高分子流变学
高分子材料流变学
高分子科学与工程学院
青岛科技大学
2.2.2 计算高分子液体黏度的经验方程
Ostwald-de Wale幂律方程(power law) 幂律公式
K n
n 1 a K
流动指数或非牛顿指数
n d ln d ln
图8-15 几种聚合物熔体剪切应力与剪切速率的关系 (测试温度200℃)
第4章 剪切黏度的测量方法 4.1 毛细管流变仪测量表观剪切黏度 4.2 恒速式双毛细管流变仪简介 4.3 锥-板型转子流变仪简介 4.4 落球式黏度计的测量原理 第5章 高分子熔体流动不稳定性 5.1 挤出过程中的畸变和熔体破裂行为 5.2 纺丝成型过程中的拉伸共振现象 第6章 加工成型过程的流变分析 6.1压延工艺的流变分析 6.2挤出成型的流变分析 6.3 注射成型的流变分析
聚合物
聚丙烯
聚合物 天然橡胶 低压聚乙烯 聚氯乙烯 聚苯乙烯
流动温度/℃
126-160 170-200 165-190 ~170
流动温度/℃
200-220 190-250 250-270 170-190
聚甲基丙烯酸甲 酯
尼龙66 聚甲醛
流动机理 研究表明,黏流态下大分子流动的基本结构单元并不是分子整链,而是链 段,分子整链的运动是通过链段的相继运动实现的。 研究高分子黏流活化能时发现,当熔体分子量很低时,随分子量增大而增 大。分子量达到一定值后,值趋于恒定。与该恒定值对应的最低分子量相 当于由20-30个C原子组成的链段的大小,说明熔体流动的基本结构单元 是链段。
青岛科技大学
高分子材料流变学
Rheology of Polymer Materials
王新 杨文君
Qingdao University of Science and Technology Qingdao,2011
高分子物理 聚合物流变学
small molecule hole
高分子熔体的流动:链段向 “孔穴” 相继跃迁 Reptation 蛇行
13
Flow curve
a
Kn
第一牛顿区
0零切粘度
第二牛顿区
无穷切粘度,极限粘度
假塑性区
流动曲线斜率n<1 随切变速率增加,ηa值变小 加工成型时,聚合物流体所经受的 切变速处于该范围内(100-103 s-1)
PC聚碳酸酯
63.9 79.2 108.3-125
PVC-U硬聚氯乙烯
147-168
PVC-P增塑聚氯乙烯
210-315
PVAc聚醋酸乙烯酯
250
Cellulose纤维素醋酸酯
293.320
Temperature
温度
Activation energy
粘流活化能是描述材料粘-温依赖性的物理量,表示流动单元(即链段) 用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量
183℃/PS
242k 217k 179k 117k 48.5k
28
分子量的影响
log
从成型加工的角度
降低分子量可增加流动性,改善加工性 能,但会影响制品的力学强度和橡胶的 弹性
牛顿流动定律
: Melt viscosity
液体内部反抗流动 的内摩擦力
1Pa s = 10 poise (泊)
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关
7
Types of Melt Flow
液体流动的类型
类型
曲线 公式 实例
Shear stress Shear stress Shear stress Shear stress Viscosity
高分子材料流变学教学
高分子材料流变学教学引言高分子材料流变学是研究高分子材料在外力作用下的变形和流动行为的学科,对于合理设计高分子材料的工艺参数、提高高分子材料的加工性能具有重要意义。
本文将介绍高分子材料流变学教学的内容、教学方法和案例分析,以帮助学生深入了解该学科的基本概念和实际应用。
教学内容高分子材料流变学教学主要包括以下内容:1.高分子材料的力学性能:介绍高分子材料的弹性、塑性和黏弹性等力学性能,以及与这些性能相关的工艺因素和材料结构的关系。
2.流变学基本概念:介绍高分子材料流变学的基本概念,包括应力、应变、应变速率、粘度、屈服应变等,以及流变学中常用的测试方法和仪器。
3.流变学模型与实验数据处理:介绍高分子材料流变学的常用模型,如弹性模型、粘弹性模型和塑性流变模型,并探讨如何利用实验数据对模型进行参数拟合和分析。
4.高分子材料加工和应用:介绍高分子材料在不同加工条件下的流变行为,如挤出、注塑和拉伸等,以及高分子材料的应用领域,如塑料制品、橡胶制品和复合材料等。
教学方法高分子材料流变学教学可以采用以下方法:1.理论讲解:通过教师的讲解,介绍高分子材料流变学的基本概念和理论知识,帮助学生建立起对该学科的整体认识和框架。
2.实验操作:通过实验操作,让学生亲自进行流变学测试,并学习如何操作流变仪器和处理实验数据,加深对流变学知识的理解和应用。
3.讨论和案例分析:通过讨论和案例分析,引导学生分析和解决实际问题,培养学生的独立思考和问题解决能力。
