基坑监测方案
基坑监测技术方案
基坑监测技术方案基坑是建筑施工过程中不可避免的工程险情之一,如何有效地进行监测,发现隐患,及时调整措施,保障工程的安全性?本文将介绍基坑监测技术方案。
一、基坑监测的目的基坑是指在建筑工程中开挖的地面或地下空间,用于建筑施工或其他用途。
基坑开挖过程中,常常会涉及到地下水、岩土结构等问题,可能引发其它安全问题。
因此,进行基坑监测可以明确工程的变化及时调整建设措施,并确保工程的质量和安全。
二、常见的基坑监测技术方案1.测量法测量法采用传统的测量方法,利用仪器对基坑的各种数据进行测量。
通过对基坑周边的某些关键点(如墙体上相对位移、水平位移、沉降量等)的观测,得到基坑的变形量,及时掌握基坑的变化情况。
2.遥感技术遥感技术是通过卫星图像等技术,对建筑工程的状况进行监测。
它可以依靠大数据和软件分析技术,使用多层次、多角度监测手段,综合分析监测对象,实现全方位的建筑工程监测。
3.无人机监测技术无人机技术的应用可以在工程施工过程中实现对基坑的实时监测。
通过高清摄像头拍摄和即时传输,实现对基坑地形及其周边环境的监测,及时掌握基坑的变化,并调整施工措施。
4.传感器监测技术传感器监测技术是一种新型的监测方法,需要安装传感器模块在监测对象,例如挖掘机、混凝土泵车等,可以动态的监测设备的状态变化,通过收集基坑周边各种数据,实现基坑变化的高精度、高效率监测。
三、基坑监测技术方案的实现实现基坑监测技术方案需要从以下几个方面入手:1.规划设计方案,提前设计好基坑监测方案,明确监测的目标与方法。
2.确定监测方法与工具。
根据基坑的不同情况(地质条件、基坑的大小、开挖深度及周边环境等因素)选择合适的监测方法和工具。
3.安装好相应的仪器设备。
无论是传感器、测量设备、还是遥感技术,都需要进行相应的设备安装工作,将其定位到合适的位置。
4.监测数据的采集和处理。
通过设备采集到的数据,进行分类、整理、分析和处理,并将处理后的数据反馈给项目监理方、工程负责人和建设方等相关人员,以调整工程进展和方案。
基坑监测方案
基坑监测方案一、背景介绍随着城市建设的不断推进,基坑工程在城市发展中扮演着重要的角色。
然而,由于基坑工程施工所涉及的土地开挖、地下水位变动、邻近建筑物的安全等问题,必须对基坑进行监测和控制。
因此,制定一套行之有效、科学合理的基坑监测方案,对于确保基坑施工的安全和顺利进行至关重要。
二、监测内容1. 土体变形监测土体在开挖过程中会发生变形,因此需要监测基坑周边土体的变形情况。
监测内容包括土体的沉降、侧向位移和倾斜度等指标。
2. 地下水位监测基坑开挖过程中会涉及地下水位的变动,为了控制沉降和保证施工安全,需要对地下水位进行监测。
监测点布设应覆盖到基坑的各个不同位置。
3. 周边建筑物安全监测开挖基坑可能对周边建筑物的安全造成影响,因此需要对周边建筑物进行安全监测。
包括建筑物的沉降、裂缝情况等指标。
三、监测方法1. 土体变形监测方法(1)GPS监测:通过设置GPS监测站点,实时记录土体沉降、侧向位移和倾斜度等参数。
(2)倾斜仪监测:通过安装倾斜仪监测土体的倾斜变化情况,提供准确的变形数据。
2. 地下水位监测方法(1)水位计监测:在合适的位置安装水位计,实时监测地下水位的变化情况。
(2)井眼监测:通过设置监测井,在井眼内安装水位计,对地下水位进行定期监测和记录。
3. 周边建筑物安全监测方法(1)应力应变测量:通过安装应力应变测试设备,监测建筑物的变形情况,预警可能出现的安全风险。
(2)形变监测:通过安装形变传感器,监测建筑物的形变情况,及时发现问题并采取应对措施。
四、监测频率和数据处理1. 监测频率监测频率应根据基坑的工程特点和土体变化情况而定,一般为每日监测或定期监测。
2. 数据处理监测数据应及时进行整理和分析,通过对数据的处理和比对,判断基坑施工过程中的变化趋势和是否存在安全隐患,并及时采取相应的措施。
五、应对措施1. 对于土体变形问题,根据监测数据确定是否需要进行加固措施,如土钉墙、加固支护结构等。
2. 对于地下水位变动引起的安全问题,可采取降低地下水位的方法,如抽水排水等。
基坑监测方案
基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
基坑工程现场监测方案
基坑工程现场监测方案一、前言基坑工程是指在承载土体的工程基础体系周围凿挖一定的深度和宽度,以满足地下空间利用要求的一种工程。
其施工过程中可能存在土体塑性变形、地下水位变化、地下管线和建筑物变形等多种风险,因此需要对其现场进行全面的监测,及时掌握施工情况,保障工程顺利进行。
二、监测目标基坑工程的监测目标主要包括以下几个方面:1、土体变形监测:监测基坑周边土体的沉降变形情况,及时发现并控制土体的变形,防止地质灾害发生。
2、地下水位监测:监测基坑周边地下水位的变化情况,控制基坑内的地下水位在合理范围内,避免基坑水灾发生。
