人教版九年级数学同步测试题
人教版九年级数学上册《24.1.1圆》同步测试题带答案
人教版九年级数学上册《24.1.1圆》同步测试题带答案一、单选题1.下列命题中正确的有( ) A .长度相等的弧是等弧 B .相等的圆心角所对的弦相等 C .等边三角形的外心与内心重合D .任意三点可以确定一个圆2.如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形3.如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ⊥,OCD ∠的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动4.下列命题中,⊙直径是圆中最长的弦;⊙长度相等的两条弧是等弧;⊙半径相等的两个圆是等圆;⊙半径不是弧,半圆包括它所对的直径,其中正确的个数是( ) A .1B .2C .3D .45.如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积之和为( )A .πB .2πC .3πD .4π6.如图,在Rt ⊙ABC 中,⊙ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A .32B .3C . 6D .9二、填空题7.到点O 的距离等于7cm 的点的集合是 .8.下图中,点O 是( ),线段OA 是圆的( ),线段BC 是圆的( ).9.已知,如图AB ,AD 是O 的弦 30B ∠=︒,点C 在弦AB 上,连结CO 并延长交O 于点D ,35D ∠=︒则BAD ∠的度数是 .10.如图,半径为r 的O 沿着边长为a 的正方形ABCD 的边作无滑动地滚动一周回到原来的位置,O 自身转动的圈数是 .(用含a r ,的代数式表示)11.下列说法:⊙直径是弦;⊙弦是直径;⊙大于半圆的弧是优弧;⊙长度相等的弧是等弧,其中正确的是 .12.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 .三、解答题13.如图,O 的弦,AB CD 的延长线交于点P ,连接OP ,且OP 平分APC ∠.求证:PA PC =.14.如图,点O 是同心圆的圆心,大圆半径OA ,OB 分别交小圆于点C ,D ,求证:AB CD ∥.15.如图所示,AB 为O 的直径,CD 是O 的弦,AB CD ,的延长线交于点E ,已知220AB DE AEC =∠=︒,.求AOC ∠的度数.16.如图,O 的半径5cm OA =,AB 是弦,C 是AB 上一点,且OC OA ⊥,OC BC =求A ∠的度数.17.如图,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于C,交弦AB 于D .(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹); (2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.18.如图,在O 中,AB 是直径,CD 是弦,延长AB ,CD 相交于点P ,且2AB DP = 18P ∠=︒ 求AOC ∠的度数.题号 1 2 3 4 5 6 答案CBBCD C7.以点O 为圆心,7cm 为半径的圆 8. 圆心 半径 直径 9.65︒ 10.21a r π+/21arπ+ 11.①③/③①12.两条弧度数差值的绝对值的一半 15.60AOC ∠=︒ 16.30︒17.(2) 圆的半径为5cm. 18.54。
初中数学(新人教版)九年级下册同步测试:投影(同步测试)【含答案及解析】
第二十九章投影与视图29.1投影第1课时投影知能演练提升能力提升1.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()2.如图,树是小明昨天画的一幅画的一部分,则小明创作这幅画的时间大约在()A.早上8点B.中午12点C.下午4点D.不能确定3.如图,晚上小明在灯下散步,在小明由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短,再变长D.先变长,再变短4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,则下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中正确结论的序号是.5.小军晚上到新世纪广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的一盏路灯一定位于两人.”6.两棵树及其影子的情形如图所示.(1)哪个图反映了在阳光下的情形?哪个图反映了在路灯下的情形?(2)你是用什么方法判断的?(3)请画出图中表示小丽影长的线段.①②7.如图,小明家楼边立了一根长为4 m的竹竿,小明在测量竹竿的影子时,发现影子不全落在地面上,有一部分落在楼房的墙壁上(如图),小明测出它落在地面上的影子长为2 m,落在墙壁上的影子长为1 m.此时,小明想把竹竿移动位置,使其影子刚好不落在墙上.试问:小明应把竹竿移到什么位置?(要求竹竿移动距离尽可能小)8.与一盏路灯相对,有一玻璃幕墙,幕墙前面的地面上有一盆花和一棵树.晚上,幕墙反射路灯灯光形成了那盆花的影子(如图),树影是路灯灯光形成的.你能确定此时路灯光源的位置吗?创新应用9.如图,在一面与地面垂直的围墙的同一侧有一根高10 m的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF=2 m,落在地面上的影子BF=10 m;而电线杆落在围墙上的影子GH=3 m,落在地面上的影子DH=5 m.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.1.A太阳光线是平行的,同一地点同一时刻树与影长的比应是一样的,影子的方向也应相同.2.C3.C路灯的光线可以看成是从一个点发出的,所产生的投影为中心投影.过灯所在的位置点及小明头顶作射线与地面相交,交点到小明脚跟的距离就是影长.如图,根据画出的每个位置的影长容易发现:小明从A到B的影子变化可分为两个阶段:A→M影子越来越短,M→B影子越来越长,因此从A→B影子先变短,再变长,故选C.4.①③④当木杆绕点A按逆时针方向旋转时,如图所示,当AB与光线BC垂直时,m最大,则m>AC,故①成立,②不成立;最小值为AB与底面重合时,即n=AB,故③成立;由上可知,影子的长度先增大后减小,④成立.5.之间6.解(1)题图①反映了在阳光下的情形,题图②反映了在路灯下的情形.(2)题图①中的光线是平行的,题图②中的光线相交于一点.(3)如图,AB,EF分别是表示小丽在阳光下和路灯下影长的线段.①②7.解设影子刚好不落在墙上时的影长为x m,则4-12=4x,x=83,所以小明应把竹竿移到离墙83m的位置.8.解能,如图.9.解(1)平行.(2)过点E作EM⊥AB于点M,过点G作GN⊥CD于点N,则MB=EF=2 m,ND=GH=3 m,ME=BF=10 m,NG=DH=5 m,所以AM=AB-MB=10-2=8(m),由平行投影可知,AMME =CNNG,即810=CD-35,解得CD=7 m,即电线杆的高度为7 m.第2课时正投影知能演练提升能力提升1.有一个热水瓶如图所示,平行光线从正前方照射得到它的正投影是()2.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行于投影面时的正投影3.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影试验,矩形木板在地面上形成的投影不可能是()4.在太阳光下,转动一个正方体,观察正方体在地面上投下的影子,那么这个影子最多可能是()A.四边形B.五边形C.六边形D.七边形5.正方形在太阳光的投影下得到的几何图形一定是()A.正方形B.平行四边形或一条线段C.矩形D.菱形6.在太阳光照射下,如图所示的图形中,哪些可以作为正方体的影子,将光源改为灯光将如何?7.一个圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,求圆柱的体积和表面积.创新应用8.如图,已知一纸板的形状为正方形ABCD,AD,BC与投影面平行,AB,CD与投影面不平行.(1)画出它的正投影A1B1C1D1;(2)若其边长为10 cm,∠ABB1=45°(点B1与点B是对应点),求正投影A1B1C1D1的面积.能力提升1.A2.D3.A4.C最多可能是如图所示的六边形ABCDEF.5.B6.解(1)(2)可作为太阳光照射下的影子;(1)(2)(3)可作为灯光照射下的影子.7.解因为圆柱的轴截面平行于投影面,圆柱的正投影是边长为4的正方形,所以圆柱的底面半径为2,高为4.所以圆柱的体积是π×22×4=16π,圆柱的表面积是2×π×22+4π×4=24π.创新应用8.解(1)正投影A1B1C1D1如图所示.(2)如图,过点A作AH⊥BB1于点H.∵∠ABB1=45°,∴△ABH是等腰直角三角形,∴AH=√2AB=5√2 cm,2∴A1B1=AH=5√2 cm.∵A1D1=AD=10 cm,∴矩形A1B1C1D1的面积=A1B1·A1D1=5√2×10=50√2(cm2).即正投影A1B1C1D1的面积是50√2 cm2.。
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试含答案
人教版九年级数学下册第二十七章《相似——相似三角形》同步测试题一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.82.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm 3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.76.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:27.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.48.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2 9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为_________.(填出一个正确的即可)12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为_________ cm.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=_________.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为_________.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=_________cm时,四边形ABCN的面积最大,最大面积为_________cm2.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是_________(写出所有正确结论的序号).17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC面积的.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是_________.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=_________.(用含n的式子表示)20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是_________.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.22.(2013•湛江)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.23.(2013•宜宾)如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.24.(2013•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.25.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.26.(2013•汕头)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.27.(2013•朝阳)如图,直线AB与⊙O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求⊙O的半径.(2)点E在⊙O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论.(3)求弦EC的长.28.(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)参考答案与解析一.选择题(共10小题)1.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()A.11 B.10 C.9D.8考点:相似三角形的判定与性质;勾股定理;平行四边形的性质.分析:判断出△ADF是等腰三角形,△ABE是等腰三角形,DF的长度,继而得到EC的长度,在Rt△BGE中求出GE,继而得到AE,求出△ABE的周长,根据相似三角形的周长之比等于相似比,可得出△EFC的周长.解答:解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,AD∥BC,∴∠BAF=∠F=∠DAF,∠BAE=∠AEB,∴AB=BE=6,AD=DF=9,∴△ADF是等腰三角形,△ABE是等腰三角形,∵AD∥BC,∴△EFC是等腰三角形,且FC=CE,∴EC=FC=9﹣6=3,在△ABG中,BG⊥AE,AB=6,BG=4,∴AG==2,∴AE=2AG=4,∴△ABE的周长等于16,又∵△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选D.点评:本题主要考查了勾股定理、相似三角形、等腰三角形的性质,注意掌握相似三角形的周长之比等于相似比,此题难度较大.2.(2013•重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm考点:相似三角形的判定与性质;平行四边形的性质.分析:由边形ABCD是平行四边形,可得AB∥CD,即可证得△AFE∽△DEC,然后由相似三角形的对应边成比例,求得答案.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴△AFE∽△DEC,∴AE:DE=AF:CD,∵AE=2ED,CD=3cm,∴AF=2CD=6cm.故选B.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.3.(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.专题:压轴题.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,=,∵AB=AC,∴CD=CE,解得:CD=CE=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.4.(2013•咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A.B.C.D.考点:相似三角形的应用;正方形的性质;几何概率.专题:压轴题.分析:求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;解答:解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.点评:本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.5.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A.4B.5C.6D.7考点:圆周角定理;圆心角、弧、弦的关系;相似三角形的判定与性质.分析:根据圆周角定理∠CAD=∠CDB,继而证明△ACD∽△DCE,设AE=x,则AC=x+4,利用对应边成比例,可求出x的值.解答:解:设AE=x,则AC=x+4,∵AC平分∠BAD,∴∠BAC=∠CAD,∵∠CDB=∠BAC(圆周角定理),∴∠CAD=∠CDB,∴△ACD∽△DCE,∴=,即=,解得:x=5.故选B.点评:本题考查了圆周角定理、相似三角形的判定与性质,解答本题的关键是得出∠CAD=∠CDB,证明△ACD∽△DCE.6.(2013•内江)如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2考点:相似三角形的判定与性质;平行四边形的性质.分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD即可得出结论.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.7.(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△AB F∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.专题:压轴题.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.8.(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2考点:相似三角形的判定与性质;平行四边形的性质.分析:首先证明△DFE∽△BAE,然后利用对应变成比例,E为OD的中点,求出DF:AB 的值,又知AB=DC,即可得出DF:FC的值.解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.点评:本题考查了相似三角形的判定与性质以及平行四边形的性质,难度适中,解答本题的关键是根据平行证明△DFE∽△BAE,然后根据对应边成比例求值.9.(2013•德阳)如图,在⊙O上有定点C和动点P,位于直径AB的异侧,过点C作CP 的垂线,与PB的延长线交于点Q,已知:⊙O半径为,tan∠ABC=,则CQ的最大值是()A.5B.C.D.考点:圆周角定理;圆内接四边形的性质;相似三角形的判定与性质.专题:计算题;压轴题.分析:根据圆周角定理的推论由AB为⊙O的直径得到∠ACB=90°,再根据正切的定义得到tan∠ABC==,然后根据圆周角定理得到∠A=∠P,则可证得△ACB∽△PCQ,利用相似比得CQ=•PC=PC,PC为直径时,PC最长,此时CQ最长,然后把PC=5代入计算即可.解答:解:∵AB为⊙O的直径,∴AB=5,∠ACB=90°,∵tan∠ABC=,∴=,∵CP⊥CQ,∴∠PCQ=90°,而∠A=∠P,∴△ACB∽△PCQ,∴=,∴CQ=•PC=PC,当PC最大时,CQ最大,即PC为⊙O的直径时,CQ最大,此时CQ=×5=.故选D.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了三角形相似的判定与性质.10.(2012•岳阳)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB(AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解答:解:连接OE,如图所示:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△ADO和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点评:此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二.填空题(共10小题)11.(2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t <16),连接EF,当△BEF是直角三角形时,t(s)的值为4s.(填出一个正确的即可)考点:圆周角定理;垂径定理;相似三角形的判定与性质.专题:压轴题;开放型.分析:根据圆周角定理得到∠C=90°,由于∠ABC=60°,BC=4cm,根据含30度的直角三角形三边的关系得到AB=2BC=8cm,而F是弦BC的中点,所以当EF∥AC时,△BEF 是直角三角形,此时E为AB的中点,易得t=4s;当从A点出发运动到B点名,再运动到O点时,此时t=12s;也可以过F点作AB的垂线,点E点运动到垂足时,△BEF 是直角三角形.解答:解:∵AB是⊙O的直径,∴∠C=90°,而∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵F是弦BC的中点,∴当EF∥AC时,△BEF是直角三角形,此时E为AB的中点,即AE=AO=4cm,∴t==4(s).故答案为4s.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了圆周角定理的推论以及含30度的直角三角形三边的关系.12.(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5cm.考点:相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.专题:压轴题.分析:首先,由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,由勾股定理可求得AG的值,即可求得AE的长;然后,利用平行线分线段成比例的性质分别得出EF,FC的长,即可得出答案.解答:解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6cm,∴EC=9﹣6=3(cm),∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4cm,∴AG==2(cm),∴AE=2AG=4cm;∵EC∥AD,∴====,∴=,=,解得:EF=2(cm),FC=3(cm),∴EF+CF的长为5cm.故答案为:5.点评:本题考查了平行四边形的性质,相似三角形的判定与性质,勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,难度适中.13.(2013•菏泽)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=12.考点:相似三角形的判定与性质;等腰三角形的判定与性质;三角形中位线定理.