L:K≤A+L =>GoTo 1(第一缓和曲线)第3行:245.607→A: 428507.298→N:558024.092→E: 100°50′59.4″→F: 1/240→P:1/240→Q:72.915→L: K≤A+L =>Goto 1(圆曲线)第4行:318.522→A: 428482.988→N:558092.538→E: 118°15′25.2″→F: 1/240→P: 0→Q: 55.104→L: K≤A+L =>Goto 1(第二缓和曲线)第5行:373.627→A:428453.283→N:558138.912→E:124°50′4.5″→F:0→P:-1/180→Q:67.222→L:K≤A+L=>Goto 1:Stop(下一曲线的第一缓和曲线,示例为S型曲线,超出后显示Done)第6行:Lbl 1:Prog “XYF”A——曲线段起点的里程N——曲线段起点的x坐标E——曲线段起点的y坐标F——曲线段起点的坐标方位角P——曲线段起点的曲率(半径倒数,直线为0,左负右正)Q——曲线段终点的曲率(半径倒数,直线为0,左负右正)L——曲线段长度(尽量使用长度,为计算断链方便)说明:(1)正算主程序可以计算一般边桩的坐标,如要计算类似涵洞端墙的坐标需增加两个变量,具体方法参考本程序集中的第1篇辛普生公式的坐标计算通用程序(2)适用于任意线形:直线(0→P、0→Q)、圆曲线(圆半径倒数→P、圆半径倒数→Q)、缓和曲线(0或圆半径倒数→P、圆半径倒数或0→Q)、卵形曲线(接起点圆的半径倒数→P、接终点圆的半径倒数→Q),曲线左转多加一负号。

工程测量坐标计算公式

工程测量坐标计算公式

工程测量坐标计算公式工程测量是工程建设的重要环节,准确的坐标计算是保证工程质量和施工安全的基础。

本文将介绍工程测量中常用的坐标计算公式,帮助读者更好地理解并应用于实践中。

一、坐标计算的基础知识在工程测量中,常用的坐标系统有直角坐标系和大地坐标系。

直角坐标系以某一点为原点,建立笛卡尔坐标系,用x、y、z三个轴线表示空间位置。

大地坐标系则以地球为基准,通过经度、纬度和高程来确定点的相对位置。

二、坐标计算公式1. 直角坐标系的坐标计算公式在直角坐标系中,常用的坐标计算公式有:- 两点间距离计算公式:设A点坐标为(x1, y1, z1),B点坐标为(x2, y2, z2)。

则两点间的距离d计算公式如下:d = √((x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2)- 点到直线距离计算公式:设点A的坐标为(x1, y1, z1),直线方程为Ax + By + Cz + D = 0。

则A点到直线的距离d计算公式如下:d = |Ax1 + By1 + Cz1 + D| / √(A^2 + B^2 + C^2)- 点到平面距离计算公式:设点A的坐标为(x1, y1, z1),平面方程为Ax + By + Cz + D = 0。

则A点到平面的距离d计算公式如下:d = |Ax1 + By1 + Cz1 + D| / √(A^2 + B^2 + C^2)2. 大地坐标系的坐标计算公式在大地坐标系中,常用的坐标计算公式有:- 两点间距离计算公式:根据两点的经纬度计算其球面距离,公式如下:d = R * arccos(sinφ1*sinφ2 + cosφ1*cosφ2*cos(λ2-λ1))其中,R为地球半径,φ为纬度,λ为经度。

- 两点间方位角计算公式:根据两点经纬度计算其中一点相对于另一点的方位角,公式如下:α = arctan((sinΔλ * cosφ2) / (cosφ1*sinφ2 -sinφ1*cosφ2*cosΔλ))其中,φ为纬度,λ为经度,Δλ为两点经度差。