3、地下管线监测:监测基坑周边地下管线的变形情况,控制地下管线的变形,防止对施工安全造成影响。
4、建筑物变形监测:监测基坑周边建筑物的倾斜、裂缝等变形情况,确保周边建筑物的安全。
5、施工工艺参数监测:监测基坑支护结构的变形、应力、变形等参数,保障支护结构的稳定性。
三、监测方案1、土体变形监测:采用全站仪、GPS、精度水准仪等仪器对基坑周边土体进行定点观测,记录土体的沉降、水平位移、倾斜等信息,检测变形情况。
对于变形较大的地点,可采用测量点云技术,实时监测土体的三维形变情况。
2、地下水位监测:利用水位计、压力计对基坑周边的不同深度和位置进行地下水位的监测,并且建立水位监测井,实时监测地下水位的变化情况。
同时,采用地下水位自动监测系统,可以实时监测并记录地下水位的变化。
3、地下管线监测:采用地下管线监测仪器对基坑周边的地下管线进行监测,记录管线的变形、位移等信息,及时发现问题并采取相应的措施。
4、建筑物变形监测:采用倾斜仪、位移监测仪等仪器对基坑周边的建筑物进行倾斜、位移等变形情况的监测,确保建筑物的安全。
5、施工工艺参数监测:采用应力应变计、变形仪器、位移传感器等仪器对基坑支护结构进行监测,记录支护结构的变形、位移、应力等参数,及时掌握支护结构的稳定性。
四、监测频次1、土体变形监测:根据基坑的深度和地质条件,制定不同监测频次,一般情况下,每日至少监测一次,夜间施工时,应加强监测频次。
基坑工程监测检测方案
基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。
在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。
本文将针对基坑工程的监测检测方案进行详细的介绍。
二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。
三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。
可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。
2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。
可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。
3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。
可以采用应变计、位移计等仪器进行实时监测。
4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。
可以通过长期监测和数据分析,掌握地下水位的变化规律。
5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。
可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。
四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。
这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。
2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。
可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。
3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。
可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。
基坑工程监测技术方案
基坑工程监测技术方案一、前言基坑工程是指为了建设地下结构或地下工程而在地面上开挖出的深坑,如地下车库、地下商场、地下室等。
在基坑工程施工过程中,要保证施工过程稳定安全,必须对基坑周边的地下水位、基坑变形、邻近建筑物或地下管线等进行严密监测。
基坑工程中的监测技术在施工和使用阶段起到至关重要的作用。
本文就基坑工程监测技术方案进行讨论。
二、基坑工程监测内容基坑工程监测内容主要包括以下几个方面:1. 地下水位监测:考虑到基坑周围地下水的波动对基坑稳定性的影响,需对周边地下水位进行监测,掌握地下水位的变化范围和趋势。
2. 基坑变形监测:基坑挖掘深度增加时,土体受到变形应力的影响,从而引起土体变形。
因此,需要监测基坑边坡的位移和变形情况。
3. 周边建筑物和地下管线监测:基坑开挖对周边建筑物和地下管线会产生影响,需监测周边建筑物和地下管线变化情况。
以上监测内容对基坑工程的施工和使用阶段都至关重要。