专题:压轴题.分析:延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.解答:解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.点评:本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.14.(2013•巴中)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.考点:相似三角形的应用.分析:根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.解答:解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.(2012•自贡)正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,当BM=cm时,四边形ABCN的面积最大,最大面积为cm2.考点:相似三角形的判定与性质;二次函数的最值;正方形的性质.专题:压轴题.分析:设BM=xcm,则MC=1﹣xcm,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.解答:解:设BM=xcm,则MC=1﹣xcm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C∴△ABM∽△MCN,则,即,解得CN==x(1﹣x),∴S四边形ABCN=×1×[1+x(1﹣x)]=﹣x2+x+,∵﹣<0,∴当x=﹣=cm时,S四边形ABCN最大,最大值是﹣×()2+×+=cm2.故答案是:,.点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.16.(2012•宜宾)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是②③④(写出所有正确结论的序号).考点:切线的性质;圆周角定理;三角形的外接圆与外心;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接BD,由GD为圆O的切线,根据弦切角等于夹弧所对的圆周角得到∠GDP=∠ABD,再由AB为圆的直径,根据直径所对的圆周角为直角得到∠ACB为直角,由CE垂直于AB,得到∠AFP为直角,再由一对公共角,得到三角形APF与三角形ABD相似,根据相似三角形的对应角相等可得出∠APF等于∠ABD,根据等量代换及对顶角相等可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,选项②正确;由直径AB垂直于弦CE,利用垂径定理得到A为的中点,得到两条弧相等,再由C为的中点,得到两条弧相等,等量代换得到三条弧相等,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,利用等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,选项③正确;利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,得到三角形ACQ 与三角形ABC相似,根据相似得比例得到AC2=CQ•CB,连接CD,同理可得出三角形ACP与三角形ACD相似,根据相似三角形对应边成比例可得出AC2=AP•AD,等量代换可得出AP•AD=CQ•CB,选项④正确.解答:解:∠BAD与∠ABC不一定相等,选项①错误;连接BD,如图所示:∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CE⊥AB,∴∠AFP=90°,∴∠ADB=∠AFP,又∠PAF=∠BAD,∴△APF∽△ABD,∴∠ABD=∠APF,又∠APF=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;∵直径AB⊥CE,∴A为的中点,即=,又C为的中点,∴=,∴=,∴∠CAP=∠ACP,∴AP=CP,又AB为圆O的直径,∴∠ACQ=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,选项③正确;连接CD,如图所示:∵=,∴∠B=∠CAD,又∠ACQ=∠BCA,∴△ACQ∽△BCA,∴=,即AC2=CQ•CB,∵=,∴∠ACP=∠ADC,又∠CAP=∠DAC,∴△ACP∽△ADC,∴=,即AC2=AP•AD,∴AP•AD=CQ•CB,选项④正确,则正确的选项序号有②③④.故答案为:②③④点评:此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及三角形的外接圆与圆心,熟练掌握性质及定理是解本题的关键.17.(2012•泉州)在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有1条;(2)如图②,∠C=90°,∠B=30°,当=或或时,P(l x)截得的三角形面积为△ABC面积的.考点:相似三角形的判定与性质.专题:压轴题.分析:(1)过点P作l3∥BC交AC于Q,则△APQ∽△ABC,l3是第3条相似线;(2)按照相似线的定义,找出所有符合条件的相似线.总共有4条,注意不要遗漏.解答:解:(1)存在另外 1 条相似线.如图1所示,过点P作l3∥BC交AC于Q,则△APQ∽△ABC;故答案为:1;(2)设P(l x)截得的三角形面积为S,S=S△ABC,则相似比为1:2.如图2所示,共有4条相似线:①第1条l1,此时P为斜边AB中点,l1∥AC,∴=;②第2条l2,此时P为斜边AB中点,l2∥BC,∴=;③第3条l3,此时BP与BC为对应边,且=,∴==;④第4条l4,此时AP与AC为对应边,且=,∴==,∴=.故答案为:或或.点评:本题引入“相似线”的新定义,考查相似三角形的判定与性质和解直角三角形的运算;难点在于找出所有的相似线,不要遗漏.18.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是①③.考点:相似三角形的判定与性质;勾股定理;等腰直角三角形.专题:压轴题.分析:首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;则可得S△ABC=6S△BDF.解答:解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S△ABC=6S△BDF,故④错误.故答案为:①③.点评:此题考查了相似三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题难度适中,解题的关键是证得△AFG∽△CFB,注意掌握数形结合思想与转化思想的应用.19.(2012•泸州)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)考点:相似三角形的判定与性质.专题:压轴题;规律型.分析:由n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,即可求得△B1C1M n的面积,又由B n C n∥B1C1,即可得△B n C n M n∽△B1C1M n,然后利用相似三角形的面积比等于相似比的平方,求得答案.解答:解:∵n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,∴S1=×B1C1×B1M1=×1×=,S△B1C1M2=×B1C1×B1M2=×1×=,S△B1C1M3=×B1C1×B1M3=×1×=,S△B1C1M4=×B1C1×B1M4=×1×=,S△B1C1Mn=×B1C1×B1M n=×1×=,∵B n C n∥B1C1,∴△B n C n M n∽△B1C1M n,∴S△BnCnMn:S△B1C1Mn=()2=()2,即S n:=,∴S n=.故答案为:.点评:此题考查了相似三角形的判定与性质、正方形的性质以及直角三角形面积的公式.此题难度较大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.20.(2013•荆州)如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C 内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形A n B n D n E n的边长是.考点:相似三角形的判定与性质;等腰直角三角形.专题:规律型.分析:求出第一个、第二个、第三个内接正方形的边长,总结规律可得出第n个小正方形A nB n D n E n的边长.解答:解:∵∠A=∠B=45°,∴AE1=A1E=A1B1=B1D1=D1B,∴第一个内接正方形的边长=AB=1;同理可得:第二个内接正方形的边长=A1B1=AB=;第三个内接正方形的边长=A2B2=AB=;故可推出第n个小正方形A n B n D n E n的边长=AB=.故答案为:.点评:本题考查了相似三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是求出前几个内接正方形的边长,得出一般规律.三.解答题(共8小题)21.(2013•珠海)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠PAD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,。
人教版数学九年级上册 23.1---23.3同步测试题含答案)
23.1图形的旋转一.选择题1.如图所示的是正十二角形体,因为其独特的对称美,所以2019年在英国举办的第60界国际数学奥林匹克的会标,就选用了正十二角形体,若将它绕自身中心旋转一定角度后能与原图重合,则这个角度不可能是()A.60°B.90°C.120°D.180°2.如图,△OAB绕某点旋转到△OCD的位置,则旋转中心是()A.点A B.点B C.点O D.无法确定3.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是()A.75°B.45°C.60°D.30°4.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合()A.90°B.135°C.180°D.270°5.如图,用左面的三角形连续的旋转可以得到右面的图形,每次旋转()度.A.60B.90C.120D.1506.下列图形中,绕某个点旋转72度后能与自身重合的是()A.B.C.D.7.如图,在Rt△AOB中,∠O=90°,以点A为旋转中心,把△ABO顺时针旋转得△ACD,记旋转角为α,∠ABO为β,当旋转后满足BC∥OA时,α与β之间的数量关系为()A.α=βB.α=2βC.α+β=90°D.α+2β=180°8.如图,在正方形网格中,格点△ABC绕某点顺时针旋转α度(0<α<180),得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α的值为()A.50B.60C.90D.1209.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A.①②B.②③C.③④D.②③④10.如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C 为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA.其中正确的有()A.4个B.3个C.2个D.1个二.填空题11.如图,已知点D为等边三角形ABC的AC边的中点,BC=4,点B绕着点D顺时针旋转180°的过程中,点B的对应点为点B',连接B'C、B'D,当△B'DC的面积为时,∠B'DB为.12.等边△EBC中,EC=BC=6cm,点O在BC上,且OC=4cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.则当点F运动s时,点F恰好落在射线EB上.13.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O 点相连并可绕O转动,C点固定,OC=CD=DE,点D,E可在槽中滑动,若∠BDE=78°,则∠AOB等于度.14.时钟的时针不停地旋转,从上午6时到上午10时,时针旋转的旋转角是度.15.如图,△ABP是由△ACD按顺时针方向旋转某一角度得到的,若∠BAP=60°,则在这转过程中,旋转中心是,旋转的角度为.三.解答题16.如图,在平面直角坐标系中,A(﹣3,0),点B是y轴正半轴上一动点,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,连接OP,求OP的最小值.17.如图,正方形ABCD内一点E,△ADE绕点A顺时针旋转能与△ABF重合,若AE=3.(1)求∠EAF的度数;(2)求EF的长.18.如图,△ABC中,∠B=19.11°,∠ACB=40.89°,AB=6,△ABC逆时针旋转一定角度后能与△ADE重合,且点C恰好为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.19.已知△ABC为等边三角形.(1)如图,P为△ABC外一点,∠BPC=120°,连接P A,PB,PC,求证:PB+PC=P A;(2)如图,P为△ABC内一点,若P A=12,PB=5,PC=13,求∠APB的度数.参考答案与试题解析一.选择题1.【解答】解:∵正十二角形体的中心角为30°,∴观察图象可知,旋转角是30°的偶数倍数时,可以与本身重合,故选:B.2.【解答】解:由题意得△OAB绕某点旋转到△OCD的位置,则旋转中心是点O.故选:C.3.【解答】解:如图,由题意及旋转变换的性质得:∠AOC=∠BOD=45°,∵∠AOB=15°,∴∠AOD=45°+15°=60°,故选:C.4.【解答】解:图案可以被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90度的整数倍,就可以与自身重合,故选:B.5.【解答】解:根据图形可得出:这是一个由基本图形绕着中心连续旋转3次,每次旋转120度角形成的图案.故选:C.6.【解答】解:A.旋转90°后能与自身重合,不合题意;B.旋转72°后能与自身重合,符合题意;C.旋转60°后能与自身重合,不合题意;D.旋转45°后能与自身重合,不合题意;故选:B.7.【解答】解:∵把△ABO顺时针旋转得△ACD,∴△AOB≌△ADC,∠BAC=∠OAD=α,∴AB=AC,∠BAO=∠CAD,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.8.【解答】解:如图,连接AA1,CC1,作AA1,CC1的垂直平分线交于点O,∵CC1,AA1的垂直平分线交于点O,∴点O是旋转中心,由图形可得:∠AOA1=90°∴旋转角α度=90°故选:C.9.【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故①错误,③正确;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故④正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故②错误.故选:C.10.【解答】解:如图,①设∠1=x度,则∠2=(60﹣x)度,∠DBC=(x+60)度,故∠4=(x+60)度,∴∠2+∠3+∠4=60﹣x+60+x+60=180度,∴D、A、E三点共线;故①正确;②∵△BCD绕着点C按顺时针方向旋转60°得到△ACE,∴CD=CE,∠DCE=60°,∴△CDE为等边三角形,∴∠E=60°,∴∠BDC=∠E=60°,∴∠CDA=120°﹣60°=60°,∴DC平分∠BDA;故②正确;③∵∠BAC=60°,∠E=60°,∴∠E=∠BAC.故③正确;④由旋转可知AE=BD,又∵∠DAE=180°,∴DE=AE+AD.∵△CDE为等边三角形,∴DC=DB+BA.故④正确;故选:A.二.填空题(共5小题)11.【解答】解:如图,若点B'在AC的左侧时,过点B'作BN⊥AC,交CA于点N,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,AB=AC=BC=4,又∵点D是CD的中点,∴BD⊥AC,CD=AD=2,BD=CD=2,∵△B'DC的面积为,∴×CD×B'N=,∴×2×B'N=,∴B'N=,∵点B绕着点D顺时针旋转180°,∴B'D=BD=2,∴DN===,∴DN=B'N=,∴∠NDB'=∠DB'N=45°,∴∠BDB'=45°,在点B'在AC的右侧时,∠B''DA=45°,∴∠BDB''=135°,综上所述:∠B'DB=45°或135°,故答案为:45°或135°.12.【解答】解:如图,∵由旋转知,OP=OF,∵△BCE是等边三角形,∴∠CBE=∠BCE=60°,∴∠OCP=∠FBO=120°,∠CPO+∠COP=60°,∵∠POF=120°,∴∠COP+∠BOF=60°,∴∠CPO=∠BOF,在△BOF和△PCO中,,∴△BOF≌△PCO(AAS),∴CP=OB,∵EC=BC=6cm,OC=4cm,∴OB=BC﹣OC=2(cm),∴CP=2cm,∴EP=CE+CP=8(cm),∴点P运动的时间t=8÷2=4(s),故答案为:4.13.【解答】解:∵OC=CD=DE,∴∠O=∠CDO,∠DCE=∠DEC,∵∠DCE=∠O+∠CDO=2∠O,∴∠DEC=2∠O,∵∠BDE是△ODE的外角,∴∠BDE=∠O+2∠DEC=3∠O=78°,∴∠AOB=26°,故答案为:26.14.【解答】解:∵时针从上午的6时到10时共旋转了4个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×4=120°.故答案为:120.15.【解答】解:旋转中心为点A,旋转角为∠BAC=∠BAP+∠P AC=60°+30°=90°;故答案为A,90°.三.解答题(共4小题)16.【解答】解:如图,以OA为对称轴作等边△ADE,连接EP,并延长EP交x轴于点F,∴∠AED=60°,∴AO=OE=3,∴OE=,∵△ADE和△ABP是等边三角形,∴AB=AP,AD=AE,∠BAP=∠DAE=60°,∴∠BAD=∠P AE,在△ADB和△AEP中,∴△AEP≌△ADB(SAS),∴∠AEP=∠ADB=120°,∴∠OEF=60°,∴OF=OE=3,∠OFE=30°,∴点P在直线EF上运动,当OP⊥EF时,OP最小,∴OP=OF=,则OP的最小值为,17.【解答】解(1)∵△ADE绕点A顺时针旋转能与△ABF重合,∴∠DAB=∠EAF=90°;(2)∵△ADE绕点A顺时针旋转能与△ABF重合,∴AE=AF=3,∠EAF=90°,∴EF=AE=3.18.【解答】解:(1)∠BAC=180°﹣∠B﹣∠ACB=180°﹣19.11°﹣40.89°=120°,即∠BAD=120°,所以旋转中心为点A,旋转的度数为120°;(2)∵△ABC逆时针旋转一定角度后与△ADE重合,∴∠EAD=∠BAC=120°,AE=AC,AD=AB=6,∴∠BAE=360°﹣120°﹣120°=120°,∵点C恰好成为AD的中点,∴AC=AD=3,∴AE=3.19.【解答】证明:(1)如图1,延长BP至点E,使得PE=PC,连接CE,∵∠BPC=120°,PE=PC,∴∠CPE=60°,∴△CPE为等边三角形,∴CP=PE=CE,∠PCE=60°,∵△ABC是等边三角形,∴AC=BC,∠BCA=60°,∴∠ACB=∠ECP,∴∠ACB+∠BCP=∠ECP+∠BCP,即:∠ACP=∠BCE,在△ACP和△BCE中,,∴△ACP≌△BCE(SAS),∴AP=BE,∵BE=BP+PE=BP+PC,∴PB+PC=P A;(2)如图2,将△ABP绕点B顺时针方向旋转60°,得到△CBP',连接PP',由旋转知,△APB≌△CP′B,∴∠BP A=∠BP′C,P′B=PB=5,P′C=P A=12,∠PBP'=∠ABC=60°,又∵P′B=PB=5,∴△PBP′是等边三角形,∴∠PP′B=60°,PP′=523.3课时学习图案设计一.选择题1.如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A.1个B.2个C.3个D.4个2.下列是国内几所知名大学的图标,若不考虑图标上的文字、字母和数字,其中既可以通过翻折变换,又可以通过旋转变换得到的图形是()A.清华大学B.浙江大学C.北京大学D.中南大学3.一个图形无论经过平移变换,还是经过旋转变换,下列说法:a.对应线段平行,b.对应线段相等,c.图形的形状和大小都没有发生变化,d.对应角相等,其中正确的是()A.a.b.c.B.b.c.d.C.a.b.d.D.a.c.d.4.如图,点A,B在方格纸的格点位置上,若要再找一个格点C,使它们所构成的三角形为轴对称图形,则这样的格点C在图中共有()A.4个B.6个C.8个D.10个5.如图,在正方形方格中,阴影部分是涂黑7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.4 种B.3 种C.2 种D.1 种6.“飞流直下三千尺”、“坐地日行八万里(只考虑地球自转)”如果只从数学角度看,它们分别蕴含的图形变换是()A.平移、对称B.对称、旋转C.平移、旋转D.旋转、对称7.将如图所示“你最棒”的微信图案通过平移后可以得到的图案是()A.B.C.D.8.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A.1B.2C.3D.49.一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.10.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.16二.填空题11.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.12.图中能通过基本图形旋转得到的有(请填写序号)13.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案成轴对称图形,这样的白色小方格有个,请在图中设计出一种方案.14.如图,这个图形是由“基本图案”ABCDE绕着点顺时针依次旋转次得到的,则每次旋转的角度为.15.如图,在网格图中,平移图A,使它与图B拼合成一个长方形,应将图A向(填“左”或“右”)平移格;再向(填“上”或“下”)平移格.三.解答题16.如图,△ABC的三个顶点在网格上(1)画出三角形关于原点O的中心对称图形△A1B1C1;(2)直接写出点A1的坐标为.17.如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点AB的坐标分别是A(3,2),B(1,3).将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并直接写出这时点A2的坐标.18.