工程测量坐标正反算带公式

工程测量坐标正反算带公式

工程测量坐标正反算带公式一、几何平差法几何平差法是一种基于观测数据的平差方法,通过求解误差方程组,确定测量点的坐标。

它的基本公式如下:1.坐标变形方程:在直角坐标系中,测量点的坐标可以表示为:x=X+Δxy=Y+Δy其中,x和y为测量点的坐标,X和Y为控制点的坐标,Δx和Δy 为测量点的改正数。

2.改正数计算公式:改正数可以通过解算误差方程组得到。

误差方程组的基本形式如下:AX+BY+C=0其中,A、B和C为系数,可以通过测量数据和控制点坐标的差异来确定。

3.改正数递推关系:通过改正数递推关系可以计算出最终的改正数。

其基本形式如下:Δx=ΣAX/ΣA²Δy=ΣBY/ΣB²其中,ΣAX和ΣA²是所有测量点坐标与控制点坐标的差别的总和。

二、最小二乘法最小二乘法是一种通过最小化观测数据和控制点坐标之间的差异来确定测量点坐标的方法。

它通过最小化误差平方和,得到测量点坐标的估计值。

最小二乘法的基本公式如下:1.误差方程:误差方程的一般形式如下:δX=AX+BY+C其中,δX为观测数据和估计值之间的差异,A、B和C为系数。

通过最小化误差平方和,可以求解系数的估计值。

2.系数估计方法:通过最小化误差平方和,可以得到系数的估计值。

其基本形式如下:A = (∑ x²y - ∑ xy∑ x) / (n∑ x² - (∑ x)²)B = (n∑ xy - ∑ x∑ y) / (n∑ x² - (∑ x)²)C = (∑ x²∑ y - ∑ xy∑ x²) / (n∑ x² - (∑ x)²)其中,x和y为控制点的坐标,n为测量点的数量。

3.坐标计算:通过求解系数估计值,可以得到测量点的坐标。

其基本形式如下:x=(y-∑By+ΔB)/A其中,y为测量点的坐标,∑By为所有观测数据和估计值之间差异的总和,ΔB为改正数。

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式工程测量中,坐标反算是一个重要的计算过程,用于根据已知点的坐标和测量数据计算出未知点的坐标。

这个计算过程可以使用一些基本的几何关系和数学公式来完成。

本文将介绍几种工程测量坐标反算的计算公式。

1. 三角形坐标反算三角形坐标反算是一种常见的坐标反算方法。

假设有三个已知点A(x1, y1, z1),B(x2, y2, z2)和C(x3, y3, z3),以及一个未知点P(x, y, z)。

通过测量已知点之间的距离和角度,我们可以使用三角形的几何关系来计算出未知点P的坐标。

首先,我们可以计算出三个已知点之间的两两距离,分别为AB、AC和BC。

然后,我们使用三角形余弦定理和正弦定理来计算出未知点P与已知点之间的距离。

再结合三角形的正弦定理,我们可以计算出未知点P的坐标。

具体的计算公式如下:距离计算: - AB = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2) - AC = √((x3 - x1)^2 + (y3 - y1)^2 + (z3 - z1)^2) - BC = √((x3 - x2)^2 + (y3 - y2)^2 + (z3 - z2)^2) 坐标计算: - P.x = x1 + AB/A * (x2 - x1) + AC/D * (x3 - x1) - P.y = y1 + AB/A *(y2 - y1) + AC/D * (y3 - y1) - P.z = z1 + AB/A * (z2 - z1) + AC/D * (z3 - z1) 其中,A = BC,B = AC,C = AB,D = √(AC^2 - AB^2 + AD^2)。