4.专业实习:安排学生到工业企业或科研机构进行实习,让学生实践所学的流变学知识,并了解高分子材料流变学在实际工作中的应用。
案例分析下面以挤出加工为例进行案例分析:挤出是一种常用的高分子材料加工方法,通过挤出机将高分子材料加热融化后,通过模具挤出成型。
在挤出过程中,高分子材料会受到剪切力和压力的作用,因此流变学的知识对于优化挤出工艺和提高产品质量具有重要影响。
在案例中,学生需要分析挤出过程中高分子材料的流变行为,并根据实验数据对材料流变模型进行拟合和参数分析。
高分子流变学基本概念课件
高分子流体的粘弹性
弹性
高分子流体在受到外力作用时发生的形变能够部分恢复。
粘性
高分子流体在受到外力作用时产生的剪切应力。
粘弹性
高分子流体同时具有弹性和粘性,其流变行为受温度、应力和分 子结构的影响。
高分子流体的流动行为
层流与湍流
高分子流体在管中流动时,层流 状态下剪切速率与距离成线性关 系,湍流状态下剪切速率与距离 成非线性关系。
高分子流变学基本概 念课件
目录
CONTENTS
• 高分子流变学简介 • 高分子流体的基本性质 • 高分子流变学的基本理论 • 高分子流变学在工业中的应用 • 高分子流变学的未来发展
01 高分子流变学简介
高分子流变学的定义
总结词
高分子流变学是一门研究高分子材料 流动和变形的学科。
详细描述
高分子流变学主要研究高分子材料在 受到外力作用时发生的流动和变形行 为,以及流动和变形过程中涉及的物 理、化学和力学等现象。
流动曲线
描述剪切速率与剪切应力之间关 系的曲线,分为牛顿区、屈服点 和粘弹性区域。
流动不稳定性
高分子流体在流动过程中可能出 现的各种不稳定性现象,如拉伸 流动、漩涡脱落等。
03 高分子流变学的基本理论
唯象理 论
唯象理论是从宏观角度研究高分子流体的行为,通过实验观察和经验公式 来描述高分子流体的流变性质。
高分子流变学的跨学科研究
01
与物理学的交叉
研究高分子流体的热力学性质和 流动行为,探索高分子链的动力 学过程。
02
与化学的交叉
03
与工程的交叉
研究高分子材料的合成和改性, 探索高分子链的化学结构和反应 机理。
将高分子流变学的理论应用于实 际生产过程中,解决工程实际问 题。
高分子流变学
第一章 绪 论1. 流变学概念流变学——研究材料流动及变形规律的科学。
高分子材料流变学——研究高分子液体,主要指高分子熔体、高分子溶液,在流动状态下的非线性粘弹行为,以及这种行为与材料结构及其它物理、化学性质的关系。
图1-1 液体流动与固体变形的一般性对比Newton’s 流动定律 γησ 0= 牛顿流体 H ooke’s 弹性定律 εσE = 虎克弹性体实际材料往往表现出远为复杂的力学性质。
如沥青、粘土、橡胶、石油、蛋清、血浆、食品、化工原材料、泥石流、地壳,尤其是形形色色高分子材料和制品,它们既能流动,又能变形;既有粘性,又有弹性;变形中会发生粘性损耗,流动时又有弹性记忆效应,粘弹性结合,流变性并存。
对于这类材料,仅用牛顿流动定律或虎克弹性定律已无法全面描述其复杂力学响应规律,必须发展一门新学科——流变学对其进行研究。
流变性实质——“固-液两相性”,“粘弹性”并存。
这种粘弹性不是小变形下的线性粘弹性,而是材料在大变形、长时间应力作用下呈现的非线性粘弹行为。
流动与变形又是两个紧密相关的概念。
在时间长河中,万物皆流,万物皆变。
流动可视为广义的变形,而变形也可视为广义的流动。
两者的差别主要在于外力作用时间的长短及观察者观察时间的不同。
按地质年代计算,坚硬的地壳也在流动,地质学中著名的“板块理论”揭示了亿万年来地球大陆板块的变化和运动。
另一方面,如果以极快的速度瞬间打击某种液体时,甚至连水都表现了一定的“反弹性”。
1928年,美国物理化学家E.C.Bingham正式命名“流变学(rheology)”,字头取古希腊哲学家Heraclitus所说的“ ”,意即万物皆流。
1929年成立流变学会,创办流变学报(Journal of Rheology),一般将此认为流变学诞生日。
流变学是一门涉及多学科交叉的边缘科学。
高分子材料流变学的研究内容与高分子物理学、高分子化学、高分子材料加工原理、高分子材料工程、连续体力学、非线性传热理论等联系密切;其研究对象的力学、热学性质相当复杂。
高分子材料流变学