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标:(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.19.阅读下列材料,完成相应学习任务旋转对称把正n边形绕着它的中心旋转°的整数倍后所得的正n边形重合.我们说,正n边形关于其中心有°的旋转对称.一般地,如果一个图形绕着某点O旋转角α(0<α<360°)后所得到的图形与原图形重合,则称此图形关于点O有角α的旋转对称.图1就是具有旋转对称性质的一些图形.任务:(1)如图2,正六边形关于其中心O有的旋转对称,中心对称图形关于其对称中心有的旋转对称;(2)图3是利用旋转变换设计的具有旋转对称性的一个图形,将该图形绕其中心至少旋转与原图形重合;(3)请以图4为基本图案,在图5中利用平移、轴对称或旋转进行图案设计,使得设计出的图案是中心对称图形.参考答案与试题解析一.选择题1.【解答】解:如图所示:,共3个,故选:C.2.【解答】解:A、是既可以通过翻折变换,又可以通过旋转变换得到的图形,正确;B、可以通过翻折变换,但不可以通过旋转变换得到的图形,错误;C、可以通过翻折变换,但不可以通过旋转变换得到的图形,错误;D、不可以通过翻折变换,但可以通过旋转变换得到的图形,错误;故选:A.3.【解答】解:a、经过旋转变换对应线段不一定平行,b、无论经过平移变换,还是经过旋转变换,对应线段相等,c、无论经过平移变换,还是经过旋转变换,图形的形状和大小都没有发生变化,d、无论经过平移变换,还是经过旋转变换,对应角相等,综上所述,说法正确的是b、c、d.故选:B.4.【解答】解:如图所示,这样的格点C在图中共有10个,故选:D.5.【解答】解:在1,2,3处分别涂黑都可得一个轴对称图形.故选:B.6.【解答】解:根据平移和旋转定义可知:“飞流直下三千尺”是平移;“坐地日行八万里”是旋转.故选:C.7.【解答】解:将如图所示“你最棒”的微信图案通过平移后可以得到的图案是,故选:C.8.【解答】解:图形①可以分别旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形②可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形③可以旋转180°得到,不可以经过轴对称得到,故此选项错误;图形④可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有3个.故选:C.9.【解答】解:先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是B,故选:B.10.【解答】解:如图1,连接AC,CF,则AF=3,∴两次变换相当于向右移动3格,向上移动3格,又∵MN=20,∴20÷3=,(不是整数)∴按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∴从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是10+4=14次,故选:B.二.填空题(共5小题)11.【解答】解:如图,有三种方案,故答案为3.12.【解答】解:四幅图中,能通过基本图形旋转得到的有:(1)(2)(3)(4).故答案为:(1)(2)(3)(4).13.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.14.【解答】解:根据旋转的性质,可知:在点D处有6个角,故360°÷6=60°,所以它的旋转角为60°.即这个图形是由“基本图案”ABCDE绕着点D顺时针依次旋转5次得到的,则每次旋转的角度为60°.故答案为:D、5、60°.15.【解答】解:∵A图形在B图形的左边可知应先向右平移图形A,点C距点D4个格,∴应先向右平移4个格,此时点C与点D重合,∵点D距点E2个格,∴向上平移2格.故答案为:右,4,上,2.三.解答题(共4小题)16.【解答】解:(1)如图,△A1B1C1为所作;(2)点A1的坐标为(1,﹣3).故答案为(1,﹣3).17.【解答】解:如图所示:A2(﹣2,3);.18.【解答】解:(1)坐标系如图所示,C(3,﹣3);(2)△A1B1C1如图所示,A1(﹣2,1),B1(﹣1,4),C1(﹣3,3);(3)△A2B2C2如图所示,A(﹣1,﹣2),B(﹣4,﹣1),C2(﹣3,﹣3).19.【解答】解:(1)正六边形关于其中心O有60°的旋转对称,中心对称图形关于其对称中心有180°的旋转对称;故答案为:60°;180°;(2)∵360°÷5=72°。
人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案
人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案一、单选题1.根据表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,可以判断方程20ax bx c ++=的一个解x 的范围是( )x0 0.5 1 1.5 2 2y ax bx c =++ -1-0.513.57A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x <<2.如表是一组二次函数y =x 2﹣x ﹣3的自变量和函数值的关系,那么方程x 2﹣x ﹣3=0的一个近似根是( )x 1 2 3 4 y ﹣3﹣1 39 A .1.2B .2.3C .3.4D .4.53.下表给出了二次函数()20y ax bx c a =++≠中x ,y 的一些对应值,则可以估计一元二次方程()200ax bx c a ++=≠的一个近似解1x 的范围为( )x … 1.2 1.3 1.4 1.5 1.6 … y…1.16-0.71-0.24-0.250.76…A .11.2 1.3x <<B .11.3 1.4x <<C .11.4 1.5x <<D .11.5 1.6x <<4.已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc >;②24b ac >;③a (m 2−1)+b (m −1)<0(m ≠1);④关于x 的方程21ax bx c ++=有四个根,且这四个根的和为4,其中正确的结论有( )A .①②③B .②③④C .①④D .②③5.根据下列表格中二次函数y =ax 2+bx+c 的自变量x 与y 的对应值,判断关于x 的一元二次方程ax 2+bx+c=0的一个解的大致范围是( )x ﹣1 0 1 2 3 4 y﹣7﹣5﹣151323A .1<x <2B .﹣1<x <1C .﹣7<x <﹣1D .﹣1<x <56.已知二次函数224y x x =-+,下列关于其图象的结论中,错误..的是( ) A .开口向上B .关于直线1x =对称C .当1x >时,y 随x 的增大而增大D .与x 轴有交点7.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标(1,)n ,与y 轴的交点在0203(,),(,)之间(包含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m2(1)(1)0a m b m -+-≤总成立;④关于x 的方程214ax bx c a ++=-无实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个8.将抛物线2(1)y x =+的图象位于直线9y =以上的部分向下翻折,得到如图图象,若直线y x m =+与此图象有四个交点,则m 的取值范围是( )A .574m << B .354m << C .495m << D .374m << 9.已知函数f (x )=x 2+2x ,g (x )=2x 2+6x +n 2+3,当x =1时,f (1)=12+2×1=3,g (1)=2+6+n 2+3=n 2+11.则以下结论正确的有( )①若函数g (x )的顶点在x 轴上,则6n = ②无论x 取何值,总有g (x )>f (x );③若﹣1≤x ≤1时,g (x )+f (x )的最小值为7,则n =±3; ④当n =1时,令()()2()g x h x f x =,则h (1)•h (2)…h (2023)=2024.A .1个B .2个C .3个D .4个10.已知,抛物线y =ax 2+2ax 在其对称轴的左侧y 随x 的增大而减小,关于x 的方程ax 2+2ax =m (m>0)的一个根为﹣4,而关于x 的方程ax 2+2ax =n (0<n <m )有两个整数根,则这两个根的积是( ) A .0B .﹣3C .﹣6D .﹣8二、填空题11.若抛物线2=2++y x mx n -与x 轴交于A ,B 两点,其顶点C 到x 轴距离是8,则线段AB 的长为 . 12.根据下列表格的对应值,判断20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的取值范围是x3.23 3.24 3.25 3.26 2ax bx c ++ 0.06-0.02-0.030.0913.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣4,8),B (2,2),则关于x 的方程ax 2﹣bx ﹣c =0的解为 .14.抛物线 2y ax bx c =++ (a ,b ,c 为常数, 0a > )经过两点 ()()2,0,4,0A B - ,下列四个结论:①20b a += ;②若点 ()()2020,,2021,m n - 在抛物线上,则 m n < ;③0y > 的解集为 2x <- 或 4x > ;④方程 ()21a x bx c x +++=- 的两根为 123,3x x =-= .其中正确的结论是 (填写序号).15.若抛物线25y x bx =+-的对称轴为直线2x =,则关于x 的方程25x bx +-213x =-的解为 .16.若一元二次方程()200ax bx c ac ++=≠有两个不相等实根,则下列结论:①240b ac ->;②方程20cx bx a ++=一定有两个不相等实根;③设2bm a=-,当0a >时,一定有22am bm ax bx +≤+;④s ,()t s t <是关于x 的方程()()10x p x q +--=的两根,且p q <,则q t s p >>>,一定成立的结论序号是 .17.抛物线2y ax bx c =++(a ,b ,c 为常数,0)c <经过(11),,(0)m ,和(0)n ,三点,且3n ≥. 下列四个结论:①0b <;②2414ac b a->;③当3n =时,若点(2)t ,在该抛物线上,则>1t ;④若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则10<3m ≤. 其中正确的是 (填序号即可).18.抛物线()20y ax bx c a =++≠的对称轴为1x =,经过点()3,n -,顶点为D ,下列四个结论:21a b +=①;240b ac ->②;③关于x 的一元二次方程2ax bx c n ++=的解是13x =-和25x =;④设抛物线交y 轴于点C ,不论a 为何值,直线CD 始终过定点()15,n -.其中一定正确的是 (填写序号).三、解答题19.已知抛物线的顶点坐标为()2,0,且经过点()1,3-.(1)求该抛物线的解析式;(2)若点(m,−27)在该抛物线上,求m 的值.20. 排球场的长度为18m ,球网在场地中央且高度为2.24.m 排球出手后的运动路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()²(0)y a x h k a =-+<.(1)某运动员第一次发球时,测得水平距离x 与竖直高度y 的几组数据如下:水平距离/x m 0 2 4 6 11 12 竖直高度/y m2.482.722.82.721.821.52①根据上述数据,求这些数据满足的函数关系()²(0)y a x h k a =-+<; ②判断该运动员第一次发球能否过网 ▲ (填“能”或“不能”).(2)该运动员第二次发球时,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()20.024 2.88y x =--+,请问该运动员此次发球是否出界,并说明理由.21.如图,抛物线()2y ax bx c a 0=++≠经过点()A 03,,()B 23,和()C 10-,,直线()y mx n m 0=+≠经过点B ,C ,部分图象如图所示,则:(1)该抛物线的对称轴为直线 ;(2)关于x 的一元二次方程2ax bx c 0++=的解为 ; (3)关于x 的一元二次方程2ax bx c mx n ++=+的解为 .22.已知抛物线y=ax 2+x+1(0a ≠)(1)若抛物线的图象与x 轴只有一个交点,求a 的值; (2)若抛物线的顶点始终在x 轴上方,求a 的取值范围.23.如图,二次函数y =2x +bx +c 的图象与x 轴只有一个公共点P ,与y 轴交于点Q ,过点Q 的直线y=2x +m 与x 轴交于点A ,与这个二次函数的图象交于另一点B ,若S △BPQ =3S △APQ ,求这个二次函数的解析式.24.二次函数解析式为223y ax x a =--.(1)判断该函数图象与x 轴交点的个数;(2)如图,在平面直角坐标系中,若二次函数图象顶点是A ,与x 轴交于B ,C 两点,与y 轴交于D ,点C 的坐标是()3,0,求直线CD 的解析式;(3)请你作一条平行于x 轴的直线交二次函数的图象于点M ,N ,与直线CD 于点R ,若点M ,N ,R 的横坐标分别为m ,n ,r ,且r m n <≤,求m n r ++的取值范围.25.抛物线L :212y x bx c =-+与直线L ':22y kx =+交于A 、B 两点,且()2,0A .(1)求k 和c 的值(用含b 的代数式表示c ); (2)当0b =时,抛物线L 与x 轴的另一个交点为C . ①求ABC 的面积;②当15x -≤≤时,则1y 的取值范围是_________.(3)抛物线L :212y x bx c =-+的顶点(),M b n ,求出n 与b 的函数关系式;当b 为何值时,点M 达到最高.(4)在抛物线L 和直线L '所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当20b =-时,直接写出“美点”的个数_________.参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】B 5.【答案】A 6.【答案】D 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】412.【答案】3.24 3.25x << 13.【答案】x 1=﹣4,x 2=2 14.【答案】①③ 15.【答案】1224x x ==, 16.【答案】①②③④ 17.【答案】②③④ 18.【答案】④③19.【答案】(1)y =−3(x −2)2(2)5m =或1-20.【答案】(1)解:①由表中数据可得顶点()42.8,设2(4) 2.8(0)y a x a =-+<把()02.48,代入得16 2.8 2.48a += 解得:0.02a =-∴所求函数关系为20.02(4) 2.8y x =--+;②能.(2)解:判断:没有出界.第二次发球:()20.024 2.88y x =--+ 令0y =,则()20.024 2.880x --+= ,解得18(x =-舍) 216x =21618x =<∴该运动员此次发球没有出界.21.【答案】(1)x 1=(2)1x 1=- 2x 3= (3)1x 2= 2x 1=-22.【答案】(1)解:由题意得方程ax 2+x+1=0有两等实数根.∴△=b 2-4ac =1-4a =0,∴a =14. ∴当a =14时函数图象与x 轴恰有一个交点; (2)解:由题意得4104a a-> 当a >0时,4a -1>0,解得a >14;当a <0时,4a -1<0,解得a <14.∴a <0.∴当a >14或a <0时,抛物线顶点始终在x 轴上方.23.【答案】y =x 2﹣4x+424.【答案】(1)函数图象与x 轴交点的个数是2(2)3y x =- (3)12m n r ≤++<25.【答案】(1)1k =- 44c b =-(2)10;1421y -≤≤ (3)244n b b =-+- 2b = (4)90。
初中数学(新人教版)九年级下册同步测试:第27章测评(同步测试)【含答案及解析】
第二十七章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF分别交l1,l2,l3于点D,E,F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则DEEF的值为()A.12B.2 C.25D.352.如图,锐角三角形ABC的高CD和高BE相交于点O,则与△DOB相似的三角形个数是()A.1B.2C.3D.43.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上.如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的14,那么点B'的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)4.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E.若AC=8,BC=6,DE=3,则AD的长为()A.3B.4C.5D.65.已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标分别变成原来的2倍,得到点A',B',C'.下列说法正确的是()A.△A'B'C'与△ABC是位似图形,位似中心是点(1,0)B.△A'B'C'与△ABC是位似图形,位似中心是点(0,0)C.△A'B'C'与△ABC是相似图形,但不是位似图形D.△A'B'C'与△ABC不是相似图形6.如图,梯形ABCD的对角线AC,BD相交于点O,G是BD的中点.若AD=3,BC=9,则GO∶BG=()A.1∶2B.1∶3C.2∶3D.11∶207.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线于点E,则下列结论错误的是()A.EDEA =DFABB.DEBC=EFFBC.BC DE =BFBED.BFBE=BCAE8.在平面直角坐标系中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-1x图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O,P,Q为顶点的三角形与△OAB相似,则相应的点P共有() A.1个 B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是.10.已知△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为.11.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165 cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为.(精确到1 cm)12.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q.若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为.13.如图,小明在A时测得某树的影长为2 m,在B时又测得该树的影长为8 m.若两次日照的光线互相垂直,则树的高度为m.14.一古老的捣碎器如图所示,已知支撑柱AB的高为0.3 m,踏板DE长为1.6 m,支撑点A到踏脚D的距离为0.6 m,现在踏脚着地,则捣头点E距地面m.三、解答题(共44分)15.(10分)如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案绕原点O 旋转180°后得到的图案;(2)在同一方格纸中,并在y轴的右侧,将原小金鱼图案以原点O为位似中心放大,使它们的相似比为2∶1,画出放大后小金鱼的图案.16.(10分)某高中为高一新生设计的学生板凳从侧面看到的图形如图所示.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,则横梁EF的长应为多少?(材质及其厚度等暂忽略不计)17.(12分)如图,在△ABC中,延长BC到点D,使CD=BC.取AB的中点F,连接FD交AC于点E.的值;(1)求AEAC(2)若AB=a,FB=EC,求AC的长.18.(12分)如图,在四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE∥AD;的值.(3)若AD=4,AB=6,求ACAF第二十七章测评一、选择题1.D2.C3.D4.C5.B6.A 根据△AOD ∽△COB ,可以知道ODOB =ADBC =13.由于G 是BD 的中点,从而可以得到GO ∶BG=1∶2. 7.C8.D 在△OPQ 和△OAB 中,∠PQO=∠AOB=90°,当∠POQ=∠ABO 或∠POQ=∠BAO 时,两个三角形相似,故双曲线的每个分支上都有2个点满足题意,即相应的点P 共有4个. 二、填空题9.(9,0) 要确定△ABC 与△A 1B 1C 1的位似中心,只要连接A 1A ,C 1C 并延长,其交点即为位似中心,然后再根据画图的结果,确定位似中心的坐标即可.10.90 ∵△ABC 的三边长分别为5,12,13,∴△ABC 的周长为5+12+13=30.∵与它相似的△DEF 的最小边长为15,∴△DEF 的周长∶△ABC 的周长=15∶5=3∶1,∴△DEF 的周长为3×30=90. 11.8 cm12.3或43 由于以A ,P ,Q 为顶点的三角形和以A ,B ,C 为顶点的三角形有一个公共角(∠A ),因此依据相似三角形的判定方法,过点P 的直线PQ 应有两种作法:一是过点P 作PQ ∥BC ,这样根据相似三角形的性质可得AQAB =APAC ,即AQ6=24,解得AQ=3; 二是过点P 作∠APQ=∠ABC ,交边AB 于点Q ,这时△APQ ∽△ABC ,于是有AQ AC=AP AB ,即AQ 4=26,解得AQ=43.所以AQ 的长为3或43.13.4 直角三角形被斜边上的高分成的两个小直角三角形都与原三角形相似,如图.这个基本图形可称之为“母子三角形”,树高EH 所在的两个“子三角形”相似,即Rt △ECH ∽Rt △DEH ,得EH 2=HC ·HD=2×8.所以EH=4 m .或者利用勾股定理,得{EC 2-ED 2=22-82,EC 2+ED 2=(2+8)2,消去ED 2,得EC 2=20, 所以EH 2=16,所以EH=4 m .14.0.8 ∵△ABD ∽△ECD ,∴AD ∶ED=AB ∶EC ,∴0.6∶1.6=0.3∶EC ,解得EC=0.8 m .三、解答题 15.解 如图所示.16.解 过点C 作CM ∥AB ,交EF ,AD 于点N ,M ,作CP ⊥AD ,交EF ,AD 于点Q ,P.由题意得,四边形ABCM 是平行四边形,∴EN=AM=BC=20 cm . ∴MD=AD-AM=50-20=30(cm).由题意知CP=40 cm,PQ=8 cm,∴CQ=32 cm .∵EF ∥AD ,∴△CNF ∽△CMD. ∴NFMD =CQCP ,即NF30=3240,解得NF=24 cm . ∴EF=EN+NF=20+24=44(cm),即横梁EF 的长应为44 cm .17.解 (1)过点F 作FM ∥AC ,交BC 于点M.∵F 为AB 的中点,∴M 为BC 的中点,即FM ∥AC ,且FM=12AC.由FM ∥AC ,得△FMD ∽△ECD.∴DC DM =EC FM =23,∴EC=23FM=23×12AC=13AC.∴AE AC=AC -EC AC=AC -13AC AC =23.(2)∵AB=a ,∴FB=12AB=12a. 又FB=EC ,∴EC=12a.∵EC=13AC ,∴AC=3EC=32a.18.(1)证明 ∵AC 平分∠DAB ,∴∠DAC=∠CAB.又∠ADC=∠ACB=90°,∴△ADC ∽△ACB.∴AD AC =ACAB ,∴AC 2=AB ·AD.(2)证明 ∵E 为AB 的中点,∴CE=12AB=AE ,∠EAC=∠ECA.∵AC 平分∠DAB ,∴∠CAD=∠CAB. ∴∠DAC=∠ECA.∴CE ∥AD.(3)解 ∵CE ∥AD ,∴∠DAF=∠ECF ,∠ADF=∠CEF ,∴△AFD ∽△CFE ,∴ADCE =AFCF .∵CE=12AB ,∴CE=12×6=3.又AD=4,由ADCE =AF CF ,得43=AFCF, ∴AFAC =47,∴ACAF =74.。