通过这种方法,我们可以根据已知点的坐标和测量数据来计算出未知点的坐标。

2. 圆法坐标反算圆法坐标反算是另一种常用的坐标反算方法,适用于测量曲线的坐标反算。

假设有三个已知点A(x1, y1, z1), B(x2, y2, z2)和C(x3, y3, z3),以及一个未知点P(x, y, z)。

测量坐标正反算公式

测量坐标正反算公式

测量坐标正反算公式在测量学中,坐标正反算公式是一种常用的计算方法,用于在测量过程中进行坐标值的转换和计算。

通过坐标正反算公式,可以将测量点的坐标值进行转化,从而得到更加准确和可靠的测量结果。

1. 坐标正算坐标正算是指通过已知的控制点坐标和测量数据,计算出其他未知点的坐标值。

坐标正算一般涉及到测量仪器的观测数据、观测角度和测量点的距离等信息。

坐标正算的基本原理是根据已知控制点的坐标,通过观测数据和测量原理,进行一系列计算和推导,得到待测点的坐标值。

坐标正算的公式可以表示为:X = X0 + ∑(Ri * sinθi * cosαi)Y = Y0 + ∑(Ri * sinθi * sinαi)Z = Z0 + ∑(Ri * cosθi)其中,X、Y、Z分别表示待测点的坐标值,X0、Y0、Z0表示已知控制点的坐标值,Ri表示测量点与控制点的距离,θi表示测量点与控制点的垂直角,αi表示测量点与控制点的水平角。

坐标正算的步骤主要包括:1.根据已知控制点的坐标值,计算观测点与控制点的距离和方向角;2.根据观测数据和测量原理,计算待测点与控制点的垂直角和水平角;3.根据坐标正算公式,进行计算,得到待测点的坐标值。

2. 坐标反算坐标反算是指通过已知的控制点坐标和测量数据,计算出观测点与控制点之间的距离和方向角。

坐标反算常用于测量点在平面内或空间中的相对位置计算。

坐标反算的基本原理是根据已知控制点的坐标,通过观测数据和测量原理,进行一系列计算和推导,得到观测点与控制点之间的距离和方向角。

坐标反算的公式可以表示为:Ri = √((X - X0)² + (Y - Y0)² + (Z - Z0)²)θi = arccos((Z - Z0) / Ri)αi = arctan((Y - Y0) / (X - X0))其中,Ri表示观测点与控制点的距离,θi表示观测点与控制点的垂直角,αi表示观测点与控制点的水平角,X、Y、Z分别表示观测点的坐标值,X0、Y0、Z0表示已知控制点的坐标值。