【名词解释】1.假塑性流体:黏度随剪切速率的增加而降低的流体,粘度与剪切应力之间的关系服从幂律定律,其中,非牛顿指数n<12.膨胀性流体:黏度随剪切速率的增加而升高的流体,粘度与剪切应力之间的关系服从幂律定律,其中非牛顿指数n>13.宾汉流体:指当所受的剪切应力超过临界剪切应力后,才能变形的流动的流体,亦称塑性流体,其中剪切应力与剪切速率服从τ=τy+ηpγ4.牛顿流体:剪切应力与剪切速率之间呈线性关系,表达式为τ=μγ的流体5.剪切变稀:粘度随剪切速率升高而降低6.爬杆效应:当金属杆在盛有高分子流体的容器中旋转,熔体沿杆上爬的现象7.挤出胀大:聚合物熔体挤出圆形截面的毛细管时,挤出物的直径大于毛细管模直径8.熔体破裂:聚合物熔体在毛细管中流动时,当剪切速率较高时,聚合物表面出现不规则的现象,如竹节状,鲨鱼皮状9.无管虹吸:当插入聚合物溶液中的玻璃管,提离液面之上时,聚合物溶液继续沿玻璃管流出的现象10.第一法向应力差:高聚物熔体流动时,由于弹性行为,受剪切的作用时,产生法向应力差,其中满足关系式N1=τ11−τ22=φ1∗γ 212(N1通常为正值)11.第二法向应力差:同上,关系式为N2=τ22−τ33=φ2∗γ 212 (N2通常为负值)12.本构方程:是一类联系应力张量和应变张量或应变速率张量之间的关系方程,而联系的系数通常是材料的常数。
13.剪切应力:单位面积上的剪切力,τ=FA14.剪切速率:流体以一定速度沿剪切力方向移动。
在黏性阻力和固定壁面阻力的作用力,使相邻液层之间出现速度差,γ=d vdy 也可理解成一定间距的液层,在一定时间内的相对移动距离。
15.高分子流变学:研究高分子液体,主要是指高分子熔体干分子溶液在流动状态下的非线性粘弹性行为。
以及这种行为与材料结构及其他物理化学的关系。
16.出膨胀现象:高分子熔体被迫基础口模时,挤出物尺寸大于口模尺寸截面积形象黄也发生变化的现象【简答题】1.常用的聚合物流变仪有:毛细管型流变仪、转子型流变仪、组合式转矩流变仪、振荡型流变仪、落球式黏度计、其他类型流变仪(拉伸流变仪、缝模流变仪和弯管流变仪等)2.流变测量的目的:(1)物料的流变学表征。
高分子材料流变学
高分子材料流变学高分子材料是一类大分子化合物,在工业、生活中广泛应用,如聚乙烯、聚氨酯、聚酰胺等。
高分子材料在流变学中具有独特的物理性质。
流变学是研究物质内部变形的学科,它揭示了物质在受力作用下的变形规律,包括粘弹性、塑性、弹性等性质。
高分子材料的流变学研究对于了解其本质、设计新材料以及控制加工过程具有重要意义。
高分子材料的流变学行为主要有以下几个特点:1. 高分子材料具有非牛顿性质。
牛顿性质是指流体的应力与应变率成比例。
高分子材料在流变学中的非牛顿性表现为其应力-应变率曲线不是一条直线,而是弯曲的曲线,即呈现出剪切黏度的变化。
2. 高分子材料具有黏弹性。
在受力加速度作用下,高分子材料既具有黏度,同时又具有弹性。
这种黏弹性特征表现为高分子材料在受力后能够保持一定时间的形状,而不会立即回复到原始形状。
3. 高分子材料具有稀溶液的行为。
高分子材料最为常见的形态是稀溶液。
由于高分子材料的分子量较大,其在溶液中的浓度很低。
此时,高分子材料能够表现出溶液的流变学性质。
4. 高分子材料的流变行为受温度、负荷历史和加速度作用等因素的影响较大。
当温度增大时,高分子材料的流变性质将发生变化。
不同的负荷历史将导致高分子材料的流变性质发生变化,这对高分子材料加工、使用过程中的性能具有显著影响。
在受到不同加速度作用的情况下,高分子材料的流变性质也将发生变化。
5. 高分子材料的流变学行为与形状和尺寸等参数有关。
高分子材料在流变学中的行为与其形状和尺寸等参数密切相关。
例如,高分子材料在不同形状或尺寸下的加工性能和使用性能存在差异。
因此,高分子材料的流变学研究对于设计新材料、控制加工过程和改善使用性能具有重要意义。
目前,流变学技术在高分子材料的研究、开发和应用中得到了广泛的应用。
例如,在高分子材料的合成、加工、改性等方面,流变学技术能够提供有用的表征和信息。
在高分子材料的应用领域,流变学技术能够帮助改进产品性能和生产效率。
第二章 高分子流变学基本概念
聚合物流动曲线的解释
缠结理论解释:缠结破坏与形成的动态过程。 ⅰ第一牛顿区: 切变速率足够小,高分子处于高度
缠结的拟网结构,流动阻力大;缠结结构的破坏 速度等于形在的速度,粘度保持不变,且最高。 ⅱ假塑性区:切变速率增大,缠结结构被破坏, 破坏速度大于形成速度,粘度减小,表现出假塑 性流体行为。 ⅲ第二牛顿区:切变速率继续增大,高分子中缠结 构完全被破坏,来不及形成新的缠结,体系粘度 恒定,表现牛顿流动行为。
假塑性流体:
其表观剪切黏度随剪切速率的增加而减小的一种非牛顿流 体 ,非牛顿流体中最为普通的一种。 流动曲线:流动曲线不是直线,而是一条斜率先迅速变大 而后又逐渐变小的曲线,而且不存在屈服应力。 流体的表观粘度随剪切应力的增加而降低。即剪切变稀。 例子:橡胶、绝大多数聚合物、塑料的熔体和溶液。
膨胀性流体:
B 、粘度的分子量分布的依赖性 分子量分布宽的试样对切变速率敏感性大。
塑料:分布宽些容易挤出,流动性好,但分布太 宽会使性能下降。
橡胶:分布宽,低分子量,滑动性好,增塑作用, 高分子是保证一定力学性能。
C、 分子链支化的影响 短支链多:η低,流动性好,橡胶加入支化的橡胶 改善加工流动性。
长支链多:形成缠结,η提高。
填料 塑料和橡胶中的填料不但填充空间、降低成本,而 且改善了聚合物的某些物理和机械性能。常见的填料有炭 黑、碳酸钙、陶土、钻白粉、石英粉等。
Thank you !