人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案
人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案一、选择题1.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x 名,据题意可列方程为()A.x(x+1)=253B.x(x−1)=253C.12x(x+1)=253D.12x(x−1)=2532.某小区内的一家快递驿站第一天共收到225件快递,第三天共收到324件快递,设该快递驿站收件量的日平均增长率为x,则下列方程正确的是()A.225(1+x2)=324B.225(1+x)2=324C.225(1+2x)=324D.225+225(1+x)=3243.有一个人患流感,经过两轮传染后共有64个人患流感.设每轮传染中平均一个人传染x个人,则第三轮传染后共有()个人患流感。
A.7 B.8 C.448 D.5124.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.主干,支干和小分支的总数是157,则每个支干长出多少个小分支?设每个支干长出x个小分支,所列方程是()A.x2=157B.(1+x)2=157C.1+x+x2=157D.x+x2=1575.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“健身杯”足球比赛,赛制为单循环形式(每两个队之间赛一场),现计划安排21场比赛,则邀请的参赛队数是()A.5 B.6 C.7 D.86.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则所列方程正确的为()A.(30−2x)(40−2x)=600B.(30+2x)(40+2x)=600C.30×40−2×30x−2×40x=600D.30×40+2×30x+2×40x=6007.某公司年报显示,该公司2023年的利润为6600万元,受市场波动影响,2023年利润增长率为2022年利润增长率的一半,若该公司2021年的利润为5000万元,则该公司2023年利润增长率为()A.5%B.10%C.15%D.20%8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)x=6210B.3(x−1)=6210C.(3x−1)x=6210D.3x=6210二、填空题9.10月8号到校前,帅童收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,帅童给个同学发了短信10.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,设每只病鸡传染健康鸡的只数为x只,则可列方程为.11.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为.12.如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角形点阵中前4行的点数和,则300个点是前行的点数和.13.如图,某小区要在长为16m,宽为12m的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m.三、解答题14.西瓜经营户以3元/千克的价格购进一批小型西瓜,以4元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克这种小型西瓜的售价降低多少元?15.现今网购已经成为消费的新常态,某快递公司今年8月份的投递快递总件数为10万件,由于改进分拣技术,增加投递业务人员,10月份的投递快递总件数达到12.1万件,假设该公司每个月的投递快递总件数平均增长率相同.(1)求该公司的投递快递总件数月平均增长率;(2)如果继续保持上面的月平均增长率,平均每个业务员每月最多可投递快递0.7万件,那么20名投递业务员能否完成今年11月份的快递投递任务?说明理由.16.每年暑假是游泳旺季,今年我市某商店抓住商机,销售某款游泳服.6月份平均每天售出100件,每件盈利40元.为了扩大销售、增加盈利,7月份该店准备采取降价措施,经过市场调研,发现销售单价每降低1元,平均每天可多售出10件.(1)若降价5元,求平均每天的销售数量;(2)当每件游泳服降价多少元时,该商店每天销售利润为6000元?参考答案1.D2.B3.D4.C5.C6.A7.B8.A9.1210.(1+x)2=16911.20%12.2413.214.解:设应将每千克这种小型西瓜的售价降低x元.)−24=200根据题意,得(4−3−x)(200+40x0.1原式可化为:50x2−25x+3=0,解这个方程,得x1=0.2,x2=0.3.∵为了促销,故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克这种小型西瓜的售价降低0.3元.15.(1)解:设该公司的投递快递总件数月平均增长率为x依题意得:10(1+x)2=12.1解得:x1=﹣2.1(不符合题意,舍去),x2=0.1=10%答:该公司的投递快递总件数月平均增长率为10%;(2)解:该公司现有的20名投递业务员能完成今年11月份的快递投递任务,理由如下:由题意可知,11月份的快递投递总件数:12.1×(1+10%)=13.31 (万件)∵0.7×20=14(万件),14>13.31∴该公司现有的20名投递业务员能完成今年11月份的快递投递任务.16.(1)解:∵销售单价每降低1元,平均每天可多售出10件,降价5元∴平均每天可多售出5×10=50(件)∴若降价5元,平均每天的销售数量为100+50=150(件).(2)解:设每件商品降价x元,则每件盈利(40−x)元,平均每天可售出(100+10x)件∵商店每天销售利润为6000元∴(40−x)(100+10x)=6000解得:x1=10,x2=20答:每件游泳服降价10元或20元时,该商店每天销售利润为6000元.。
人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案
人教版九年级数学上册《21.1一元二次方程》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列关于x 的方程是一元二次方程的是( )A .20ax bx c ++=B .240x x-= C .()()1110x x +-+= D .()22125x x x -= 2.一元二次方程221x x -=的一次项系数和常数项依次是( )A .1-和1B .1-和1-C .2和1-D .1-和33.将一元二次方程()()()21235x x x x +-=+-化为一般形式为( )A .2510x x -+=B .290x x +-=C .2430x x -+=D .210x x -+=4.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值为( )A .1B .2C .﹣1D .﹣25.若a 是方程2230x x --=的一个解,则263a a -的值为() A .3B .3-C .9D .9-二、填空题 6.只含有 个未知数,并且未知数的 次数是2的方程,叫做一元二次方程,它的一般形式为 .7.一元二次方程()521x x x -=+的一次项系数是 .8.若关于x 的一元二次方程20x a -=的一个根是2,则=a .9.若方程()2190a x x -+-=是关于x 的一元二次方程,则a 的取值范围是__________.10.已知m 是方程210x x --=的一个根,则代数式2552021m m -+的值是 .三、解答题11.判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④ 215402x x-+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.12.已知13,都是方程230==-x x+-=的根,求a、b的值和这个一元二次方程的一般形式.ax bx13.已知m是方程2250x x+-=的一个根,求32+--的值.259m m m14.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)某班同学之间为了相互鼓励,每两人之间进行一次击掌,共击掌595次.求本班有多少名同学(设本班有x名同学).参考答案1.C2.B3.A4.C5.C6.一最高20(0)++=≠ax bx c a7.7-8.49.1a ≠10.202611.②③⑥.12.1a = 2b = 2 230x x +-= 13.9-14.(1)10x 2+6x-52=0;(2)211900x x --=。
初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】
29.2三视图第1课时简单几何体的三视图知能演练提升能力提升1.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()2.已知底面为正方形的长方体如图所示,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.下列几何体的主视图既是中心对称图形又是轴对称图形的是()4.如图,将Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是()5.如图,该几何体的俯视图是()6.如图,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()7.由若干个大小、形状完全相同的小立方块所搭成的几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()8.下图中右面的三视图是左面棱锥的三视图,能反映物体的长和高的是()A.俯视图B.主视图C.左视图D.都可以创新应用★9.如图,这是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可恰好堵住圆形空洞,又可恰好堵住方形空洞的是()★10.5个棱长为1的小正方体组成如图所示的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位);(2)画出该几何体的主视图和左视图.能力提升能力提升1.A2.B3.D4.D Rt△ABC绕直角边AC旋转一周所得到的几何体是圆锥,所以它的主视图是等腰三角形.5.B6.A要注意看的方向,本题是从上面看,即俯视,圆柱从上面看应该是圆形,正方体从上面看应该是正方形,并且它们是并列摆放的.7.A8.B由实物图可以知道能反映长的视图是主视图和俯视图,能反映高的视图是主视图和左视图,故选B.创新应用9.B10.解(1)522(2)如图.第2课时复杂几何体的三视图知能演练提升能力提升1.已知一个水平放置的圆柱形物体如图所示,中间有一个细棒,则此几何体的俯视图是()2.手提水果篮抽象的几何体如图所示,以箭头所指的方向为主视图方向,则它的俯视图为()3.如图,该零件的左视图是()4.有一个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图,该几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()6.如图,桌面上的模型由20个棱长为a的小正方体组成,现将该模型露在外面的部分涂上涂料,则涂上涂料部分的总面积为.7.已知某几何体的示意图如图所示,请画出该几何体的三视图.8.已知一个槽形工件如图所示,它是长方体中间切去了一个小的三角块,工人师傅要得到它的平面图形,请你画出它的三视图.★9.如图,下列是一个机器零件毛坯和它的主视图,请画出这个机器零件的左视图与俯视图.创新应用★10.如图,下列是一个机器零件的毛坯,请画出这个机器零件的三视图.★11.已知由若干个完全相同的小正方体组成的一个几何体如图所示.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加几个小正方体?能力提升1.C2.A3.D4.C5.A6.50a27.解如图所示.8.解如图所示.9.解如图所示.创新应用10.解三视图如图所示.11.解(1)左视图和俯视图如下:(2)在第二层第二列的第二行和第三行可各加一个;在第三层第二列的第三行可加一个,在第三列的第三行可加1个,2+1+1=4(个).故最多可再添加4个小正方体.第3课时从视图到实物知能演练提升能力提升1.已知由几个小正方体所搭的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的主视图为()2.已知一个几何体的三视图如图所示,则该几何体是()3.已知一个几何体的三视图如图所示,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100π cm2D.200π cm24.已知一个由小正方体所搭的几何体如图所示,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小正方体的个数),其中不正确的是()5.已知一个几何体的三视图如图所示(其中a,b,c为相应的边长),则这个几何体的体积是.6.用若干个小正方体搭成一个几何体,它的主视图和俯视图如图所示,问:搭成这样的几何体,最少需要多少个小正方体?最多需要多少个小正方体?7.已知某工件的三视图如图所示,求此工件的全面积.创新应用★8.如果一个几何体是由多个小正方体堆成,其三视图如图所示,那么这样的几何体一共有多少种情况?能力提升1.D2.D3.D通过三视图知原几何体是一个底面直径为10 cm,高为20 cm的圆柱体.则S侧面=10π×20=200π(cm)2.故选D.4.B A是从左面看到的,C是从正面看到的,D是从上面看到的.5.abc6.解由主视图得到该几何体有三列,高度分别为2,3,2;由俯视图得第一列和第三列各有2个,但是第二列最少有5个,最多有9个.所以搭成这样的几何体,最少需要9个小正方体,最多需要13个小正方体.7.解由三视图可知,该工件是一个底面半径为10 cm,高为30 cm的圆锥,圆锥的母线长为√302+102=10√10(cm),圆锥的侧面积为1×20π×10√10=100√10π(cm2),圆锥的底面积为2102π=100π(cm2),所以圆锥的全面积为100π+100√10π=100(1+√10)π(cm2).即工件的全面积为100(1+√10)π cm2.创新应用8.解主视图、左视图、俯视图都是由4个正方形组成,所以该物体是由一些完全一样的小正方体构成,所以该物体可以是由8个完全一样的小正方体组成的大正方体如图(1),而且也可以保持图(1)中下面一层有4个小正方体,那么上面一层4块中缺少任意一块,或缺对角的2块,这七种情况的三视图都如题图所示.。
初中数学(新人教版)九年级下册同步测试:期末测评(同步测试)【含答案及解析】
期末测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分.下列各小题给出的四个选项中,只有一项符合题目要求)1.由两个正方体组成的几何体如图所示,则该几何体的俯视图为()2.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的.若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F3.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan 50°B.10sin 40°C.10sin 50°D.10cos50°的图象相交于A,C两点,过点A作x轴的垂线交x轴于点4.如图,正比例函数y=kx与反比例函数y=4xB,连接BC,则△ABC的面积等于()A.8B.6C.4D.25.(2020·四川凉山州中考)如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.12B.√22C.2D.2√26.如图,在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于点E ,PD ⊥AC 于点D.设BP=x ,则PD+PE 等于( )A.x 5+3B.4-x 5C.72D.12x 5−12x 2257.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD 为12 m,塔影长DE 为18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m,则塔高AB 为( )A.24 mB.22 mC.20 mD .18 m8.如图,在Rt △ABC 中,∠ACB=90°,BC=4,AC=3,CD ⊥AB 于点D.设∠ACD=α,则cos α的值为( )A.45B.34C.43D.359.如图,在x 轴的上方,∠AOB 为直角,且绕原点O 按顺时针方向旋转.若∠AOB 的两边分别与函数y=-1x ,y=2x的图象交于B ,A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.由7个小立方块所搭成的几何体的俯视图如图所示,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()11.如图,A,B是反比例函数y=2x的图象上的两点.AC,BD都垂直于x轴,垂足分别为C,D,AB的延长线交x轴于点E.若C,D的坐标分别为(1,0),(4,0),则△BDE的面积与△ACE的面积的比值是()A.12B.14C.18D.11612.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O.设△OCD的面积为m,△OEB的面积为√5,则下列结论正确的是()A.m=5B.m=4√5C.m=3√5D.m=10二、填空题(每小题3分,共18分)13.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=kV(k为常数,k≠0),其图象如图所示,则k的值为.14.如图,在Rt △ABC 中,∠ACB=90°,∠A<∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处.若CD 恰好与MB 垂直,则tan A 的值为 .15.在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为 m .16.已知由几块小正方块搭成的几何体的主视图与左视图如图所示,则这个几何体最多可能有 个小正方块.17.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B',折痕为EF.已知AB=AC=3,BC=4,若以点B',F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是 .18.已知函数y=x 的图象与函数y=4x的图象在第一象限内交于点B ,点C 是函数y=4x在第一象限的图象上的一个动点(不与点B 重合),则当△OBC 的面积为3时,点C 的横坐标是 .三、解答题(共66分)19.(4分)计算:sin 30°+cos 245°-12tan 260°+1cos30°.20.(6分)双曲线y=kx (k 为常数,且k ≠0)与直线y=-2x+b 交于A (-12m ,m -2),B (1,n )两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D.若点E为CD的中点,求△BOE的面积.21.(8分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.22.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1 m的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40 m,又测得该建筑物顶端A的仰角为60°,求该建筑物的高度AB.(结果保留根号)23.(8分)如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=3.5(1)求DE,CD的长;(2)求tan∠DBC的值.24.(10分)(2020·江苏南京中考)如图,在港口A处的正东方向有两个相距6 km的观测点B,C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B,C处分别测得∠ABD=45°,∠C=37°.求轮船航行的距离AD.(参考数据:sin 26°≈0.44,cos 26°≈0.90,tan 26°≈0.49,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)25.(10分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M,M',N',N.小明在探究线段MM'与N'N的数量关系时,从点M',N'向对应边作垂线段M'E,N'F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时(如图①),直线l分别交AD,A'D',B'C',BC于M,M',N',N,小明发现MM'与N'N相等,请你帮他说明理由.