测量坐标计算方法有哪些

测量坐标计算方法有哪些

测量坐标计算方法有哪些在工程测量中,测量坐标计算是不可或缺的一环。

通过测量坐标计算,我们可以确定一个点在平面或者空间中的位置坐标。

本文将介绍几种常见的测量坐标计算方法。

1. 直角坐标系直角坐标系是最常见也是最基础的坐标系之一。

在二维直角坐标系中,我们可以通过测量一个点到坐标原点的水平距离(横坐标)和垂直距离(纵坐标)来确定该点的坐标。

而在三维直角坐标系中,除了水平距离和垂直距离,我们还需要测量点到参考平面的垂直距离(高程)来确定该点的坐标。

2. 极坐标系极坐标系适用于在平面上描述点的位置,它是通过测量一个点到原点的距离(极径)和该点与某一固定方向之间的夹角(极角)来确定点的坐标。

极坐标系在一些特定场合下具有一定的优势,比如描述圆形和对称物体的特征。

3. 球坐标系球坐标系常用于描述三维空间中的点的位置。

它由一个点到坐标原点的距离(径向距离)、该点与某一固定方向的夹角(极角)以及该点在某一固定平面内的投影与某一固定方向的夹角(方位角)来确定点的坐标。

4. 超几何定位法超几何定位法是一种通过测量两个或多个基准点之间的距离和方位角来计算待测点坐标的方法。

该方法常用于大地测量和导航定位中。

通过测量基准点与待测点之间的距离,并利用已知的基准点坐标,可以通过解三角形关系来计算待测点的坐标。

5. GPS定位法全球定位系统(GPS)定位法是一种利用卫星信号进行测量和定位的方法。

通过接收多颗卫星发射的信号,接收器可以计算出到每颗卫星的距离,并进一步计算出接收器的三维坐标。

GPS定位法在航空、海洋、测绘等领域具有广泛的应用。

6. 非接触式光学定位法非接触式光学定位法是一种通过测量目标点与测量仪器之间的光学信号来计算目标点坐标的方法。

常见的非接触式光学测量设备包括激光测距仪、摄像测量仪等。

通过捕捉目标点反射或散射的光线,仪器可以计算出目标点到测量仪器的距离,并进一步计算目标点的坐标。

7. 三角测量法三角测量法是一种基于三角形几何关系的坐标计算方法。

工程测量计算之-1坐标正反算详解

工程测量计算之-1坐标正反算详解

工程测量计算之-----(一)坐标正反算详解一、方位角、坐标方位角测量工作中、常用方位角来表示直线的方向。

方位角是由标准方向的北端起,顺时针方向度量到某直线的夹角,取值范围为0°-360°,如下图所示。

若标准方向为真子午线方向,则其方位角称为真方位角,用A表示真方位角;若标准方向为磁子午线方向,则其方位角称为磁方位角,用Am表示磁方位角。

若标准方向为坐标纵轴,则称其为坐标方位角,用α表示。

(在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针度量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用α表示。

)所以,我们测量中常说的方位角其实是坐标方位角,也就是X轴顺时针旋转至所在直线的角度。

二、象限角以基本方向北端或南端起算,顺时针或逆时针方向量至直线的水平角,称为象限角,用R表示。

象限角不但要表示角度大小,而且还要注明该直线所在的象限。

从坐标纵轴的北端或南端顺时针或逆时针起算至直线的锐角称为坐标象限角。

其角值变化从0°~90°,为了表示直线的方向,应分别注明北偏东、北偏西或南偏东、南偏西。

如北东85°,南西47°等。

显然,如果知道了直线的方位角,就可以换算出它的象限角,反之,知道了象限也就可以推算出方位角。

三、坐标正反算公式详解坐标正算根据直线的坐标方位角、边长和一个已知端点的坐标计算直线上另一端点坐标的过程。

或若两点间的平面位置关系由极坐标化为直角坐标,称为坐标正算。

1、坐标计算条件①起算点(定位点)的平面坐标(X0,Y0),②起算点至待求点的坐标方位角α,③起算点至待求点的平面距离D。

2、坐标计算过程坐标反算根据两已知点的平面坐标,计算该直线的方位角及两点间平面距离的过程。

或若两点间的平面位置关系由直角坐标化为极坐标,称为坐标反算。

α=arctan(△y / △x)D=√(△x*△x + △y*△y)其中,用计算器计算出的α称为象限角,之后还要根据△x、△y的正负号转换为坐标方位角。

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式

工程测量坐标反算的计算公式
工程测量坐标反算的计算公式是用于根据已知的测量数据确定未知点的坐标。

这个过程通常包括水平角、垂直角和距离等测量数据的收集和处理。

对于水平角的测量,我们可以使用正弦定理来计算未知点的水平角。

在三角形ABC中,已知两点A和B的坐标以及它们与未知点C之间的夹角α和β,我们可
以使用以下公式来计算未知点C的坐标:
x_C = x_A + d * sin(β) / sin(α+β)
y_C = y_A + d * sin(α) / sin(α+β)
其中,(x_A, y_A)为已知点A的坐标,d为A与B之间的距离。

对于垂直角的测量,我们可以使用正弦定理来计算未知点的垂直角。

在三角形ABC中,已知两点A和B的坐标以及它们与未知点C之间的夹角α和β,我们可
以使用以下公式来计算未知点C的坐标:
z_C = z_A + d * sin(γ) / sin(α+γ)
其中,z_A为已知点A的高程,γ为A与C之间的垂直角。