三、基坑工程监测技术方案1. 地下水位监测技术方案地下水位监测一般采用水位计或压力传感器进行监测。
监测点分布需覆盖基坑周边,监测频率一般为每日至每周。
监测数据通过无线传输至监测中心,并及时进行分析与处理。
在发现异常情况时,及时采取相应措施。
2. 基坑变形监测技术方案基坑变形监测可采用全站仪、测斜仪等设备进行监测。
设立监测点布设需均匀,以获取较为准确的数据。
监测频率根据施工情况和地质条件而定,一般监测频率为每日至每周。
监测数据传输至监测中心,并进行实时监测和分析。
3. 周边建筑物和地下管线监测技术方案周边建筑物和地下管线监测可采用全站仪、测斜仪等设备进行监测。
设立监测点分布需合理,监测频率一般为每周至每月。
监测数据传输至监测中心,并进行分析和处理。
四、基坑工程监测数据分析与应用监测数据的分析和应用是基坑工程的关键环节。
监测数据的实时分析可以预警和预防基坑工程中可能出现的安全隐患,从而采取相应的控制措施。
1. 地下水位监测数据分析与应用地下水位监测数据的分析可以帮助预测地下水位的变化趋势,及时发现地下水位异常变动的可能性。
基坑工程监测方案完整版
基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。
本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。
二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。
三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。
2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。
3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。
4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。
五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。
2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。
3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。
4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。
六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。
2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。
二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。
详细介绍了监测的目的、内容、方法及实施步骤。
二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。
三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。
基坑监测方案
基坑监测方案一、工程概况基坑安全等级为一级。
周边环境较复杂。
二、编制依据1.监测平面布置图及设计图纸2、《建筑基坑工程技术规程》三、监测目的对基坑施工阶段围护结构和周边环境进行监测,全面反映基坑支护结构、基坑边坡以及周边环境的变形情况和趋势,及时预报基坑施工中出现的问题,并提出处理措施,以求事先掌握基坑开挖的影响情况,为连接通道顺利施工提供指导,进行〃信息化〃施工。
四、监测内容及监测点的布设根据业主的委托要求,结合设计文件及相关规范要求,本项目共进行以下监测项目。
五、各监测方法及精度(一)深层侧向位移(测斜管)1.采用的仪器项目拟投入CX—901E型活动式垂直测斜仪,由金坛市华兴测试仪器厂生产,仪器是一种可精确测量沿垂直方向土层或围护结构内部水平位移的工程测量仪器。
在监测前先将有四个相互垂直导槽的测斜管埋入被测土体中。
测量时,将活动式测头放入测斜管,使测头上的导向滚轮卡在测斜管内壁的导槽中,沿槽滚动,活动式测头可连续地测定沿测斜管整个深度的水平位移变化。
2、测斜管的埋设测斜管采用江苏金坛土木工程仪器厂生产的CXG-76型ABS高精度测斜管测斜管,规格为①70mm,双向导槽。
安装或埋设过程中注意事项如下:(1)在被测土体内钻孔,然后将测斜管逐节组装井放入钻孔内,测斜管底部装有底盖,管内注满清水,下入钻孔内预定深度后,即向测斜管与孔壁之间的间隙由下而上用瓜子片填实,固定测斜管。
(2)安装或埋设时,应及时检查测斜管内的一对导槽,其指向是否与欲测量的位移方向一致,并应及时修正。