加入第二组分,可降低熔体粘度,改善加工性能(提高
产品质量)
例子:PPS/PS
PPS的加工缺点
PPS的优点
PPS 分子链呈刚性, 结晶度可达 75%, 韧性较差, 又因熔点高, 在 熔融过程中易与空气中的氧发生
热氧化交联反应, 致使粘度不稳
高分子材料加工流变学
黏流活化能
黏流活化能影响因素 ✓ 分子链的柔顺性 ✓ 分子链的极性 ✓ 取代基的大小 ✓ 相对分子量分布 ✓ 剪切速率、剪切应力 ✓ 温度 ✓ 补强剂
黏流活化能
✓ 粘流活化能的测定 ✓ 一些高分子化合物黏流活化能举例
高分子化合 物
NR IR CR SBR NBR
Eη, kJ/mol
1.05 1.05 5.63 13.0 23.0
通过加热使玻璃态的高聚物变为黏流态。 2.流动成型
通过高压使熔体流动并通过模具成型 3.冷却固化
通过冷却使熔体固化成玻璃态并定型
第三节 高分子熔体的黏性流动与弹性
高分子材料加工过程的特点 1.使用高分子材料的黏流态进行流动变形加工 2.加工温度低 3.加工容易 以上特点决定高分子材料的应用非常广泛
牛顿流体
关于黏度的讨论 1)物理意义:促使流体产生单位速度梯度的剪
切力 2)黏度的影响因素 ➢ 流体本身的性质:如流体的结构、组成等 ➢ 温度:温度上升导致黏度下降 ➢ 压顿液体的流动
根据流体的流变方程式或流变曲线图,可将非牛顿型流体分类
例:吹塑薄膜的生产;双向拉伸薄膜的生产
一、拉伸流动与拉伸黏度
拉伸流动的数学描述 1.牛顿流体
λ=σ/ε σ=λ ε λ:拉伸黏度 σ:拉伸应力 ε:拉伸应变
一、拉伸流动与拉伸黏度
拉伸流动的数学描述 2.非牛顿流体 ✓ 低拉伸速率时,高分子材料熔体的拉伸流动行
为符合牛顿流体的拉伸流动公式 ✓ 高拉伸速率时,高分子材料熔体的拉伸流动行
涨塑性流体的数学描述-指数定律
(2)涨塑性(膨胀性)流体
涨塑性流体流变行为的解释
(2)涨塑性(膨胀性)流体
涨塑性流体流变行为的解释
高分子流变学基本概念课件
高分子流变学在塑料、橡胶、涂料等工业生产中具有重要的应用价 值,可以提高产品质量和降低能耗。
生物医学
高分子流变学在生物医学领域的应用逐渐增多,如药物载体、组织 工程等,有助于推动医学研究和治疗技术的发展。
新能源领域
高分子流变学在太阳能、风能等新能源领域具有潜在的应用价值,有 助于提高能源利用效率和降低环境污染。
高分子流变学基本 概念课件
目 录
• 高分子流变学简介 • 高分子流体的基本性质 • 高分子流变学的基本理论 • 高分子流变学在工业中的应用 • 总结与展望
01
高分子流变学简介
高分子流变学的定义
01
高分子流变学是一门研究高分子 材料流动和变形的学科,主要关 注高分子材料在应力、温度、时 间等作用下的形变和流动行为。
绿色环保
发展环境友好型的高分子流变学材料和制备技术,降低对环境的 负面影响。
高分子流变学的挑战与机遇
挑战
高分子流变学研究面临实验难度 大、理论模型不完善等挑战,需 要加强基础研究和实验验证。
机遇
随着科技的不断进步和应用需求 的增加,高分子流变学将迎来更 多的发展机遇和空间。
高分子流变学的应用前景
02
它涉及到高分子物理、化学、力 学等多个领域,是高分子科学的 一个重要分支。
高分子流变学的研究内容
01
高分子流体的基本流变性质
研究高分子流体的剪切粘度、拉伸粘度、弹性等基本流变性质,以及这
些性质与高分子链结构、分子量、温度等因素的关系。
02 03
高分子加工成型过程中的流变行为
研究高分子材料在加工成型过程中的流变行为,如塑料挤出、注射成型、 压延等过程中的流动和变形,以及这些过程对高分子材料结构和性能的 影响。
高分子流变学复习
泊松比(Poisson ratio)由材料性质决定的 ,表示侧边变形的大小。
在拉伸实验中,定义:侧边的分数减量,也与应力成正比,在流变学中使用泊松比
在各向同性压缩实验中,材料的应变应为其体积的变化分数△V/V。所加应力用压力 P来表示,则:
P=-K△V/V0
K为弹性常数,称为体积模量(Bulk modulus)
对非线性弹性是一个突破,它使我们不需作任何关于应力应变关系的假定而能得到非线性弹性的应力应变关系。当然这一理论比线弹性理论复杂得多。
只有部分交联的聚合物在高于Tg时才会发生较大的弹性形变(可恢复的变形)。当然交联不一定是指化学上的交联(如橡胶的硫化),也包括大分子间由于其他原因而紧密地结合在一起的情况,如嵌段共聚物在温度介于共聚物组成中两个聚合物的Tg之间时 。
对于理想高弹体来说,其弹性是熵弹性,形变时回缩力仅仅由体系内部熵的变化引起,因此有可能用统计方法计算体系熵的变化,进而推导出宏观的应力应变关系 。
02
橡胶弹性的分子理论成功地解释了许多实验现象。但由于在推导过程中作了许多假设,有些实验结果与理论结果并不一致。
03
橡胶弹性的统计理论
下图表示部分交联的高聚物,图中A,B,C,D…等为交联点,而在交联点之间的链段BC,CH等,我们称之为网链(Network-chain)。 在一般的硫化橡胶中,网链大约由50到100个重复链节组成,天然橡胶的分子大约由1000~2000个链节组成,因此一个分子中的网链数大约为10—40个,通常我们用单位体积聚合物中网链的数目来表示交联的程度,用Ni表示;此外也可以用网链的数均分子量Mc表示交联程度。
橡胶是轻度交联的聚合物,其流变行为可以用非线性弹性(也称为橡胶弹性)这一数学模式来描述。
高分子流变学
《高分子流变学》一、简介高分子流变学是高分子材料及工程专业的重要课程,我专业设此课程为专业选修课。