最后,我们可以结合水平角和垂直角的测量数据来计算未知点的三维坐标。


过以上公式,我们可以根据已知的测量数据准确地计算出工程测量坐标的反算结果。

需要注意的是,这些公式基于正弦定理的假设。

在实际应用中,也可能需要考
虑其他因素,如误差校正和不确定性。

因此,在实际测量中,还需要进行数据处理和调整来提高测量的准确性和可靠性。

总之,工程测量坐标反算的计算公式是一种根据已知的测量数据来确定未知点
坐标的方法。

通过对水平角、垂直角和距离等测量数据的处理,可以较准确地计算出工程测量的坐标结果。

测量坐标计算公式大全图表

测量坐标计算公式大全图表

测量坐标计算公式大全图表在工程测量和地理测量领域,测量坐标计算公式是非常重要的工具。

通过这些公式,测量人员可以准确地计算出各个测点的坐标,从而为工程建设和地理研究提供基础数据。

本文将介绍一些常用的测量坐标计算公式,帮助读者更好地理解和应用这些公式。

1. 坐标系的选择在进行测量坐标计算之前,首先需要选择适当的坐标系。

常用的坐标系有直角坐标系、极坐标系和空间直角坐标系。

直角坐标系是最常用的坐标系,它使用x、y、z三个坐标轴来描述一个点的位置。

极坐标系则使用极径和极角来描述点的位置,适用于圆形或圆柱形区域的测量。

空间直角坐标系适用于三维空间的测量,使用x、y、z三个坐标轴来描述一个点的位置。

2. 距离的计算在测量中,常常需要计算两个点之间的距离。

根据勾股定理,可以得到如下的直角坐标系下的距离计算公式:水平距离:d = √((x2 - x1)^2 + (y2 - y1)^2)斜距离:d = √((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2)其中,(x1, y1, z1)和(x2, y2, z2)是两个点的坐标。

3. 方位角的计算方位角是指从一个点指向另一个点时,与正北方向的夹角。

在直角坐标系中,可以使用以下公式计算方位角:方位角:α = atan2((y2 - y1), (x2 - x1))其中,(x1, y1)和(x2, y2)是两个点的坐标。

4. 坐标旋转的计算当出现坐标系变换时,需要对坐标进行旋转。

旋转后的坐标可以通过以下公式计算得到:旋转后的x坐标:x’ = x * cos(θ) - y * sin(θ)旋转后的y坐标:y’ = x * sin(θ) + y * cos(θ)其中,(x, y)是原始坐标,(x’, y’)是旋转后的坐标,θ是旋转的角度。

5. 坐标平移的计算坐标平移是指将坐标系沿着x或y轴方向移动一定的距离,计算平移后的坐标可以使用以下公式:平移后的x坐标:x’ = x + Δx平移后的y坐标:y’ = y + Δy其中,(x, y)是原始坐标,(x’, y’)是平移后的坐标,Δx和Δy是在x和y方向上的平移距离。

工程测量坐标正反算公式

工程测量坐标正反算公式

工程测量坐标正反算公式工程测量坐标正反算公式是工程测量中常用的计算方法,用于将实际测量得到的水平角、垂直角和距离等数据计算为平面坐标系或空间坐标系中的点的坐标。

这些计算方法包括平距法、交会法、改正数法等。

以下将介绍其中的一些常用公式。

1.平距法:平距法适用于平面三角测量,其中已知一个角和两个边长,需要计算第三个边长。

公式如下:AB² = AC² + BC² - 2 * AC * BC * cos(∠CAB)2.交会法:交会法常用于平面控制测量,其中通过观测三个方向上的角度,以及相应的两个边长,计算其中一点相对于测站的坐标。

公式如下:x = 观测距离 * sin(观测方向角1) / cos(观测方向角2) + 坐标X1y = 观测距离 * sin(观测方向角3) / cos(观测方向角2) + 坐标Y13.改正数法:改正数法常用于平面闭合多边形控制测量,其中通过对内角的观测进行闭合多边形的平差计算,求得闭合差改正数。