(3)测斜管固定完毕或浇注混凝土后,用清水将测斜管内冲洗干净。
3、测试技术要求测点间距为0∙5m,双向观测。
监测一律从孔底开始自下而上逐点完成。
综合测量误差为:±4mm∕15m0(二)地下水位监测测孔用钻机成孔,并用滤水PVC管护壁。
测试用水位计完成,水位深度统一换算成相对标高。
1.水位监测管的埋设(1)在选定的观测地段按要求的孔径和深度钻孔,孔径为90mm;(2)钻孔完成后,冲洗钻孔,检查钻孔深度及钻孔的通畅情况;(3)埋设水位管时,底部2m长范围内的测管每隔20cm打一小孔,共三排,便于地下水进出管中;同时用沙布包裹该段管子以免管外土粒进入管中;(4)水位管逐根下放测孔内并进行对接,密封水位管底端;(5)将中粗砂沿水位管外侧下放进行封孔工作。
基坑监测方案
基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。
本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。
一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。
具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。
二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。
2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。
3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。
4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。
三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。
具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。
2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。
四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。
一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。
1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。
2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。
总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。
基坑监测监控方案
基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。
通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。
基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。
2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。
混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。
此后可每周观测一次至回填土完工。
3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。
4、当有危险事故征兆时,应连续监测。
二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。
2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。
4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。
基坑监测方案
基坑监测方案一、基准网的建立为了科学地预测基坑支护的稳定和周边环境的变化,及时预报和提供准确可靠的变形数据,因此建立基坑支护施工变形与沉降观测网,定期进行变形沉降观测。
二、基坑支护变形观测(1)基坑支护水平位移观测在基坑边坡顶上布置基线(每基坑边一条),每条基线上设4个变形观测点,同时又作为沉降观测点。
(2)基坑支护沉降观测利用远离场区的城市高程系水准控制点或独立水准点作为沉降观测的起算点,与以上点联测,构成基坑支护沉降观测网。
四面围墙周边附近各布置四个沉降观测点,与基坑周边浅埋基础建(构)筑物、重要管线监测点一起构成监测周边环境的沉降观测网。