本课程在高分子化学、高分子合成工艺原理、高分子物理以及工程力学等课程的基础上,着重介绍流变学行为额基本原理和高分子材料流动与变形的基本行为,介绍了高分子材料流动变形行为与经典黏性体和弹性体之间的不同之处,深入讨论剪切作用、温度、压力、结构和时间等因素对高分子流变性质的影响,并介绍了流变学的测试原理和基本研究方法。
进一步为高分子材料及其制品的设计优化、加工工艺和加工设备的选择改进提供必要的理论依据。
二、第一章绪论第一节流变学的发展一.定义流变学是研究材料的流动和变形的科学,它是一门介于力学、化学、物理与工程科学之间的新兴交叉学科。
二.流变学产生的简史与发展流变学的诞生:宾汉(奠基人)与雷诺的故事;流变学的发展:流变学出现在 20 世纪 20 年代;麦克斯韦的贡献;早期国际流变学发展;目前关于流变学的研究十分活跃;流变学应用:流变学与现代工业;流变学与地球科学;流变学与土木工程;三.流变学的研究对象:流动的固体;非牛顿流体。
四.流变学的研究内容:本构方程;力学模型;物理模型。
五.其他流变学技术:磁流变学;电流变学;血液流变学。
第二节高分子流变学概述一.定义:高分子材料流变学——研究高分子液体,主要指高分子熔体、高分子溶液,在流动状态下的非线性粘弹行为,以及这种行为与材料结构及其它物理、化学性质的关系。
二.高分子流变学的发展三.高分子流变学研究内容:结构流变学;加工流变学。
四.高分子流变学研究方法:挤出式流变仪;转动式流变仪;转矩流变仪。
第三节流变学与聚合物工业的关系一.高分子加工的基本类型1. 塑料加工:挤出、注塑2. 纤维加工:口模、拉伸及拉伸粘度3. 橡胶加工:压延、密炼、挤出二.基本关系概述三.在聚合物材料加工中的应用第四节流变学在化妆品中的应用第二章线性粘性流动第一节基本概念一.流动的类型1. 层流、湍流层流,稳定流动,流体可看作是假想的层状流体所组成,层与层之间没有流动。
高分子流变学
弹性表现程度↑
2.毛细管直径的影响 d ↑,弹性效应↓
喷丝孔直径与挤出胀大比的关系 1—[]=0.86 2—[] =0.74 3—[]=0.64 rW=2.36×103s-1 L=3 T=290℃
3.毛细管长径比的影响 L/D ↑ ,越有利于松弛 弹性表现程度↓
(六)混合物的影响
例:当加入固体填料时: 添加量↑ 体系弹性↓
碳酸钙/聚丙烯共混物在200℃时的 法向应力差随剪切应力的变化 1-碳酸钙/聚丙烯=0/100 2-碳酸钙/聚丙烯=10/90 3-碳酸钙/聚丙烯=20/80 4-碳酸钙/聚丙烯=100/0
三、 研究聚合物流体的弹性对 聚合物加工的指导意义
聚合物的弹性对加工的稳定性有重大影响。 弹性过大不利于加工的稳定。
聚合物流体的弹性
一、聚合物流体弹性的表征 二、影响聚合物流体弹性的因素
三、研究聚合物流体的弹性对聚合物加工的指导意义
一、聚合物流体弹性的表征
1.聚合物流体弹性的表现
同轴旋转圆筒黏度计中的可回复形变与流动
2. 聚合物流体具有弹性的机理
虎克体的弹性: 小形变(材料或原子偏离平衡位置) 与内能 变化有关。 聚合物流体弹性: 大形变,既有内能变化的贡献,又有构象变 化的贡献(大) 本质是分子链构象发生变化熵弹性。
100000
G′,G″/ Pa;η */ Pa•s
G′
10000
G″
1000
η*
100
10 0.1 1 10 100 1000
ω /rad•s-1
SPI水溶液搅拌4h后的动态流动曲线 (20℃,10wt% )
二、影响聚合物流体弹性的因素
(1)聚合物的分子参数:分子量,分
子量的分布,长链分支的程度,链的 刚柔性等。 (2)加工条件: 热力学参数,温度和原
高分子流变学
高分子流变学高分子流变学是指以有机分子结构体系为基础,研究物质在各种条件下的流变行为的学科,它是力学与物理化学交叉学科,是研究高分子材料性能、强度性能及用途等方面技术问题的重要方向。
它研究的主要内容是:物质在受到外力作用时,在外力的作用下,形状发生改变并失去原有的力状态,或者外力的增大把物质分解成其它物质的研究。
高分子流变学可以分为两大类:一类是力学流变学,即以力学方法研究物质在受力作用下的变形、强度、耗散等各种现象及物质整体结构及其变化的学科;另一类是物理化学流变学,即以物理化学方法研究物质分子结构及其相互作用力对物质整体性能的影响,包括表面力学性质、黏度、热塑性等性质的研究。
一般来说,高分子流变学的研究范围包括:(1)各种高分子材料的流变性能:物质受力作用时的变形、强度及损耗等;(2)各种高分子复合体的流变性能:混合材料及其构造对流变性能的影响;(3)各种高分子有机混合体的流变性能;(4)各种高分子凝胶体系的流变性能;(5)各种高分子材料的表面力学性质;(6)各种高分子材料的黏度;(7)各种高分子材料的热塑性等。
由此可见,高分子流变学的研究内容十分广泛,以上概括的只是其主要的研究方向。
高分子流变学的研究方法多种多样,包括物理化学方法、分子动力学模拟方法、统计力学方法、数学方法、拉伸实验、断口实验、压缩实验、延伸实验、撕裂实验、油化实验、交联实验等。
这些实验可以研究物质在受力作用下的流变性能、强度性能、分解性能等,因此在研究高分子材料的物性及强度性能时,这些方法都是不可或缺的。
与其它科学学科不同,高分子流变学有着其独特之处:首先,它是以有机分子结构体系为基础,研究物质受力作用时因材料组成、材料结构及外力变化而发生的变形、强度、损耗等现象;其次,它研究的对象没有限定,可以是任何类型的高分子材料,综上所述,高分子流变学是以有机分子结构体系为基础的力学与物理化学交叉学科,是研究高分子材料性能、强度性能及用途等方面技术问题的重要方向,其研究范围很广,涉及高分子材料的流变性能、各种高分子复合体的流变性能、各种高分子有机混合体的流变性能、各种高分子凝胶体系的流变性能等,研究方法也多种多样,为研究高分子材料物性及强度性能提供了重要参考。