公式如下:dX = ∑(边长 * cos(内角) / ∑(边长²) * 闭合差)dY = ∑(边长 * sin(内角) / ∑(边长²) * 闭合差)4.高差改正:在空间测量中,经常需要进行高程的改正计算。

其中,正算高差改正应用于已知起点与终点的高差、测点的高差差值以及测点的距离,计算出测点的高程。

公式如下:高程差=(终点高程-起点高程)/测点距离*高差差值5.方位角正算:在实际测量中,有时需要根据起点和终点的坐标计算出方位角。

公式如下:tan(方位角) = (终点纵坐标 - 起点纵坐标) / (终点横坐标 - 起点横坐标)6.反算坐标:反算坐标是指通过已知起点的坐标、观测角度和距离,计算出目标点的坐标。

公式如下:终点纵坐标 = 坐标纵差 * sin(观测方向角) + 起点纵坐标终点横坐标 = 坐标横差 * cos(观测方向角) + 起点横坐标这些公式都是工程测量中常用的基本公式,通过使用它们,我们可以根据测量数据计算出点的坐标。

《建筑工程测量》坐标正、反算

《建筑工程测量》坐标正、反算

《建筑工程测量》坐标正、反算导线测量的最终目的是要获得各导线点的平面直角坐标,因此外业工作结束后就要进行内业计算,以求得导线点的坐标。

一、坐标计算的基本公式1.根据已知点的坐标及已知边长和坐标方位角计算未知点的坐标,即坐标的正算。

如图6-1所示,设A 为已知点,B 为未知点,当A 点的坐标(X A , Y A )和边长D AB 、坐标方位角αAB 均为已知时,则可求得B 点的坐标X B 、Y B 。

由图可知:⎭⎬⎫∆+=∆+=AB A B AB A B Y Y Y X X X (6-1) 其中,坐标增量的计算公式为:⎭⎬⎫⋅=∆⋅=∆AB AB AB AB AB AB sin cos ααD Y D X (6-2) 式中∆X AB ,∆Y AB 的正负号应根据cos αAB 、sin αAB 的正负号决定,所以式(6-1)又可写成:⎭⎬⎫⋅+=⋅+=AB AB A B AB AB A B sin cos ααD Y Y D X X (6-3)图6-1 导线坐标计算示意图2.由两个已知点的坐标反算其坐标方位角和边长,即坐标的反算如图6-5所示,若设A 、B 为两已知点,其坐标分别为X A 、Y A 和X B 、Y B 则可得:AB AB AB tan X Y ∆∆=α (6-4)ABAB AB AB AB cos sin ααX Y D ∆=∆= (6-5) 或 D AB =2AB 2AB )()(Y X ∆+∆ (6-6) 上式中,∆X AB = X B = X A ,∆Y AB = Y B - Y A 。