三、观测方法(1)水平位移观测分别在基线点四个角上设站,用J2型经纬仪观测四边网的水平角度(四边形内角),并与城市的大地控制网三角点联测水平夹角,检查基线点是否发生位移,在基线点正确无误的情况下,同时在四角测端上分别以对应的相邻角点定向,并观测定向基线上各预埋点的水平位移量初始读数。
(2)沉降观测对基坑边上的各点及周边点建立的沉降观测网的测量方法为:首先自远离基坑的城市水准控制点开始观测,引测至基坑周围后,按编定的各点观测次序依次观测,最后测至另一水准控制点符合,观测仪器采用S3型精密水准仪。
四、基坑周围建(构)筑物等的监测措施工程对基坑周边50米范围内的所有建(构)筑物进行监测,并特别对临近坑边1.5H~2.0H范围内建(构)筑物,包括道路、市政管道、电力电缆、电信管网等加强监测力度。
具体监测措施是:(1)对建(构)筑物,定期进行沉降变形观测。
(2)施工前,了解地下管线的分布情况,对整个场地的地下管线进行摸底,并在地面投影其轴线走向,布置变形观测点进行监测;对某些变形要求较高及紧邻基坑开挖边缘的重要管线,预先做好加固处理措施。
五、质量保证技术措施在施工中不仅要严格执行质量管理程序,保持质量体系的有效运行,同时必须采取切实可行的质量保证技术措施,从原材料的采购到施工全过程进行全方位控制,强化施工质量一次合格率,杜绝不合格和返工。
基坑监测方案
基坑监测方案
1、在基坑周边设立8 个水平位移观察点,观察基坑边顶端的水平位移。
2、在基坑的周边建筑物上各设立一个沉降观察点,共2 个,用来监测受基坑降水的影响。
3、在基坑的坡上设一组内力测试传感器,来测试不同土层中应力的分布和传递情况。
4、在基坑的坡上布设一组抗拔试验土钉,用来验证不同土层中土钉的粘结强度。
5、不同深度土体的位移监测:采用以石英挠性加速度计为敏感元件的滑动式测斜仪,它可以把倾角大小以电压形式输出,进而确定被测物体变形量的大小和变形方向。
电子滑动式测斜仪由测头、测读仪、电缆和测斜管四部分组成。
测斜点共布设2 组,以保证准确。
以上监测工作在基坑开挖与支护结束后维持一个星期,如果各种测量数据在7d内完全收敛稳定,测量工作则可结束,否则继续观察。
基坑监测技术方案
基坑监测技术方案1.监测目标:基坑监测技术方案的首要目标是对基坑周围环境、土体变形、地下水位等进行全面监测,以确保基坑施工过程中所处位置的稳定性和可靠性。
2.监测手段:(1)GPS监测:利用全球定位系统(GPS)技术,对基坑及周围环境的位置进行准确的测量。
通过与基准点相连,可以监测基坑位置是否发生变化。
(2)建筑物监测:利用激光测距仪、倾斜仪等设备,对周围建筑物的变形和位移进行实时监测,以避免施工活动对建筑物造成不可逆的损坏。
(3)地下水位监测:通过设置水位观测井,利用水位传感器测量地下水位的变化情况,及时掌握基坑附近地下水的动态变化,并采取相应的措施。
(4)地面沉降监测:通过安装变形传感器,测量地面的沉降情况,及时发现和解决可能导致严重后果的地面沉降问题。
(5)土体应力监测:通过安装应力应变传感器,对基坑周围土体的应力情况进行实时监测,以及时采取支护措施。
3.监测频率和方式:(1)预施工监测:在基坑施工前进行一次全面的预施工监测,确定施工前的各种数据,作为后续施工的参考依据。
(2)施工过程监测:在基坑施工过程中,周期性地对基坑及周围的环境进行监测,频率根据工程的大小和特点而定,以及时掌握施工过程中的变化情况。
(3)施工结束后监测:施工完成后,对基坑及周围环境进行最后一次全面监测,评估工程施工的效果和影响以及后续治理等工作。
4.监测数据处理和分析:监测到的数据需要进行处理和分析,以判断是否出现危险情况。
可以使用数据处理软件和数学模型来辅助分析,对数据进行图形展示、数据统计和挖掘,以辅助决策和预测。
5.信息报告和预警机制:基于监测数据的分析结果,及时编制监测报告,对施工过程中出现的问题进行详细描述,并提出改进建议和预警措施。
报告内容包括监测数据的整理和分析、监测过程中出现的问题和解决方案等。
综上所述,基坑监测技术方案是确保基坑施工安全和质量的重要手段,通过多种监测手段对基坑及周围环境的变化进行实时监测和分析处理,并及时采取相应的措施,以确保基坑施工过程的安全可靠性。
基坑监测方案
基坑监测方案随着城市建设的不断发展,基坑工程成为了不可或缺的一部分。
基坑的开挖和施工对于建筑物的稳定性和安全性具有重要影响。
为了保证工程施工的顺利进行和保障周围环境的安全,基坑监测方案显得尤为重要。
一、监测目标和内容基坑监测方案的首要任务是确定监测目标和内容。
监测目标一般包括结构物、地下管线、地面沉降、地下水位等。
其中,结构物的监测主要是通过安装传感器和仪器来监测建筑物的位移、变形和应力,以及周围环境条件的变化。
地下管线的监测则是通过引入无损检测技术和多种传感器来检测管线的位移和裂缝情况。
地面沉降的监测需要采用测水井、变形标志和全站仪等仪器来实时记录和测量地面沉降的情况。