(2)当直线l与方形环的邻边相交时(如图②),l分别交AD,A'D',D'C',DC于M,M',N',N,l与DC的夹角为α,你认为MM'与N'N还相等吗?若相等,说明理由;若不相等,求出MM'的值.(用含α的三角函数表示)N'N26.(12分)如图,双曲线y=k(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).x(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.期末测评一、选择题1.D2.B3.B4.C5.A6.A 由题意知DP ∥AB ,EP ∥AC.∴△BEP ∽△BAC. ∴PECA =BPBC ,即PE=CA ·BP BC =4x5.∵△CDP ∽△CAB ,∴DPAB =CPBC , ∴DP=3(5-x )5.∴PD+PE=x5+3. 7.A8.A 由条件知,∠B=∠ACD=α,斜边AB=5,cos α=cos B=BC AB=45.9.D 过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E (图略),则S △AOF =1,S △OBE =0.5.易证△AOF ∽△OBE ,则BOAO =√0.51=√22,即tan ∠OAB=√22是个定值,所以∠OAB 大小保持不变. 10.A11.D 解出A ,B 两点的坐标分别为A (1,2),B (4,0.5),∴AC=2,BD=0.5.∵△BDE ∽△ACE ,∴它们面积的比值为116.12.B 二、填空题13.9 由题图知ρ=1.5,V=6,则k=ρ·V=9.14.√33 由CM 是Rt △ABC 斜边的中线,可得CM=AM ,则∠A=∠ACM.由折叠可知∠ACM=∠DCM.又∠A+∠B=∠BCD+∠B=90°,则∠A=∠BCD.所以∠A=∠ACM=∠DCM=∠BCD=30°,因此tan A=tan 30°=√33. 15.15 16.9 17.127或218.1或4 连接OC ,BC ,过点C 作CD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E.由于函数y=x 的图象与函数y=4x 的图象在第一象限内交于点B ,故易知B (2,2).设点C 的坐标为(m ,4m ),又点B ,C 都在y=4x 的图象上,所以S △ODC =S △BOE .如图①所示,当点C 在点B 左方的图象上时,S △OBC =S △ODC +S 梯形BCDE -S △BOE =S 梯形BCDE =12(2+4m)(2-m )=3,解得m 1=1,m 2=-4(不合题意,舍去),即点C 的横坐标是1.如图②所示,当点C 在点B 右方的图象上时,同理,有S △OBC = S 梯形BCDE =12(2+4m )(m-2)=3,解得m 1=4,m 2=-1(不合题意,舍去),即点C 的横坐标是4.综上可知,点C 的横坐标为1或4.三、解答题19.解 原式=12+(√22)2−12×(√3)2+√32=12+12−32+2√33=-12+2√33. 20.解 如图.21.(1)证明 ∵∠AED=∠B ,∠DAE=∠CAB ,∴△ADE ∽△ACB ,∴∠ADE=∠C.又AD AC=DFCG,∴△ADF ∽△ACG. (2)解 ∵△ADF ∽△ACG ,∴AD AC =AF AG =12,∴AFFG =1.22.解 由题意知∠PAO=60°,∠B=30°.在Rt △POA 中,tan ∠PAO=PO OA ,tan 60°=30OA ,OA=30÷√3=10√3(m).在Rt △POB 中,tan B=POOB ,tan 30°=30OB ,OB=30÷√33=30√3(m),所以AB=OB-OA=30√3-10√3=20√3(m),即商店与海源阁宾馆之间的距离为20√3 m .23.解 (1)在Rt △ADE 中,由AE=6,cos A=35,得AD=10.由勾股定理得DE=8.利用三角形全等或角平分线的性质,得DC=DE=8.(2)方法1:由(1)AD=10,DC=8,得AC=18. 利用△ADE ∽△ABC ,得DE BC=AE AC ,即8BC=618,BC=24,得tan ∠DBC=13.方法2:由(1)得AC=18,又cos A=ACAB=35,得AB=30.由勾股定理,得BC=24,得tan ∠DBC=13.24.解 如图,过点D 作DH ⊥AC 于点H ,在Rt △DCH 中,∠C=37°,∴CH=DHtan37°.在Rt △DBH 中,∠DBH=45°,∴BH=DHtan45°. ∵BC=CH-BH , ∴DHtan37°−DHtan45°=6,解得DH=18.在Rt △DAH 中,∠ADH=26°,∴AD=DHcos26°≈20.答:轮船航行的距离AD 约为20 km .25.解 (1)在方形环中,∵M'E ⊥AD ,N'F ⊥BC ,AD ∥BC ,∴M'E=N'F ,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF. ∴△MM'E ≌△NN'F ,∴MM'=N'N.(2)∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α,∴△NFN'∽△M'EM.∴MM 'N 'N=M 'ENF. ∵M'E=N'F ,∴MM 'N 'N =N 'FNF=tan α. ①当α=45°时,tan α=1,则MM'=NN'. ②当α≠45°时,MM'≠NN',且MM 'N 'N =tan α.26.解 (1)将点A (2,3)代入解析式y=k x ,解得k=6.(2)将D (3,m )代入反比例解析式y=6x ,得m=63=2,所以点D 的坐标为(3,2).设直线AD 的解析式为y=k 1x+b (k 1≠0),将A (2,3)与D (3,2)代入,得{2k 1+b =3,3k 1+b =2,解得k 1=-1,b=5. 所以直线AD 的解析式为y=-x+5.(3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M.因为AB ∥x 轴,所以BM ⊥y 轴.所以MB ∥CN ,△OCN ∽△OBM.因为C 为OB 的中点,即OC OB =12,S △OCNS △OBM =(12)2.因为A ,C 都在双曲线y=6x 上,所以S △OCN =S △AOM =3.由33+S △AOB =14,得S △AOB =9,故△AOB 的面积为9.。
初中数学(新人教版)九年级下册同步测试:第29章测评(同步测试)【含答案及解析】
第二十九章测评(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分.下列各小题给出的四个选项中,只有一项符合题目要求)1.下列投影是正投影的是()A.(1)B.(2)C.(3)D.都不是2.小明在某天下午测量了学校旗杆的影子长度,按时间顺序排列正确的是()A.6 m,5 m,4 mB.4 m,5 m,6 mC.4 m,6 m,5 mD.5 m,6 m,4 m3.已知6个棱长为1的小正方体组成的一个几何体如图所示,则其俯视图的面积是()A.6B.5C.4D.34.一个水平放置的全封闭物体如图所示,则它的俯视图是()5.已知由4个大小相同的长方体搭成的立体图形的左视图如图所示,则这个立体图形的搭法不可能是()6.图①表示一个正五棱柱形状的高大建筑物,图②是它的俯视图.小健站在地面观察该建筑物,当他在图②中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN的度数为()A.30°B.36°C.45°D.72°7.已知一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()A.66B.48C.48√2+36D.578.已知一个由多个相同的小正方体堆积而成的几何体的俯视图如图所示,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()二、填空题(每小题4分,共24分)9.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6 m,他向墙壁走1 m 到B处时发现影子刚好落在点A,则灯泡与地面的距离CD=.10.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之间,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为. 11.如图,电视台的摄像机1,2,3,4在不同位置拍摄了四幅画面,则图象A是号摄像机所拍,图象B是号摄像机所拍,图象C是号摄像机所拍,图象D是号摄像机所拍.12.已知由四个相同的小正方体组成的立体图形的主视图和左视图如图所示,则原立体图形可能是.(把图中正确的立体图形的序号都填在横线上)13.已知三棱柱的三视图如图所示,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为cm.14.观察由棱长为1的小正方体摆成的图形(如图),寻找规律:如图①中:共有1个小正方体,其中1个看得见,0个看不见;如图②中:共有8个小正方体,其中7个看得见,1个看不见;如图③中:共有27个小正方体,其中19个看得见,8个看不见;……则第⑥个图中,看不见的小正方体有个.三、解答题(共44分)15.(10分)按规定尺寸作出如图所示几何体的三视图.16.(10分)如图,两幢楼高AB,CD为30 m,两楼间的距离AC为24 m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)17.(12分)已知一个几何体的三视图如图所示.(1)写出这个几何体的名称;(2)根据图中所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.18.(12分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12 m到达点Q时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?第二十九章测评一、选择题1.C2.B3.B4.C5.A6.B由题图可知∠MPN是由正五边形的两条边的延长线所夹的角,由正五边形的内角度数为108°,知∠MPN=36°.7.A8.D根据俯视图,可知这个几何体从左面看共有两列,其中左边一列最高有两个小正方体,右边一列最高有三个小正方体,因此其左视图应为D.二、填空题m10.上午8时11.234112.①②④9.641513.6如图,过点E作EQ⊥FG于点Q,由题意可得出EQ=AB.在Rt△EGQ中,∵EG=12 cm,∠×12=6(cm).EGF=30°,∴EQ=AB=1214.125通过分析:题图①中,1个小正方体,0个看不见;题图②中,共有8个小正方体,1个看不见;题图③中,共有27个小正方体,8个看不见,所以看不见的小正方体个数正好是上一个图形中小正方体的个数,所以第⑥个图中看不见的小正方体有53=125(个).三、解答题15.解如图.16.解延长MB交CD于点E,连接BD,因为AB=CD,所以NB和BD在同一条直线上.所以∠DBE=∠MBN=30°.因为四边形ABDC是矩形,所以BD=AC=24 m.在Rt△BED中,tan 30°=DEBD,DE=BD tan 30°=24×√33=8√3(m),所以CE=30-8√3≈16.14(m).即甲楼投在乙楼上的影子的高度约为16.14 m.17.解(1)圆锥.(2)S表=S侧+S底=πrl+πr2=12π+4π=16π(cm2).(3)如图将圆锥的侧面展开,线段BD为所求的最短路程.因为AB=6 cm,底面圆半径r=2 cm,设∠BAB'=n°,所以nπ×6180=2π×2,解得n=120,即∠BAB'=120°.由题易知C为弧BB'的中点,所以BD=3√3 cm.18.解(1)由对称性可知AP=BQ.设AP=BQ=x m.因为MP∥BD,所以△APM∽△ABD.所以MPBD =APAB,即1.69.6=x2x+12,解得x=3.所以AB=2x+12=2×3+12=18(m),即两个路灯之间的距离为18 m.(2)设王华走到路灯BD处,头的顶部为E,如图.连接CE,并延长交AB的延长线于点F,则BF即为此时他在路灯AC下的影子长,设BF=y m.因为BE∥AC,所以△FEB∽△FCA.所以BEAC =BFFA,即1.69.6=yy+18,解得y=3.6.故当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6 m.。
九年级上册数学同步训练人教版
九年级上册数学同步训练人教版一、一元二次方程部分。
1. 概念理解。
- 一元二次方程的定义是ax^2+bx + c = 0(a≠0)。
这就像一个特殊的小团体的规则一样,必须有一个二次项(ax^2),而且这个二次项系数a不能是0,不然就降级成一次方程啦。
就好比在一个超级英雄团队里,必须有一个拥有超强大力量(二次项)的核心成员,要是这个核心成员不存在了,那这个团队就不是原来那个厉害的团队了。
- 当我们判断一个方程是不是一元二次方程的时候,要把它化成一般形式。
比如说x(x - 1)=x^2+1,乍一看好像很复杂,但当我们展开左边的式子得到x^2-x=x^2+1,然后移项合并同类项,就会发现-x - 1 = 0,这实际上是个一元一次方程,不是一元二次方程。
这就像是给一个神秘生物做鉴定,要把它的伪装都去掉,才能看清楚它的真面目。
2. 求解方法。
- 对于一元二次方程的求解,最基本的方法是配方法。
就像是给方程做个“整形手术”。
比如对于方程x^2+6x - 7 = 0,我们要在方程两边加上一个合适的数,让左边式子变成完全平方式。
x^2+6x要变成完全平方式(x + 3)^2,那就得加上9,同时右边也要加上9,得到x^2+6x+9 - 7 - 9 = 0,也就是(x + 3)^2=16,然后再开方求解。
这就像是给一个有点乱的发型(方程)精心打理,让它变得整齐好看(变成容易求解的形式)。
- 公式法就更像是一个万能钥匙了。
对于一元二次方程ax^2+bx + c = 0(a≠0),它的解是x=frac{-b±√(b^2)-4ac}{2a}。
不管是什么样的一元二次方程,只要把系数a、b、c往这个公式里一套,就能求出解来。
不过要注意的是,这个判别式Δ=b^2-4ac很重要哦。
如果Δ>0,方程有两个不同的实数解,就像有两条不同的路可以走;如果Δ= 0,方程有两个相同的实数解,就像两条路合并成了一条;如果Δ<0,方程没有实数解,那就像是走到了死胡同,在实数范围内找不到路了。
人教版九年级数学上册同步测试:点和圆、直线和圆的位置关系(解析版)
人教版九年级数学上册同步测试:点和圆﹨直线和圆的位置关系[解析版]一﹨选择题[共14小题]1.[如图,点P在⊙O外,PA﹨PB分别与⊙O相切于A﹨B两点,∠P=50°,则∠AOB等于[]A.150°B.130°C.155°D.135°2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为[]A.2.3 B.2.4 C.2.5 D.2.63.如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C 的大小等于[]A.20°B.25°C.40°D.50°4.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=[]A.30°B.35°C.45°D.60°5.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是[]A.2.5 B.3 C.5 D.106.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为[]A.40°B.50°C.60°D.20°7.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为[]A.B.C.D.28.如图,PA和PB是⊙O的切线,点A和点B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是[]A.40°B.60°C.70°D.80°9.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是[]A.4 B.2C.8 D.410.如图,圆形铁片与直角三角尺﹨直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是[]A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm211.在一个圆中,给出下列命题,其中正确的是[]A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径12.如图,△ABC中,AB=6,AC=8,BC=10,D﹨E分别是AC﹨AB的中点,则以DE为直径的圆与BC的位置关系是[]A.相交 B.相切 C.相离 D.无法确定13.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是[] A.r<6 B.r=6 C.r>6 D.r≥614.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是[]A.相离 B.相切 C.相交 D.相切或相交二﹨填空题[共6小题]15.如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为[结果保留π].16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.17.如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为.18.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为.[结果保留π]19.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA=°.20.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=[k≠0]的图象经过圆心P,则k=.三﹨解答题[共10小题]21.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.[1]求证:四边形ABCE是平行四边形;[2]若AE=6,CD=5,求OF的长.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.[1]求证:DF⊥AC;[2]若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.23.如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.[1]求证:∠ADC=∠ABD;[2]求证:AD2=AM•AB;[3]若AM=,sin∠ABD=,求线段BN的长.24.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F.已知∠AEF=135°.[1]求证:DF∥AB;[2]若OC=CE,BF=,求DE的长.25.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.[1]求证:∠BCP=∠BAN[2]求证:=.26.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC 相切于点D,分别交AC﹨AB于点E﹨F.[1]若∠B=30°,求证:以A﹨O﹨D﹨E为顶点的四边形是菱形.[2]若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.27.如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD 且与AC的延长线交于点E.[1]求证:DC=DE;[2]若tan∠CAB=,AB=3,求BD的长.28.如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.[1]求证:∠BAD=∠E;[2]若⊙O的半径为5,AC=8,求BE的长.29.五边形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且满足以点B为圆心,AB 长为半径的圆弧AC与边DE相切于点F,连接BE,BD.[1]如图1,求∠EBD的度数;[2]如图2,连接AC,分别与BE,BD相交于点G,H,若AB=1,∠DBC=15°,求AG•HC 的值.30.在同一平面直角坐标系中有5个点:A[1,1],B[﹣3,﹣1],C[﹣3,1],D[﹣2,﹣2],E[0,﹣3].[1]画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;[2]若直线l经过点D[﹣2,﹣2],E[0,﹣3],判断直线l与⊙P的位置关系.参考答案与试题解析一﹨选择题[共14小题]1.如图,点P在⊙O外,PA﹨PB分别与⊙O相切于A﹨B两点,∠P=50°,则∠AOB等于[]A.150°B.130°C.155°D.135°【考点】切线的性质.【分析】由PA与PB为圆的两条切线,利用切线性质得到PA与OA垂直,PB与OB垂直,在四边形APBO中,利用四边形的内角和定理即可求出∠AOB的度数.【解答】解:∵PA﹨PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∵∠P=50°,∴∠AOB=130°.故选B.【点评】此题考查了切线的性质,以及四边形的内角和定理,熟练掌握切线的性质是解本题的关键.2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为[]A.2.3 B.2.4 C.2.5 D.2.6【考点】切线的性质;勾股定理的逆定理.【分析】首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC 中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.【解答】解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD===,∴⊙C的半径为,故选B.【点评】此题考查了圆的切线的性质,勾股定理,以及直角三角形斜边上的高的求解方法.此题难度不大,解题的关键是注意辅助线的作法与数形结合思想的应用.3.如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C 的大小等于[]A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.4.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=[]A.30°B.35°C.45°D.60°【考点】切线的性质;正多边形和圆.