由式(6-4)可求得αAB 。

αAB 求得后,又可由(6-5)式算出两个D AB ,并作相互校核。

如果仅尾数略有差异,就取中数作为最后的结果。

需要指出的是:按(6-4)式计算出来的坐标方位角是有正负号的,因此,还应按坐标增量 ∆X 和 ∆Y 的正负号最后确定AB 边的坐标方位角。

即:若按(6-4)式计算的坐标方位角为:XY ∆∆='arctanα (6-7) 则AB 边的坐标方位角αAB 参见图6-11应为: 在第Ⅰ象限,即当 ∆X >0,∆Y >0时,αα'=AB ,AB α在0︒ ~ 90︒在第Ⅱ象限,即当 ∆X <0,∆Y >0时,αα'-︒=180AB ,αAB 在90︒ ~ 180︒在第Ⅲ象限,即当 ∆X <0,∆Y <0时,αα'+︒=180AB ,αAB 在180︒ ~ 270︒ (6-8)在第Ⅳ象限,即当 ∆ X > 0,∆Y < 0时,αα'-︒=360AB ,αAB 在270︒ ~ 360︒也就是当 ∆X > 0时,应给 α' 加360︒ ;当 ∆X < 0时,应给 α' 加180︒ 才是所求AB 边的坐标方位角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i i
D1
i
D2
实际道路如右图: 切线方位角=起始方位角а 0+切线角β 同样的:左减右加! 所以左边的方位角为:а -90;右边的方位角为:а +90。
左边: DX1=X1+D1×Cos(а -90)
DY1=Y1+D1×Sin(а -90) ; 右边: DX2=X1+D2×Cos(а +90) DY1=Y1+D2×Sin(а +90) 。 (此处的а 为切线方位角)
路桥路线逐桩目:安徽路桥高铁路三标
路线分为:直线段、缓和曲线段、圆曲线段

1、直线段:略
2、缓和曲线(回旋线)段指的是平面线形中,在直线与圆曲线,圆曲线与圆曲线之间设置的 曲率连续变化的曲线。

缓和曲线段作用:
1 )便于驾驶员操纵方向盘
2 )乘客的舒适与稳定,减小离心力变化 4 )与圆曲线配合得当,增加线形美观
а
X1=X0+(K1-K0)*Cosа
Y1=Y0+(K1-K0)*Sinа X2=X0+(K2-K0)*Cosа Y2=Y0+(K2-K0)*Sinа
Z1
实际道路如右图:
Z2
D1
A1
D
2

1、左减右加! 所以左边的方位角为:а -90;右边的方位角为:а +90。
左边: DX1=X1+Z1×Cos(а -90)
及此点的偏角为δ 1=β 1/3=2.16689 计算方位角 :а 1=а (起始方位角 )+δ 1=86.0566667+2.16689=88.223560 L5
i
此点到起始点的直距为 S1=L1- 90 R 2 L2
=34.98497279

所以此点的坐标为 X1=X0+S1×Cosа 1=3519933.746 Y1=Y0+S1×Sinа 1= 526152.377
B A2 A1
X1, ,Y1
4、直线段的起始方位角=计算方位角=切线方位角
....
X2 ,,Y2
XN,YN
A X0 ,Y0
例如:某直线段AB(如上图),已知起点A的里程桩号K0和坐标(X0,Y0),终点B的里程 桩号KN和坐标(XN,YN)。以及起始方位角а ,计算AB段上的任意一点桩号的坐标 (如A1,A2)?
ZY+切线角θ i
D1
D2
(此处的а 为切线方位角)
实例:高铁路三标的E匝道
E匝道线形单元要素表 单 元 序 号 1 2 单 元 起始 类 点 别 半径 直 线 回 旋 线 圆 曲 单元要素值
终点 长度 半径 (米) (米)
无穷 大 364.99 5
线形单元位置 起点 终点 Y
25753.278
(米)

3 )满足超高、加宽缓和段的过渡,利于平稳行车 3、圆曲线段指的是道路平面走向改变方向或竖向改变坡度时所设置的连接两相邻直线段的圆 弧形曲线。
一、直线段的逐桩坐标计算
1、一般图纸上会给出起始点的桩号和坐标以及终点的桩号和坐标,起始方位角。 2、直线段的起始方位角 = 终点方位角。 3、直线段的里程 = 直距。
、切线角:β i=Li2×180/2RLπ 、 缓和曲线上任意点i的偏角: δ i=β i/3 、缓和曲线ZH点到任意点i的方位角(计算方 位角)为:
а i=а
(起始方位角)+δ
L 90 R L2
5 i 2
i
、直距Si=Li-