高分子流变学研究及其应用
高分子流变学研究及其应用高分子材料具有多种独特性能,可广泛应用于制造航空航天、电子、通讯、医疗、汽车等产业所需的材料。
然而,高分子材料具有复杂的物理和化学性质,因此需要进行深入研究和应用。
其中,高分子流变学的研究成果在这些领域中扮演着至关重要的角色。
高分子流变学研究的基础高分子材料的流变性质是对物质变形反应的表现。
在应力场中,高分子材料会产生应力,从而流动。
流变性能是材料的基本物理性质之一。
流变学研究的目的是了解材料的混合机理和材料的结构相互作用,重新设计新的高分子材料,并为生产质量提供保证。
高分子材料的流变性质与其分子链的链增长和链移动有关。
应力应变曲线通常呈“张力——应变曲线”,可以反映材料在外加应力作用下的行为。
在应力作用下,材料会发生重组、流变、变形和变形恢复的过程。
高分子材料的流变很具有时间依赖性和温度依赖性,因此可以用一组流变学参数来描述其流变特征。
高分子流变学方法高分子流变学研究方法主要包括单样品流变学和多样品流变学。
单样品流变学主要指在实验过程中使用单个样品进行测量,主要应用于高分子物性研究中。
多样品流变学主要指使用多个样品进行流变学测量,用于探究高分子复合材料的过程、以及材料的动态性能等。
单样品流变学主要包括静态负荷法、简易粘弹仪、旋转壁式粘弹仪等。
这些方法主要用于测量高分子材料的应力应变条件下的流变特性,研究高分子材料的流变机理和应用。
多样品流变学主要包括CAP稳定性和正交试验等。
这些方法主要用于研究多组分高分子材料混合的流变条件,并针对其物理化学变化进行流变学监测。
高分子流变学的应用高分子流变学的应用非常广泛,主要包括以下几个方面:1.高分子材料的设计和研发。
高分子流变学的研究成果可以用于研发新的高分子材料以及改进已有的高分子材料,使其具有更好的流变特性和应用性能。
2.物性研究。
高分子流变学可以用于研究高分子材料的物性,如强度、硬度、质量、机械波等物理特性,并探究材料的变形和流变机理。
高分子流变学
一、名词解释1. 本构方程:又称状态方程,描述应力分量与形变分量或形变速率分量之间关系的方程,是描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程. 反映流变过程中材料本身的结构特性。
2. 等粘度原则:两相高分子熔体或溶液粘度相近,易混合均匀。
3. 近似润滑假定:把原来物料在x—y平面的二维流动,在一段流道内简化成为只沿x方向的一维流动,这种简化假定称为~。
4. 剪切变稀:相同温度下,高分子液体,在流动过程中粘度随剪切速率增大而降低的现象。
5. 表观剪切黏度:表观粘度η a定义流动曲线上某一点τ与γ的比值6. Banis效应:又称口型膨胀效应或挤出胀大现象,是指高分子熔体被迫挤出口模时,挤出物尺寸d大于口模尺寸D,截面形状也发生变化的现象。
7. 粘流活化能:E定义为分子链流动时用于克服分子间位垒跃迁到临近空穴所需要的最小能量,它表征粘度对温度的依赖性,E越大,粘度对温度的依赖性越强,温度升高,其粘度下降得越多。
8. 法向应力差:两个法向应力分量差值在各种分解中始终保持不变,定义法向应力差函数来描写材料弹性形变行为。
9. 零切黏度:剪切速率接近于0时,非牛顿流体对应的粘度值。
10. 表观粘度:流动曲线上某点与原点连线的斜率11. 弯流误差:高分子液体流经一个弯形流道时,液体对流道内侧壁和外侧壁的压力,会因法向应力差效应而产生差异。
12. 拉伸粘度:聚合物在拉伸过程中拉伸方向的总的法向应力与拉伸速率的比值。
13. 第二牛顿区;假塑性流体在当前剪切速率很高时,剪切粘度会趋于一个定值,而这一剪切区域称为假塑性流体的第二牛顿区。
14. 触变性:等温条件下,某些液体流动粘度随外力作用时间长短发生变化的性质,其中粘度变小为触变性。
15. Tf:黏流温度,高分子高弹态与粘流态之间转变的温度,大分子链产生重心位移的整链相对运动。
16. Tg:玻璃化温度,分子链段运动,解除冻结的温度,形变可以恢复。
17. 爬杆现象、weissenberg效应、包轴现象:高分子液体在用圆棒搅动时环绕在旋转木棒附近并沿棒向上爬的现象。
高分子流变学
♦假塑性流体:黏度随剪切速率的增加而降低的流体,粘度与剪切应力之间的关系服从幂律定律,其中,非牛顿指数n<1♦膨胀性流体:黏度随剪切速率的增加而升高的流体,粘度与剪切应力之间的关系服从幂律定律,其中非牛顿指数n>1♦宾汉流体:指当所受的剪切应力超过临界剪切应力后,才能变形的流动的流体,亦称塑性流体,其中剪切应力与剪切速率服从τ=τy+ηpγ♦牛顿流体:剪切应力与剪切速率之间呈线性关系,表达式为τ=μγ的流体♦剪切变稀:粘度随剪切速率升高而降低♦爬杆效应:当金属杆在盛有高分子流体的容器中旋转,熔体沿杆上爬的现象♦挤出胀大:聚合物熔体挤出圆形截面的毛细管时,挤出物的直径大于毛细管模直径♦熔体破裂:聚合物熔体在毛细管中流动时,当剪切速率较高时,聚合物表面出现不规则的现象,如竹节状,鲨鱼皮状♦无管虹吸:当插入聚合物溶液中的玻璃管,提离液面之上时,聚合物溶液继续沿玻璃管流出的现象♦第一法向应力差:高聚物熔体流动时,由于弹性行为,受剪切的作用时,产生法向应力差,其中满足关系式N1=τ11−τ22=φ1∗γ212(N1通常为正值)♦第二法向应力差:同上,关系式为N2=τ22−τ33=φ2∗γ212(N2通常为负值)♦本构方程:是一类联系应力张量和应变张量或应变速率张量之间的关系方程,而联系的系数通常是材料的常数。