【分析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB的度数,利用弦切角定理∠PAB.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.【点评】本题主要考查了正多边形和圆,切线的性质,作出适当的辅助线,利用弦切角定理是解答此题的关键.5.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是[]A.2.5 B.3 C.5 D.10【考点】切线的性质.【分析】根据直线与圆的位置关系可直接得到点O到直线l的距离是5.【解答】解:∵直线l与半径为r的⊙O相切,∴点O到直线l的距离等于圆的半径,即点O到直线l的距离为5.故选C.【点评】本题考查了切线的性质以及直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;当直线l和⊙O相离⇔d>r.6.如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为[]A.40°B.50°C.60°D.20°【考点】切线的性质.【分析】由AB是⊙O直径,AE是⊙O的切线,推出AD⊥AB,∠DAC=∠B=∠AOC=40°,推出∠AOD=50°.【解答】解:∵AB是⊙O直径,AE是⊙O的切线,∴∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°﹣∠B=50°,故选B.【点评】本题主要考查圆周角定理﹨切线的性质,解题的关键在于连接AC,构建直角三角形,求∠B的度数.7.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为[]A.B.C.D.2【考点】切线的性质;矩形的性质.【专题】压轴题.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴[3+NM]2=[3﹣NM]2+42,∴NM=,∴DM=3=,故选A.【点评】本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.8.如图,PA和PB是⊙O的切线,点A和点B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是[]A.40°B.60°C.70°D.80°【考点】切线的性质.【分析】由PA﹨PB是⊙O的切线,可得∠OAP=∠OBP=90°,根据四边形内角和,求出∠AOB,再根据圆周角定理即可求∠ACB的度数.【解答】解:连接OB,∵AC是直径,∴∠ABC=90°,∵PA﹨PB是⊙O的切线,A﹨B为切点,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣∠P=140°,由圆周角定理知,∠ACB=∠AOB=70°,故选C.【点评】本题考查了切线的性质,圆周角定理,解决本题的关键是连接OB,利用直径对的圆周角是直角来解答.9.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是[]A.4 B.2C.8 D.4【考点】切线的性质.【分析】连接OC,利用切线的性质知OC⊥AB,由垂径定理得AB=2AC,因为tan∠OAB=,易得=,代入得结果.【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选C.【点评】本题主要考查了切线的性质和垂径定理,连接过切点的半径是解答此题的关键.10.如图,圆形铁片与直角三角尺﹨直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是[]A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【考点】切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.【专题】应用题.【分析】由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长﹨面积的计算公式求出结果即可进行判断.【解答】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;==4π,故D正确.S扇形OAB故选C.【点评】本题考查了切线的性质,正方形的判定和性质,扇形的弧长﹨面积的计算,熟记计算公式是解题的关键.11.在一个圆中,给出下列命题,其中正确的是[]A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径【考点】直线与圆的位置关系;命题与定理.【分析】根据直线与圆的位置关系进行判断即可.【解答】解:A﹨圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B﹨当圆经过两条直线的交点时,圆与两条直线有三个交点;C﹨两条不平行弦所在直线可能有一个交点,故本选项正确;D﹨两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.【点评】本题考查了直线与圆的位置关系﹨命题与定理,解题的关键是熟悉直线与圆的位置关系.12.如图,△ABC中,AB=6,AC=8,BC=10,D﹨E分别是AC﹨AB的中点,则以DE为直径的圆与BC的位置关系是[]A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系.【专题】压轴题.【分析】首先根据三角形面积求出AM的长,进而得出直线BC与DE的距离,进而得出直线与圆的位置关系.【解答】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM==4.8,∵D﹨E分别是AC﹨AB的中点,∴DE∥BC,DE=BC=5,∴AN=MN=AM,∴MN=2.4,∵以DE为直径的圆半径为2.5,∴r=2.5>2.4,∴以DE为直径的圆与BC的位置关系是:相交.故选:A.【点评】本题考查了直线和圆的位置关系,利用中位线定理比较出BC到圆心的距离与半径的关系是解题的关键.13.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是[] A.r<6 B.r=6 C.r>6 D.r≥6【考点】直线与圆的位置关系.【专题】探究型.【分析】直接根据直线与圆的位置关系进行判断即可.【解答】解:∵直线l与半径为r的⊙O相交,且点O到直线l的距离d=6,∴r>6.故选C.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.直线l和⊙O相交⇔d<r14.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是[]A.相离 B.相切 C.相交 D.相切或相交【考点】直线与圆的位置关系.【专题】压轴题.【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【解答】解:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选:B.【点评】此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R与圆心到直线的距离d的大小判断:当R>d时,直线与圆相交;当R=d时,直线与圆相切;当R<d时,直线与圆相离.二﹨填空题[共6小题]15.如图,PA是⊙O的切线,A是切点,PA=4,OP=5,则⊙O的周长为6π[结果保留π].【考点】切线的性质;勾股定理.【分析】连接OA,根据切线的性质求出∠OAP=90°,根据勾股定理求出OA即可.【解答】解:连接OA,∵PA是⊙O的切线,A是切点,∴∠OAP=90°,在Rt△OAP中,∠OAP=90°,PA=4,OP=5,由勾股定理得:OA=3,则⊙O的周长为2π×3=6π,故答案为:6π.【点评】本题考查了切线的性质,勾股定理的应用,解此题的关键是能正确作出辅助线,并求出∠OAP=90°,注意:圆的切线垂直于过切点的半径.16.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=50°.【考点】切线的性质.【专题】压轴题.【分析】连接DF,连接AF交CE于G,由AB是⊙O的直径,且经过弦CD的中点H,得到,由于EF是⊙O的切线,推出∠GFE=∠GFD+∠DFE=∠ACF=65°根据外角的性质和圆周角定理得到∠EFG=∠EGF=65°,于是得到结果.【解答】解:连接DF,连接AF交CE于G,∵AB是⊙O的直径,且经过弦CD的中点H,∴,∵EF是⊙O的切线,∴∠GFE=∠GFD+∠DFE=∠ACF=65°,∵∠FGD=∠FCD+∠CFA,∵∠DFE=∠DCF,∠GFD=∠AFC,∠EFG=∠EGF=65°,∴∠E=180°﹣∠EFG﹣∠EGF=50°,故答案为:50°.方法二:连接OF,易知OF⊥EF,OH⊥EH,故E,F,O,H四点共圆,又∠AOF=2∠ACF=130°,故∠E=180°﹣130°=50°【点评】本题考查了切线的性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.17.如图,已知AB是⊙O的一条直径,延长AB至C点,使AC=3BC,CD与⊙O相切于D点.若CD=,则劣弧AD的长为π.【考点】切线的性质;弧长的计算.【分析】如图,连接DO,首先根据切线的性质可以得到∠ODC=90°,又AC=3BC,O为AB的中点,由此可以得到∠C=30°,接着利用30°的直角所对的直角边是斜边的一半和勾股定理即可求解.【解答】解:如图,连接DO,∵CD是⊙O切线,∴OD⊥CD,∴∠ODC=90°,而AB是⊙O的一条直径,AC=3BC,∴AB=2BC=OC=2OD,∴∠C=30°,∴∠AOD=120°∴OD=CD,∵CD=,∴OD=BC=1,∴的长度==,故答案为:.【点评】本题考查了圆的切线性质及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.18.如图,将一块含30°角的直角三角板和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=2,则图中阴影部分的面积为 + .[结果保留π]【考点】切线的性质;扇形面积的计算.【分析】图中阴影部分的面积=扇形BOD 的面积+△BOC 的面积.【解答】解:∵斜边与半圆相切,点B 是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=2,∴OC=OB=1,BC=.∴S 阴影=S 扇形BOD +S △BOC =+×1×=+. 故答案是: +.【点评】本题考查了切线的性质,扇形面积的计算.此题利用了“分割法”求得阴影部分的面积.19.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C=20°,则∠CDA= 125 °.【考点】切线的性质.【分析】连接OD,构造直角三角形,利用OA=OD,可求得∠ODA=36°,从而根据∠CDA=∠CDO+∠ODA计算求解.【解答】解:连接OD,则∠ODC=90°,∠COD=70°;∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=125°,故答案为:125.【点评】本题利用了切线的性质,三角形的外角与内角的关系,等边对等角求解.20.如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P 的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=[k≠0]的图象经过圆心P,则k=﹣5.【考点】切线的性质;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【专题】计算题;压轴题.【分析】作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,根据切线的性质和切线长定理得到PD=PE=r,AD=AE,再利用勾股定理计算出OB=6,则可判断△OBC为等腰直角三角形,从而得到△PCD为等腰直角三角形,则PD=CD=r,AE=AD=2+r,通过证明△ACH∽△ABO,利用相似比计算出CH=,接着利用勾股定理计算出AH=,所以BH=10﹣=,然后证明△BEP∽△BHC,利用相似比得到即=,解得r=1,从而易得P点坐标,再利用反比例函数图象上点的坐标特征求出k的值.【解答】解:作PD⊥OA于D,PE⊥AB于E,作CH⊥AB于H,如图,设⊙P的半径为r,∵⊙P与边AB,AO都相切,∴PD=PE=r,AD=AE,在Rt△OAB中,∵OA=8,AB=10,∴OB==6,∵AC=2,∴OC=6,∴△OBC为等腰直角三角形,∴△PCD为等腰直角三角形,∴PD=CD=r,∴AE=AD=2+r,∵∠CAH=∠BAO,∴△ACH∽△ABO,∴=,即=,解得CH=,∴AH===,∴BH=10﹣=,∵PE∥CH,∴△BEP∽△BHC,∴=,即=,解得r=1,∴OD=OC﹣CD=6﹣1=5,∴P[5,﹣1],∴k=5×[﹣1]=﹣5.故答案为﹣5.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线不确定切点,则过圆心作切线的垂线,则垂线段等于圆的半径.也考查了勾股定理﹨相似三角形的判定与性质和反比例函数图象上点的坐标特征.三﹨解答题[共10小题]21.如图,△ABC内接于⊙O,AB=AC,BD为⊙O的弦,且AB∥CD,过点A作⊙O的切线AE与DC的延长线交于点E,AD与BC交于点F.[1]求证:四边形ABCE是平行四边形;[2]若AE=6,CD=5,求OF的长.【考点】切线的性质;平行四边形的判定.【专题】压轴题.【分析】[1]根据切线的性质证明∠EAC=∠ABC,根据等腰三角形等边对等角的性质和等量代得到∠EAC=∠ACB,从而根据内错角相等两直线平行的判定得到AE∥BC,结合已知AB ∥CD即可判定四边形ABCD是平行四边形;[2]作辅助线,连接AO,交BC于点H,双向延长OF分别交AB,CD于点N,M,根据切割线定理求得EC=4,证明四边形ABDC是等腰梯形,根据对称性﹨圆周角定理和垂径定理的综合应用证明△OFH∽△DMF∽△BFN,并由勾股定理列式求解即可.【解答】[1]证明:∵AE与⊙O相切于点A,∴∠EAC=∠ABC,∵AB=AC∴∠ABC=∠ACB,∴∠EAC=∠ACB,∴AE∥BC,∵AB∥CD,∴四边形ABCE是平行四边形;[2]解:如图,连接AO,交BC于点H,双向延长OF分别交AB,CD与点N,M,∵AE是⊙O的切线,由切割线定理得,AE2=EC•DE,∵AE=6,CD=5,∴62=CE[CE+5],解得:CE=4,[已舍去负数],由圆的对称性,知四边形ABDC是等腰梯形,且AB=AC=BD=CE=4,又根据对称性和垂径定理,得AO垂直平分BC,MN垂直平分AB,DC,设OF=x,OH=Y,FH=z,∵AB=4,BC=6,CD=5,∴BF=BC﹣FH=3﹣z,DF=CF=BC+FH=3+z,易得△OFH∽△DFM∽△BFN,∴,,即,①②,①+②得:,①÷②得:,解得,∵x2=y2+z2,∴,∴x=,∴OF=.【点评】本题考查了切线的性质,圆周勾股定理,等腰三角形的性质,平行的判定,平行四边形的判定和性质,等腰梯形的判定和性质,垂径定理,相似判定和性质,勾股定理,正确得作出辅助线是解题的关键.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.[1]求证:DF⊥AC;[2]若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【考点】切线的性质;扇形面积的计算.【分析】[1]连接OD,易得∠ABC=∠ODB,由AB=AC,易得∠ABC=∠ACB,等量代换得∠ODB=∠ACB,利用平行线的判定得OD∥AC,由切线的性质得DF⊥OD,得出结论;[2]连接OE,利用[1]的结论得∠ABC=∠ACB=67.5°,易得∠BAC=45°,得出∠AOE=90°,利用扇形的面积公式和三角形的面积公式得出结论.【解答】[1]证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,。
人教版九年级数学 同步练习 含答案_第二十五章__概率初步
第二十五章概率初步测试1 随机事件学习要求了解随机事件的意义,会判断必然事件、不可能事件和随机事件,知道不同随机事件发生的可能性.课堂学习检测一、填空题1.在下列事件中:①投掷一枚均匀的硬币,正面朝上;②投掷一枚均匀的骰子,6点朝上;③任意找367人中,至少有2人的生日相同;④打开电视,正在播放广告;⑤小红买体育彩票中奖;⑥北京明年的元旦将下雪;⑦买一张电影票,座位号正好是偶数;⑧到2020年世界上将没有饥荒和战争;⑨抛掷一只均匀的骰子两次,朝上一面的点数之和一定大于等于2;⑩在标准大气压下,温度低于0℃时冰融化;⑾如果a,b为实数,那么a+b =b+a;⑿抛掷一枚图钉,钉尖朝上.确定的事件有______;随机事件有______,在随机事件中,你认为发生的可能性最小的是______,发生的可能性最大的是______.(只填序号)二、选择题2.下列事件中是必然事件的是( ).A.从一个装有蓝、白两色球的缸里摸出一个球,摸出的球是白球B.小丹的自行车轮胎被钉子扎坏C.小红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在水面上3.同时投掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.下列事件中是不可能事件的是( ).A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为134.下列事件中,是确定事件的是( ).A.明年元旦北京会下雪B.成人会骑摩托车C.地球总是绕着太阳转D.从北京去天津要乘火车5.下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生三、解答题6.“有位从不买彩票的人,在别人的劝说下用2元买了一随机号码,居然中了500万”,你认为这样的事情可能发生吗?请简述理由.综合、运用、诊断7.一张写有密码的纸片被随意地埋在如图所示的矩形区域内,图中的四个正方形大小一样,则纸片埋在几号区域的可能性最大?为什么?8.在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.你认为这个游戏公平吗?为什么?9.用力旋转如图所示的甲转盘和乙转盘的指针,如果指针停在蓝色区域就称为成功.A同学说:“乙转盘大,相应的蓝色部分的面积也大,所以选乙转盘成功的机会比较大.”B同学说:“转盘上只有两种颜色,指针不是停在红色上就是停在蓝色上,因此两个转盘成功的机会都是50%.”你同意两人的说法吗?如果不同意,请你预言旋转两个转盘成功的机会有多大?拓广、探究、思考10.分别列出下列各项操作的所有可能结果,并分别指出在各项操作中出现可能性最大的结果.(1)旋转各图中的转盘,指针所处的位置.(2)投掷各图中的骰子,朝上一面的数字.(3)投掷一枚均匀的硬币,朝上的一面.测试2 概率的意义学习要求理解概率的意义;对于大量重复试验,会用事件的频率来估计事件的概率.课堂学习检测一、填空题1.在大量重复进行同一试验时,随机事件A 发生的______总是会稳定在某个常数的附近,这个常数就叫做事件A 的______.2.在一篇英文短文中,共使用了6000个英文字母(含重复使用),其中“正”共使用了900次,则字母“正”在这篇短文中的使用频率是______.3.下表是一个机器人做9999次“抛硬币”游戏时记录下的出现正面的频数和频率.抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20%62%45%51%49.4%49.7%50.1%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次后,得到______次反面,反面出现的频率是______;(2)由这张频数和频率表可知,机器人抛掷完9999次时,得到______次正面,正面出现的频率是______;那么,也就是说机器人抛掷完9999次时,得到______次反面,反面出现的频率是______;(3)请你估计一下,抛这枚硬币,正面出现的概率是______. 二、选择题4.某个事件发生的概率是21,这意味着( ). A .在两次重复实验中该事件必有一次发生 B .在一次实验中没有发生,下次肯定发生 C .在一次实验中已经发生,下次肯定不发生 D .每次实验中事件发生的可能性是50%5.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为( ). A .0.05 B .0.5 C .0.95 D .95 三、解答题6.某篮球运动员在最近几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10 进球次数m 6 8 9 7 12 7 进球频率nm(1)计算表中各次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?综合、运用、诊断7.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的概率一定等于nm;③频率是不能脱离具体的n 次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______(填序号).8.某市元宵节期间举行了“即开式社会福利彩票”销售活动,印制彩票3000万张(每张彩票2元).在这些彩票中,设置了如下的奖项:奖金/万元 501584…数量/个20 20 20 180 …如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是______ 9.下列说法中正确的是( ).A .抛一枚均匀的硬币,出现正面、反面的机会不能确定B .抛一枚均匀的硬币,出现正面的机会比较大C .抛一枚均匀的硬币,出现反面的机会比较大D .抛一枚均匀的硬币,出现正面与反面的机会相等 10.从不透明的口袋中摸出红球的概率为51,若袋中红球有3个,则袋中共有球( ). A .5个 B .8个 C .10个 D .15个 11.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是( ).A .21B .31 C .51D .101 12.某储蓄卡上的密码是一组四位数字号码,每一位上的数字可在0~9这10个数字中选取.某人未记准储蓄卡密码的最后一位数字,他在使用这张储蓄卡时,如果随意地 按一下密码的最后一位数字,正好按对密码的概率有多少?13.某地区近5年出生婴儿性别的调查表如下:出生年份 出生数 共计n =m 1+m 2出生频率男孩m 1 女孩m 2 男孩P 1女孩P 21996 52807 49473 102280 1997 51365 47733 99098 1998 49698 46758 96456 1999 49654 46218 95872 2000 4824345223934665年共计251767 235405 487172完成该地区近5年出生婴儿性别的调查表,并分别求出出生男孩和女孩概率的近似值.