所以缓和曲线上任意点i的坐标为:
Xi=X0+Si×Cosа Yi=Y0+Si×Sinа
无穷大
桩号
E0+00.000
坐标 X
19907.561
走向方 位角
桩号
E3+64.995
坐标 X
19932.662
Y
26117.408
走向方 位角
86O3'24''
86O3'24''
无穷大
120
45
E3+64.995
19932.662
26117.408
86O3'24''
E4+09.995
19932.947
④、圆曲线ZY点到任一点i的弦长的方位角(计算方位角):а
i=а YZ+Δ i
⑤、所以圆曲线上任意点i的坐标为: Xi=XZY+Ci×Cosа
i i
Yi=YZY+Ci×Sinа
实际道路如右图:
切线方位角=起始方位角а 同样的:左减右加! 所以左边的方位角为:а -90;右边的方位角为:а +90。 左边: 右边: DX1=X1+D1×Cos(а -90) DY1=Y1+D1×Sin(а -90) ; DX2=X1+D2×Cos(а +90) DY1=Y1+D2×Sin(а +90) 。
例2:求缓和曲线段E3+64.995到E4+09.995这段上的任意一点的坐标?如E4+00.000点的坐标? 解:此点到起始点的里程L1=400-364.995=35.005m 由单元要素表可知此段曲线上的R=120m,L=45m; 切线角:β i=Li2×180/2RLπ
所以此点的切线角β 1=L12×180/2RLπ =(35.005)2*180/2*120*45*π =6.50007

解:先将方位角(X0 Y' Z'')化为角度(X+Y/60+Z/3600)0, 再将其化为弧度, 弧度=角度/180×π 。 XN=X0+(KN-K0)*Cosа

B L A
, 。(此处的а 为计算方位角)
1


YN=Y0+(KN-K0)*Sinа
L= KN-K0 所以:AB直线段上的任意一点的桩号坐标都可以求出, 如 A1(X1,Y1)、A2(X2,Y2)
三、圆曲线段的逐桩坐标计算

1、图纸一般会给出此段圆曲线段的半径(R)、 长度(L)、起始点的桩号和坐标以及终点的桩 号和坐标,起始方位角,终点方位角。
例如:某圆曲线段ZY/YZ段(如右图1),已知此 段圆曲线的起始点的桩号及坐标和终点的桩号 及坐标,半径R,长度L,求此圆曲线段上任一 点桩号的坐标?
26162.337
96O47'58''
3
120
120
109.51 9
E4+09.995
19932.947
26162.337
96O47'58''
E5+19.514
19875.432
26251.088
149O5'28''
例1:求直线段E0+00.000到E3+64.995这段的任意一点的坐标?如E1+00.000和E2+50.000的坐标。
解:任取圆曲线的一段圆弧(如右图2), ①、圆曲线上任一点i相对应的圆心角(即切线角):
Li θ i= R 式中:Li——圆曲线上任一点i离开ZY的弧长(即i 点桩号-起始点ZY的桩号) 180
o
(1)
②、圆曲线起始点ZY点到任一点i的偏角:
90 Δ i=θ i/2=
o
R
Li
③、圆曲线ZY点到任一点i的弦长(直距):Ci=2R*SinΔ i
DY1=Y1+Z1×Sin(а -90) ;
右边: DX2=X1+Z2×Cos(а +90) DY1=Y1+Z2×Sin(а +90) 。 (此处的а 为切线方位角)
二、缓和曲线(回旋线)段的逐桩坐标计算

1、图纸上会给出此段曲线的半径(R)、长度 (L)、起始点的桩号和坐标以及终点的桩号 和坐标,起始方位角,终点方位角。
解:由表格可知方位角为 86O3'24''=86+3/60+24/3600=86.05666670
E1+00.000处的坐标为 X1=X0+L1*Cosа =19907.561+100*Cos(86.056667)=3519914.438 Y1=Y0+L1*Sinа =25753.278+100*Sin(86.056667)=525853.041 由此可知直线段上的任意一点。
相关文档
最新文档