♦剪切应力:单位面积上的剪切力,τ=FA♦剪切速率:流体以一定速度沿剪切力方向移动。
在黏性阻力和固定壁面阻力的作用力,使相邻液层之间出现速度差,γ=d vdy也可理解成一定间距的液层,在一定时间内的相对移动距离。
♦高分子流变学:研究高分子液体,主要是指高分子熔体干分子溶液在流动状态下的非线性粘弹性行为。
以及这种行为与材料结构及其他物理化学的关系。
♦挤出膨胀现象:高分子熔体被迫基础口模时,挤出物尺寸大于口模尺寸截面积形象黄也发生变化的现象♦常用的聚合物流变仪有:毛细管型流变仪、转子型流变仪、组合式转矩流变仪、振荡型流变仪、落球式黏度计、其他类型流变仪(拉伸流变仪、缝模流变仪和弯管流变仪等)♦流变测量的目的:1)物料的流变学表征2)2)工程的流变学研究和设计3)3)检验和指导流变本构方程理论的发展♦高聚物的粘性流动的特点:1)流动机理是链段相继跃迁2)流动粘度大,流动困难,而且粘度不是一个常数3)流动时有构象变化,产生“弹性记忆”效应♦影响挤出胀大效应的因素:链结构、配方、切变速率与温度稳定♦挤出的措施:1)加料口供料速度必须均匀2)减少螺槽深度h和减少机筒与螺杆突棱的间隙δ3)调节机头流通系4)适当降低挤出温度5)适当增加螺杆长度♦影响熔体挤出破裂行为因素:1)口模的形状和尺寸2)挤出成型过程的工艺条件3)挤出物料的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料科学与化学工程学院
Zimm model
Zimm模型描述聚合物链运动的数学模型: 在溶剂中,聚合物链是以一个半径为 R、且扩张体积中包含 溶剂的线团作为整体进行运动的,其摩擦力为: ζz ≈ ηz R 由Einstein公式可得Zimm链的扩散系数为 Dz = k T / ζz Stokes定律来确定其关系式: ζz= 6πηR(球的体积影响) 根据聚合物链均方末端距的普适表达式R=b Nv,可将Zimm链的 松弛时间改写为: R=b N0.6 τ z = R2/ Dz = R2 ζz / k T =6πη R3 / k T = 6πηb 3N1.8 / k T Zimm链的扩散系数为 Dz = k T / ζz = k T / 6πηb N0.6 η= G( τ ) τ z =(k T / N V0 ) 6πηb 3N1.8 / k T = 6πηb 3N0.8 / V0
流动 流体
粘性
耗散能 量
产生永 久变形
时间过 程
牛顿定 律
根据经典流体力学理论,不可压缩理想流体的流动为纯粘 性流动,在很小的剪切应力作用下流动立即发生,外力释 去后,流动立即停止,但粘性形变不可恢复。切变速率不 大时,切应力与切边速率呈线性关系,遵循牛顿粘性定律 ,且应力与应变本身无关。
材料科学与化学工程学院
变形
固体
弹性
储存能 量
变形可 以恢复
瞬时响 应
虎克定 律
根据经典固体力学理论,在极限应力范围内,各向同 性的理想弹性固体的形变为瞬时间发生的可逆形变。 应力与应变呈线性关系,服从胡克弹性定律,且应力 与应变速率无关。
牛顿流体与胡克弹性体是两类性质被简化的抽象物体
材料科学与化学工程学院
实际材料
流 动
材料科学与化学工程学院
Rouse model
根据Stocks定律,聚合物链中的每一个Kuhn单元的摩擦系数 可表示为: ζ≈ηb 则理想链的每一个单元的Rouse模型松弛时间可表示为: τ 0 ≈ ζ b2/ k T= η b3/ k T 则整条理想链的Rouse模型松弛时间可表示为: τ R≈ τ 0 N2 0 = N2 η b3/ k T 根据橡胶熵弹性原理,Rouse链在松弛时间τ时的松弛模量为 : G ( τ ) ≈ k T n / V = k T n / n N V 0 = k T / N V0 η R = G( τ ) τ R =(k T / N V0 ) (ζ N2 b2/ k T) = ζ N b2 / V0
材料科学与化学工程学院
Tube/ Reptation model
材料科学与化学工程学院
2.4. 不稳定流动和熔体破裂现象
实验表明,高分子熔体从口模挤出时,当挤出速度(或应力) 过高,超过某一临界剪切速度γ c(或临界剪切应力σ c)就容易出 现弹性湍流,导致流动不稳定,挤出物表面粗糙。随着挤出速度的 增大,可能分别出现波浪形、鲨鱼皮形、竹节形、螺旋形畸变,最 后导致完全无规则的挤出物断裂,称之为熔体破裂现象。虽然关于 发生熔体破裂的机理目前尚无统一认识,但各种假定都认为,这也 是高分子熔体弹性行为的典型表现。熔体破裂现象影响着高分子材 料加工的质量和产率的提高(受临界剪切速率γ c的影响),平均分 子量大的容易发生溶体破裂。
材料科学与化学工程学院
2.具体到聚合物熔体流变现象
1.剪切变稀现象 2. Weissenb定流动和熔体破裂现象 5.无管虹吸效应
材料科学与化学工程学院
2.1.剪切变稀现象
对大多数高分子液体而言,即使温度不发生变化,粘度会随着 剪切速率(或剪切应力)的增大而下降,这种现象就是典型的剪切 变稀现象。 一对短管和一对长管中装有静止粘度相等的液体,一种为牛顿 型液体(记为N),如甘油的水溶液,一种为高分子溶液(记为P) ,如聚丙烯酰胺的水溶液。每对管中液面的初始高度相同。打开底 部的阀门,令其从短管中流出时,由于两种液体粘度相等,可以看 到两管液体几乎同时流尽。而令其从长管中流出时,发现装有高分 子液体的管中液体流动速度逐渐变快,P管中的液体首先流尽,这 是因为高分子液体在重力作用下发生“剪切变稀”效应的缘故。
材料科学与化学工程学院
Zimm model