(精确到0.001)14.小明在课堂做摸牌实验,从两张数字分别为1,2的牌(除数字外都相同)中任意摸出一张,共实验10次,恰好都摸到1,小明高兴地说:“我摸到数字为1的牌的概率为100%”,你同意他的结论吗?若不同意,你将怎样纠正他的结论.拓广、探究、思考15.小刚做掷硬币的游戏,得到结论:掷均匀的硬币两次,会出现三种情况:两正,一正一反,两反,所以出现一正一反的概率是31.他的结论对吗?说说你的理由.16.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______; (2)摸到红球的概率等于______; (3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______;(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).测试3 用列举法求概率(一)学习要求会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.课堂学习检测一、填空题1.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.2.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有: (1)P (掷出的数字是1)=______;(2)P (掷出的数字大于4)=______.3.某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(如图所示),转盘可以自由转动,参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品.则获得钢笔的概率为______,获得______的概率大.4.一副扑克牌有54张,任意从中抽一张. (1)抽到大王的概率为______;(2)抽到A 的概率为______; (3)抽到红桃的概率为______;(4)抽到红牌的概率为______;(红桃或方块) (5)抽到红牌或黑牌的概率为______. 二、选择题5.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为( ).A .1B .21C .31D .416.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为( ).A .61B .41C .31D .217.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是( ).A .54B .53C .52D .51三、解答题8.有10张卡片,每张卡片分别写有1,2,3,4,5,6,7,8,9,10,从中任意摸取一张卡片,问摸到2的倍数的卡片的概率是多少?3的倍数呢?5的倍数呢?9.小李新买了一部手机,并设置了六位数的开机密码(每位数码都是0~9这10个数字中的一个),第二天小李忘记了密码中间的两个数字,他一次就能打开手机的概率是多少?综合、运用、诊断一、填空题10.袋中有3个红球,2个白球,现从袋中任意摸出1球,摸出白球的概率是______. 11.有纯黑、纯白的袜子各一双,小明在黑暗中穿袜子,左脚穿黑袜子,右脚穿白袜子的概率为______.12.有7条线段,长度分别为2,4,6,8,10,12,14,从中任取三条,能构成三角形的概率是______. 二、选择题13.一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( ).A .32B .21 C .31D .6114.从6名同学中选出4人参加数学竞赛,其中甲被选中的概率是( ).A .31B .21C .53D .3215.柜子里有两双不同的鞋,取出两只刚好配一双鞋的概率是( ).A .21B .31 C .41 D .6116.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为43;②取到的球上涂有红色的概率为;21③取到的球上涂有蓝色的概率为;21④取到的球上涂有红色、蓝色的概率为,41以上四个命题中正确的有( ).A .4个B .3个C .2个D .1个 三、解答题17.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.(1)这3人的值班顺序共有多少种不同的排列方法? (2)其中甲排在乙之前的排法有多少种? (3)甲排在乙之前的概率是多少?18.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?拓广、探究、思考19.有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?20.用24个球设计一个摸球游戏,使得:(1)摸到红球的概率是,21摸到白球的概率是,31摸到黄球的概率是;61(2)摸到白球的概率是,41摸到红球和黄球的概率都是 83测试4 用列举法求概率(二)学习要求能运用列表法和树状图法计算一些事件发生的概率.课堂学习检测一、选择题 1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球..的概率是( ). A .113B .118 C .1411 D .143 2.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ).A .1B .101C .1001D .10001二、解答题3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球. (1)试用树状图(或列表法)表示摸球游戏所有可能的结果; (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同. (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A 、B 两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少? (2)比赛中一人胜,二人负的概率是多少?7.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左转.综合、运用、诊断一、填空题8.“五一”期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有两条公路,乙地到丙地有三条公路.每一条公路的长度如图所示(单位:km),梁先生任选一条从甲地到丙地的路线,这条路线正好是最短路线的概率是______.9.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.10.银行为储户提供的储蓄卡的密码由0,1,2,…,9中的6个数字组成.某储户的储蓄卡被盗,盗贼如果随意按下6个数字,可以取出钱的概率是______.11.小明和小颖做游戏:桌面上放有5支铅笔,每次取1支或2支,由小明先取,最后取完铅笔的人获胜.如果小明获胜的概率为1,那么小明第一次应取走______支. 二、选择题12.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是( ).A .31B .41C .51D .6113.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).A .51B .52C .53D .54三、解答题14.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球51个,任意摸出1个绿球的概率是3求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.拓广、探究、思考15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是______.16.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:1(1)奇数点朝上的概率为;3(2)大于6的点数与小于3的点数朝上的概率相同.测试5 利用频率估计概率(一)学习要求会根据一个随机事件发生的频率估计这个事件发生的概率,学会用试验估计某事件出现的概率的操作过程.课堂学习检测一、填空题1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”) 2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.二、选择题5.如果手头没有硬币,用来模拟实验的替代物可用( ).A.汽水瓶盖B.骰子C.锥体D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是( ).A.确定的B.可能的C.不可能的D.不太可能的三、解答题7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n50 100 500 1000 5000优等品数m45 92 455 890 4500m优等品频率n(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.综合、运用、诊断一、填空题9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数50 45 60 48 10 30 42 38 15 10标记数 2 1 3 2 0 1 1 2 0 1总条数53 36 27 34 43 26 18 22 25 47标记数 2 1 2 1 2 1 1 2 1 2(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?拓广、探究、思考15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.测试6 利用频率估计概率(二)学习要求当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.课堂掌习检测一、填空题1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大. 2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天. 4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______. 二、选择题5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( )A .361B .181C .61D .216.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼( )A .8000条B .4000条C .2000条D .1000条 三、解答题7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率nm 0.580.640.580.590.6050.601(1)请估计:当n 很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______; (3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.综合、运用、诊断一、填空题9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______. 二、解答题11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m ,针长为0.1m ,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC .为了知道它的面积,小明在封闭图形内划出了一个半径为1m 的圆,在不远处向圈内掷石子,且记录如下:掷子次数 50次 150次 300次 石子落在⊙O 内 (含⊙O 上)的次数m 1443 93 石子落在图形内的次数n1985186你能否求出封闭图形ABC 的面积?试试看.。
人教版九年级数学 同步练习 含答案_第二十一章__二次根式
第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式acb b 42-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______;(5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1 B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与ba b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( )(2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______. 3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x 3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D .16.⋅-4117.2. 18..21-19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第二十一章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______.3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式.20.用6个边长为12cm的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm,可用计算器计算).答案与提示第二十一章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
人教版九年级数学上册同步测试:圆的有关性质(解析版)
人教版九年级数学上册同步测试:圆的有关性质(解析版)一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm2.(绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm24.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或27.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.49.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于m.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为米.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为cm.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.26.如图所示,某窗户由矩形和弓形组成,已知弓形的跨度AB=3m,弓形的高EF=1m,现计划安装玻璃,请帮工程师求出所在圆O的半径r.27.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.28.如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.29.)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.30.如图,AB是⊙O的直径,弦CD交AB于点E,OF⊥AC于点F,(1)请探索OF和BC的关系并说明理由;(2)若∠D=30°,BC=1时,求圆中阴影部分的面积.(结果保留π)参考答案与试题解析一﹨选择题(共9小题)1.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm【考点】垂径定理的应用;勾股定理.【分析】过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.【解答】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】垂径定理的应用;勾股定理.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选;D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理﹨勾股定理.3.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2 D.(π﹣2)cm2【考点】垂径定理的应用;扇形面积的计算.【分析】作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S﹣S△AOB求得杯底有水部分的面积.扇形【解答】解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC==,∴∠OAC=30°,∴∠AOB=120°,AC==2,∴AB=4,﹣S△AOB=﹣××2=(π﹣4)cm2∴杯底有水部分的面积=S扇形故选A.【点评】本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米【考点】垂径定理的应用;勾股定理;弧长的计算.【分析】设这段弯路的半径为R米,OF=米,由垂径定理得CF=CD=×600=300.由勾股定理可得OC2=CF2+OF2,解得R的值,进而得出这段弧所对圆心角,求出弧长即可.【解答】解:设这段弯路的半径为R米OF=米,∵OE⊥CD∴CF=CD=×600=300根据勾股定理,得OC2=CF2+OF2即R2=3002+(300)2解之,得R=600,∴sin∠COF==,∴∠COF=30°,∴这段弯路的长度为:=200π(m).故选:A.【点评】此题主要考查了垂径定理的应用,根据已知得出圆的半径以及圆心角是解题关键.5.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.在半径为13的⊙O中,弦AB∥CD,弦AB和CD的距离为7,若AB=24,则CD的长为()A.10 B.4C.10或4D.10或2【考点】垂径定理;勾股定理.【专题】分类讨论.【分析】根据题意画出图形,由于AB和CD的位置不能确定,故应分AB与CD在圆心O 的同侧和AB与CD在圆心O的异侧两种情况进行讨论.【解答】解:当AB与CD在圆心O的同侧时,如图1所示:过点O作OF⊥CD于点F,交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=OE+EF=5+7=12,在Rt△OCF中,CF===5,∴CD=2CF=2×5=10;当AB与CD在圆心O的异侧时,如图2所示:过点O作OF⊥CD于点F,反向延长交AB于点E,连接OA,OC,∵AB∥CD,OF⊥CD,∴OE⊥AB,∴AE=AB=×24=12,在Rt△AOE中,OE===5,∴OF=EF﹣OE=7﹣5=2,在Rt△OCF中,CF===,∴CD=2CF=2×=2.故CD的长为10或2.故选D.【点评】本题考查的是垂径定理,在解答此类题目时要注意进行分类讨论,不要漏解.7.如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A.∠A=∠D B.CE=DE C.∠ACB=90°D.CE=BD【考点】垂径定理.【专题】压轴题.【分析】根据垂径定理,直径所对的角是直角,以及同弧所对的圆周角相等,即可判断.【解答】解:∵AB是⊙O的直径,CD为弦,CD⊥AB于E.∴CE=DE.故B成立;A﹨根据同弧所对的圆周角相等,得到∠A=∠D,故该选项正确;C﹨根据直径所对的圆周角是直角即可得到,故该选项正确;D﹨CE=DE,而△BED是直角三角形,则DE<BD,则该项不成立.故选D.【点评】本题主要考查了垂径定理的基本内容,以及直径所对的圆周角是直角.8.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4B.8C.2D.4【考点】垂径定理;勾股定理.【专题】探究型.【分析】先根据⊙O的直径AB=12求出OB的长,再由BP:AP=1:5求出BP的长,故可得出OP的长,连接OC,在Rt△OPC中利用勾股定理可求出PC的长,再根据垂径定理即可得出结论.【解答】解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为()A.2B.C.2D.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】先过O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,即可求出AB的值.【解答】解:过O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=sin30°×4=2,∵OB=3,∴BC===,∴AB=2;故选A.【点评】此题考查了垂经定理,用到的知识点是垂经定理﹨含30度角的直角三角形﹨勾股定理,解题的关键是作出辅助线,构造直角三角形.二﹨填空题(共15小题)10.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.8m.【考点】垂径定理的应用;勾股定理.【分析】过O点作OC⊥AB,C为垂足,交⊙O于D,连OA,根据垂径定理得到AC=BC=0.5m,再在Rt△AOC中,利用勾股定理可求出OC,即可得到CD的值,即水的深度.【解答】解:如图,过O点作OC⊥AB,C为垂足,交⊙O于D﹨E,连OA,OA=0.5m,AB=0.8m,∵OC⊥AB,∴AC=BC=0.4m,在Rt△AOC中,OA2=AC2+OC2,∴OC=0.3m,则CE=0.3+0.5=0.8m,故答案为:0.8.【点评】本题考查了垂径定理的应用,掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧是解题的关键,注意勾股定理的运用.11.赵州桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=25米.【考点】垂径定理的应用;勾股定理.【分析】根据垂径定理和勾股定理求解即可.【解答】解:根据垂径定理,得AD=AB=20米.设圆的半径是r,根据勾股定理,得R2=202+(R﹣10)2,解得R=25(米).故答案为25.【点评】此题综合运用了勾股定理以及垂径定理.注意构造由半径﹨半弦﹨弦心距组成的直角三角形进行有关的计算.12.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【分析】根据垂径定理求得AD=30cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=10cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50.∴这个车轮的外圆半径长为50cm.故答案为:50cm.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.13.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于 1.6m.【考点】垂径定理的应用;勾股定理.【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF=m,∴CD=1.6m.故答案为:1.6.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.14.如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】垂径定理的应用;勾股定理.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米,在Rt△OAD中,根据勾股定理,OD==2(米),∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2m.【考点】垂径定理的应用;勾股定理.【分析】过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC 中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.【解答】解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,可知半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.【点评】此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH 中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD﹨劣弧于点H﹨I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.【点评】此题考查了切线的性质﹨垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB= 4.【考点】垂径定理;勾股定理.【专题】计算题.【分析】根据AE与BE比值,设出AE为x与BE为3x,由AE+BE表示出AB,进而表示出OA与OB,由OA﹣AE表示出OE,连接OC,根据AB与CD垂直,利用垂径定理得到E为CD中点,求出CE的长,在直角三角形OCE中,利用勾股定理列出方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:连接OC,根据题意设AE=x,则BE=3x,AB=AE+EB=4x,∴OC=OA=OB=2x,OE=OA﹣AE=x,∵AB⊥CD,∴E为CD中点,即CE=DE=CD=3,在Rt△CEO中,利用勾股定理得:(2x)2=32+x2,解得:x=,则AB=4x=4.故答案为:4【点评】此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.18.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A﹨B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为50cm.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】设点O为外圆的圆心,连接OA和OC,根据CD=10cm,AB=60cm,设半径为r,则OD=r﹣10,根据垂径定理得:r2=(r﹣10)2+302,求得r的值即可.【解答】解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=10cm,AB=60cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50,故答案为:50.【点评】本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.19.如图是一圆形水管的截面图,已知⊙O的半径OA=13,水面宽AB=24,则水的深度CD 是8.【考点】垂径定理的应用;勾股定理.【分析】先根据垂径定理求出AC的长,再根据勾股定理求出OC的长,根据CD=OD﹣OC 即可得出结论.【解答】解:∵⊙O的半径OA=13,水面宽AB=24,OD⊥AB,∴OD=OA=13,AC=AB=12,在Rt△AOC中,OC===5,∴CD=OD﹣OC=13﹣5=8.故答案为:8.【点评】本题考查的是垂径定理的应用,解答此类问题时往往是找出直角三角形,利用勾股定理求解.20.平面内有四个点A﹨O﹨B﹨C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【考点】垂径定理;等边三角形的判定与性质.【专题】压轴题.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A﹨O﹨B﹨C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理﹨等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A﹨O﹨B﹨C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM﹨AM﹨AB﹨MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.【点评】本题考查了垂径定理﹨等边三角形的判定与性质.此题需要分类讨论,以防漏解.在解题时,还利用了圆周角定理,圆周角﹨弧﹨弦间的关系.21.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA﹨OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是6cm(写出一个符合条件的数值即可)【考点】垂径定理;勾股定理.【专题】开放型.【分析】根据勾股定理求出AC,根据垂径定理求出AB,即可得出AP的范围是大于等于5cm且小于等于8cm,举出即可.【解答】解:∵OC⊥AB,∴∠ACO=90°,∵OA=5cm,OC=3cm,∴由勾股定理得:AC==4cm,∴由垂径定理得:AB=2AC=8cm,只要举出的数大于等于5且小于等于8cm即可,如6cm,故答案为:6.【点评】本题考查了勾股定理和垂径定理的应用,关键是求出AP的范围.22.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2 cm.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===cm,∵OD⊥AB,∴AB=2AD=cm.故答案为:2.【点评】本题综合考查垂径定理和勾股定理的运用.23.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【专题】压轴题;探究型.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.24.如图,已知⊙O的直径AB=6,E﹨F为AB的三等分点,M﹨N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E﹨F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三﹨解答题(共6小题)25.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN 的长)为2米,求小桥所在圆的半径.【考点】垂径定理的应用;勾股定理;相似三角形的应用.【分析】根据已知得出旗杆高度,进而得出GM=MH,再利用勾股定理求出半径即可.【解答】解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM﹨OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16,解得:r=5,。
人教版九年级上册数学22 3实际问题与二次函数 同步练习(含答案)
人教版九年级上册数学22.3实际问题与二次函数同步练习一、单选题1.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,若第二个月的增长率是x ,第三个月的增长率是第二个月的两倍,那么y 与x 的函数关系是 ( ) A .()()112y a x x =++ B .()21y a x =+ C .()221y a x =+ D .22y x a =+2.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元 3.抛物线22y x x =+-与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C .若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有( )A .1个B .2个C .3个D .4个 4.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( ) A .10s B .20s C .30s D .40s 5.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y 亿元人民币,设每年投资的增长率为x ,则可得( )A .5(12)y x =+B .25y x =C .()251y x =+D .()251y x =+ 6.如图,若被击打的小球飞行高度h (单位:)m 与飞行时间t (单位:)s 具有函数关系为2205h t t =-,则小球从飞出到落地的所用时间为( )A.3s B.4s C.5s D.6s7.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.若水面再下降1.5m,水面宽度为()m.8.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()二、填空题面宽为12m,这时水面离桥拱顶端的高度是____________________.10.半径是2的圆,如果半径增加x 时,增加的面积s 与x 之间的关系表达式为__________. 11.如图,用一段长为10米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为______.(不要求写出自变量x 的取值范围)12.一个涵洞成抛物线形,它的截面如图,当水面宽AB =1.6米时,涵洞顶点与水面的距离为2.4m .涵洞所在抛物线的解析式是_____________.13.足球被从地面上踢起,它距地面的高度h (m )可用公式h =-4.9t 2+19.6t 来表示,其中t (s )表示足球被踢出后经过的时间,则球在______s 后落地.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2241y x x =-++,喷出水珠的最大高度是______m .15.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为___________元.16.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.三、解答题17.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?18.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?19.国庆假期期间,某酒店有20个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,酒店需对每个房间每天支出20元的各种费用,设每间房间定价x 元()100x ≥.(1)每天有游客居住的房间数为__________(用含x 的代数式表示);(2)当每间房价为多少元时,酒店当天的利润为1800元?(3)当每间房价定为多少元时,酒店的利润m (元)最大,最大利润是多少?20.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知12OA =米,4OB =米,抛物线顶点D 到地面OA 的垂直距离为10米,以OA 所在直线为x 轴,以OB 所在直线为y 轴建立直角坐标系,(1)求抛物线的解析式;(2)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4米,最高处与地面距离为6米,隧道内设双向行车道,双向行车道间隔距离为2米,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5米,才能安全B通行,问这辆特殊货车能否安全通过隧道?参考答案:。
人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)
第二十一章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题 7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±- B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b ax a b x 2,221==B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学同步测试题
一.选择题(每小题3分,共30分)
1.下列事件为必然事件的是()
A.掷一枚普通的正方体骰子,掷得的点数不小于1 B.一年有367天
C.抛一枚普通的硬币,正面朝上D.任意购买一张电影票,座位号是奇数
2.已知点A(2,3)在双曲线y=k
x
上,则下列哪个点也在改双曲线上()A.(﹣1,6)B.(6,﹣1)C.(﹣2,﹣3)D.(﹣2,3)
3.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()
A.1
5B.1
3
C.2
5
D.2
3
4.下列问题中,两个变量成反比例的是()
A.商一定时(不为零),被除数与除数B.货物的总价A一定时,货物的单价a与货物的数量x
C.长方形的长a不变时,长方形的周长C与它的宽b D.等边三角形的面积与它的边长
5.以下说法合理的是()
A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2
3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖
C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1
2
D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,
他认为再掷一次,正面朝上的概率还是1
2
6.七年级(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当李校长走到门口时听到有人在发言,那么发言人是教师或学生的概率为()
A.19
25
B.3
10
C.47
50
D.1
2
7.在﹣1,0,7
11
,3.010010001…,√3中任取一个数,取到无理数的概率是()
A.4
5
B.3
5
C.2
5
D.1
5
8.二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=c
x
与一次函数y=ax+b
在同一平面直角坐标系中的大致图象为()
9.如图所示,是反比例函数y=3
x
与y=−7
x
在x轴上方的图
象,点C是y轴
正半轴上的一点,过点C作AB∥x轴分别交这两个图象
于A点和B点,若
点P在x轴上运动,则△ABP的面积等于()
A.5 B.4 C.10 D.20
10.在函数y=−a2−1
x (a为常数)的图象上有三点(﹣3,y
1
),(1,y2),(2,
y3)则函数值y1,y2,
y3的大小关系是()
A.y2<y3<y1B.y3<y2<y1C.y3<y1<y2D.y1<y2<y3
二.填空题(每小题3分,共30分)
11.有一位新娘去商场买新婚衣服,购买了不同款式的上衣2件,不同颜色的裤子3条,利用树状图或
列表法表示搭配衣服的所有可能出现的结果有种.
12.如图所示是三个反比例函数y=k1
x 、y=k2
x
、y=k3
x
的图
象,由此观察
得到k1、k2、k3的大小关系是____________________(用“<”
连接).
13.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,
才能将锁打开,如果仅忘记了所设密码的最后那个数字,
那么一次就能打开该密码的概率是.
14.反比例函数y1=8
x ,y2=10
x
.在第一象限的图象如图所示,
过y1上的任意
一点A,作x轴的平行线x交y2于点B,交y轴于点C,则△AOB的面积为.15.在永州有一种叫“斗牛”的游戏,每人发5张扑克牌,在这5张牌中取岀3张牌,若这3张牌的数字
之和是10的整数倍,我们称之为“牛”(注;J、Q、K的数字规定为10);现某人得到J,K,4,6,9
这5张牌,那么在这5张牌中任取岀3张牌能组成“牛”的概率
是
16.在一个不透明的盒子中装有n个球,它们除了颜色之外
其它都没有区别,其
中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记
下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那
么可以推算出n的值大约是.
17.已知三角形的面积为5,它底边a上的高是h,则h与a之间的函数关系式是______________。
18.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一
粒米,则米粒落到阴影区
域内的概率是.
19.如图,D是反比例函数y=k
x
(x<0)的图象上一点,过
点D作DE⊥x轴于点E,DC⊥y轴于点C,直线m:y=﹣√3
3
x+2经过点C,与x轴交于点B.将直线m绕点C顺时针旋转15°,与x轴交于点A,若四边形DCAE的面积为4,则k的值为.
20.两个反比例函数C1:y=2
x 和C2:y=1
x
在第一象限内的图象如图所示,设点P
在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为.
三.解答题(共60分)
21(6分)张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.
(1)请用列表法或树状图表示出所有可能出现的游
戏结果;
(2)求张华胜出的概率.
22(6分)某厂仓库储存了部分原料,按原计划每小时消耗2 t,可用60 h.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:t),库存的原料可使用的时间为y(单位:h).
(1)写出y关于x的函数解析式,并求出自变量的取值范围;
(2)若恰好经过24 h才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?23(6分)如图,一次函数y1=kx+b与反比例函数y2=a
x
的图象相较于A(2,3),B(﹣1,n)两点,直线AB交x轴于点C,连接AO、连接BO.
(1)求一次函数与反比例函数的表达式;
(2)求S△AOB;
(3)根据图象直接写出当x取何值时,y1>y2?
24(6分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别
是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡
片除字母和内容外,其余完全相同)姐弟两人做
游戏,他们将这四张卡片混在一起,背面朝上放好.
(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概
率为.
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A佩奇,弟弟抽到B乔治的概率.
25(6分)某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.
(1)列出原计划种植亩数y(亩)与平均每亩产量x(万斤)之间的函数关系式,并写出自变量x的取值范围;
(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?
26(6分)如图,一次函数y=kx+b与反比例函数y=m
x
的图象交于A(2,4),B(﹣4,n)两点,交x轴于点C.
(1)求m、n的值;
(2)请直接写出当x>−4时,反比例函数值的取值范围;
(3)将线段CB沿x轴翻折,点B落在点B′处,连接
AB′、B′C,求△AB′C的面积.
27(6分)如图,已知点A(﹣2,6)是反比例函数y=k
x
上的点,现将点A绕着点O顺时针旋转90°得到点B.
(1)求双曲线和直线AB的函数解析式;
(2)直线AB交x轴于点C,点P在直线AB上,
且S△AOB=S△POC,求点P的坐标.
28(6分)为了预防“HINI”流感,某校对教室进行药熏消毒.已知药物燃烧阶段,室内每立方米空气中
的含药量y(mg)与燃烧时间x(分钟)成正比,燃烧后,y与x成反比(如图所示),现测得药物10
分钟燃烧完,此时教室内每立方米空气含药量为16mg.根据以上信息解答下列问题:(1)求药物燃烧时以及药物燃烧后y与x的函数关系
式;
(2)当每立方米空气中含药量低于4mg时对人体无害,
那么从消毒开始
经多长时间后学生才能进教室?
(3)当每立方米空气中药物含量不低于8mg且持续时间不低于25分钟
时消毒才有效,那么这次消毒是否有效?
29(12分)如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,直线
y=﹣2x+3经过点C,与x轴交于点D.
(1)求该抛物线所对应的函数关系式;
(2)将△COD沿直线CD翻折,点O的对应点是点P,求点P的坐标,并判断点P是否在抛物线上;
(3)点M是抛物线上的一点,点N在x轴上,是否存在点M、N,使点C、
D、M、N组成的四边形是平行四边形?若存在,请直接写出点M、N的坐
标;若不存在,请说明理由。