Zimmen模型把bead连同周围的溶剂一起看成一个实心球, 认为高分子溶质不能被完全透过。 聚合物链运动时不仅具有来自弹簧对球形物体的拖动,还有 周围流体因为流体力学相互作用的粘滞而被拖曳随链共同运 动; Zimm模型适用于对聚合物链在稀溶液中运动的描述。
材料科学与化学工程学院
非缠结聚合物链运动学模型
Rouse 模型和 Zimm 模型都属于非缠结聚合物链运动学模 型,这两个模型存在两个重要的局限性 Rouse 模型仅限于聚合物熔体的应用,因为在熔体中 的聚合物链的流体力学相互作用被屏蔽(排除体积相 互作用被屏蔽),而且该聚合物学模型限于无缠结的 短链分子。 Zimm 模型仅限运用于稀溶液体系,其中聚合物扩张 体积中包含的溶剂通过流体力学相互作用与聚合物链 相互关联。
材料科学与化学工程学院
Rouse model
Rouse模型也称为bead-spring model,其认为高分子 之间的链接由步长固定的bond变成了可涨落的spring, monomer则被简化为bead,而在模型中仅仅考虑monomer 跟solvent之间的摩擦,忽略了hydrodynamic interaction( 流体学相互作用), Rouse模型将由N个尺寸为b的单元组成的聚合物链描 述为:由长度为b的弹簧将N个球形物体串连形成的弹簧珠 串。
材料科学与化学工程学院
3.聚合物链的运动学模型
流体力学相互作用就是考虑了monomer-solvent-monomer之 间的相互作用,比如一个bead(effective monomer)在溶剂中运 动的时候,会带动附近solvent的运动,而solvent的运动又会带动 周围bead的运动,之后这些bead又回过头来反作用于solvent,之 后再作用于bead,循环往复,无休无止。其实是一个多体问题, 目前数学上还没有办法精确求解,只能用近似的方法,目前主要 有非缠结聚合物链的运动模型(Rouse model/ Zimm model)和 缠结聚合物链的运动模型(tube / reptation model)
材料科学与化学工程学院
2.5. 无管虹吸效应
对牛顿型流体,已知当虹吸管提高到离开液面时,虹吸现象立 即终止。而对高分子液体,如聚异丁烯的汽油溶液或聚醣在水中的 微凝胶体系,当虹吸管升离液面后,杯中的液体仍能源源不断地从 虹吸管流出,这种现象称无管虹吸效应。 其产生原因主要与高分子液体的弹性行为有关,这种弹性性质 使之容易产生拉伸流动,而且拉伸液体的自由表面相当稳定。 实验表明,高分子溶液和熔体都有这种性质,因而能产生稳定 连续的拉伸形变,具有良好的纺丝和成膜能力
材料科学与化学工程学院
Rouse model
Rouse链的松弛时间也被称为Rouse时间,其具有很重要的意义: 小于Rouse时间时,聚合物链运动仅表现内部单元的扩散运动; 大于Rouse时间时,聚合物链运动为整条链的简单扩散运动。 用Rouse模型描述聚合物链的松弛时间: 每一个球形物体扩散至其自身尺寸所需的时间为基本松弛 时间,(相当于聚合物链的 Kuhn 单元的松弛时间,即 Kuhn 松 弛时间): τ 0 ≈ ζ b2/ k T 根据聚合物链均方末端距的普适表达式 R=b Nv ,可将 Rouse链的松弛时间改写为: τ R≈ ζ N R2/ k T = ζ b2 N1+2v / k T ≈ τ 0 N1+2v 对于理想链,其Rouse模型的松弛时间为: τ R≈ τ 0 N2 0 ≈ ζ N2 0 b2/ k T
材料科学与化学工程学院
布朗运动
当一个直径为 R 的球形物体运动了一个相当于自身尺寸 R 的 位移时,所需要的时间是描述该物体运动的一个重要的时间 尺度,被称为松弛时间: τR ≈ R2/ DR = R2 ζ / k T
如果球形物体在牛顿流体中作布朗运动,其摩擦系数与物体 尺寸和流体的粘度有关。 Stokes于1880年提出了Stokes定律来确定其关系式: ζ=6πηR 结合上式可得到扩散系数与物体尺寸的Stokes-Einstein公式 : D= k T / 6πηR 通过测定扩散系数得到的物体尺寸为流体力学尺寸: R h = k T / 6πη D
材料科学与化学工程学院
2.3. 挤出胀大现象
挤出胀大现象又称口型膨胀效应或Barus效应,是指高分子熔 体被强迫挤出口,时挤出物尺寸dj大于口模尺寸D,截面形状也发 生变化的现象。 牛顿流体不具有这种效应或只有很弱的口型变化效应,而高分 子流体的口型膨胀相当显著。其产生原因归结为高分子熔体有弹性 记忆能力所致。熔体在进入口模时,受到强烈的拉伸和剪切形变, 其中拉伸形变属于弹性形变,这些形变在口模中只有部分得到松弛 ,剩余部分在挤出口模后发生弹性回复,出现挤出胀大现象。 消除办法:升高挤出 温度或降低挤出速度 或在体系中加入填料 使高分子熔体弹性形 变减小从而减轻挤出 胀大效应
材料科学与化学工程学院
2.2. Weissenberg效应
与牛顿流体不同,盛在容器中的高分子液体,当插入其中的圆 棒旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒 附近,出现沿棒向上爬的爬杆现象.这种现象称Weissenberg效应 ,又称包轴现象.测量容器中A、B两点的压力,对牛顿型流体 PA<PB,对高分子液体有PA>PB。出现这种现象的原因被归结为高分 子液体是一种具有弹性的液体。在旋转流动时,具有弹性的大分子 链会沿着圆周方向取向和出现拉伸变形,从而产生一种朝向轴心的 压力迫使液体沿棒爬升。在所有流线弯曲的剪切流场中高分子流体 元除了受到剪切应力外(变现为粘性),还存在法向应力差效应( 表现为弹性)。