地下水位的监测则需要安装水位计和水质传感器等仪器来实时监测地下水位的变化,以及水质的变化情况。
二、监测方法和仪器选择基坑监测方案的第二个重要部分是选择监测方法和仪器。
根据监测目标和内容,我们可以选择不同的监测方法和仪器。
例如,对于结构物的位移和变形监测,可以选择安装倾斜计、应变计、位移计等传感器,利用数据采集系统实时监测建筑物的变化情况。
对于地下管线的监测,可以使用无损检测技术和纤维光栅传感器等方法来检测管线的位移和裂缝情况。
地面沉降的监测可以选择测水井、变形标志和全站仪等仪器,通过实时测量地面标志点的变化情况来得出地面沉降的数据。
至于地下水位的监测,则可以使用水位计和水质传感器等仪器,利用数据采集系统实时监测地下水位的变化情况和水质的变化情况。
三、数据处理和分析在基坑监测方案中,数据处理和分析是非常重要的一步。
通过采集到的监测数据,我们可以利用多种数据处理和分析方法来得出有关基坑施工的结论和决策依据。
例如,可以通过数据对比和趋势分析来评估结构物、地下管线和地面的变化情况。
同时,还可以利用数学模型和计算方法对监测数据进行模拟和预测,以便提前做好相关的控制和调整措施。
此外,还可以利用统计分析和地理信息系统等工具,对监测数据进行综合分析,以便更好地理解和解释测量结果。
基坑监测方案
基坑监测方案一、项目背景近年来,城市建设发展迅速,基坑工程作为重要的建设环节,对于城市建设的进展起着至关重要的作用。
然而,基坑工程也存在一定的风险,如地基沉降、周边建筑物破坏等。
因此,为确保基坑工程的安全和稳定进行,本文制定了一套基坑监测方案。
二、监测目的1. 确保施工期间基坑周边环境的安全稳定;2. 及时发现并监测基坑工程可能存在的问题;3. 提供数据支持和决策依据,以确保基坑施工的顺利进行。
三、监测内容1. 基坑的形变监测:使用精确的仪器设备对基坑进行形变监测,包括基坑的沉降、变形等参数的测量和控制;2. 地下水位监测:监测基坑周边地下水位的变化情况,及时掌握基坑内外水位的动态变化;3. 周边建筑物的变形监测:对基坑周边建筑物进行定期的变形监测,以发现并及时应对可能的损害情况;4. 基坑施工过程监控:对基坑的施工过程进行实时监控,确保施工按照规范进行。
四、监测方法1. 形变监测:采用全站仪、水准仪等仪器设备,对基坑进行三维形变监测,以获取基坑的沉降、变形等数据;2. 地下水位监测:通过埋设水位观测井和水位传感器,对基坑周边地下水位进行连续监测;3. 建筑物变形监测:采用激光测距仪、测绘仪等设备,对周边建筑物进行定期的变形监测;4. 施工过程监控:利用监测摄像头、温度传感器等设备,全程监控基坑施工过程中的温度、振动等参数。
五、监测频率1. 形变监测:根据基坑的特点和施工进度,制定每日、每周或每月的监测频率;2. 地下水位监测:每天记录地下水位变化情况,确保数据的连续性;3. 建筑物变形监测:根据建筑物的敏感程度和基坑施工情况,制定适当的定期监测频率;4. 施工过程监控:全程实时监测,确保数据的及时性和准确性。
六、数据处理与分析1. 对监测数据进行有效存储和管理,确保数据的完整性和准确性;2. 利用专业分析软件对监测数据进行处理和分析,提取关键信息;3. 根据监测数据的分析结果,制定相应的措施和调整方案,保障基坑工程的安全进行。
基坑监测方案
基坑监测方案一、工程概述本次基坑工程位于具体地点,周边环境较为复杂,有相邻建筑物、道路、地下管线等情况。
基坑开挖深度为具体深度,面积约为具体面积。
二、监测目的1、及时掌握基坑围护结构和周边环境的变形及受力情况,确保施工安全。
2、为优化设计和施工方案提供依据,实现信息化施工。
3、对可能发生的危险情况进行预警,提前采取防范措施。
三、监测内容1、围护结构水平位移监测在围护结构顶部设置监测点,采用全站仪或经纬仪进行观测,监测其水平位移变化情况。
2、围护结构竖向位移监测使用水准仪对围护结构顶部的监测点进行竖向位移观测。
3、深层水平位移监测在围护结构内埋设测斜管,通过测斜仪测量深层水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。
5、地下水位监测在基坑周边设置水位观测井,使用水位计测量地下水位的变化。
6、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,分别采用水准仪和全站仪进行观测。
7、周边道路及地下管线沉降监测在道路和地下管线上设置监测点,使用水准仪进行沉降观测。
四、监测点布置1、围护结构水平位移和竖向位移监测点沿基坑周边每隔具体间距布置一个监测点。
2、深层水平位移监测点在基坑的关键部位,如阳角、阴角等,每隔具体间距布置一个测斜管。
3、支撑轴力监测点选择受力较大的支撑构件,每隔具体间距布置一个轴力计。
4、地下水位监测点在基坑周边每隔具体间距布置一个水位观测井。
5、周边建筑物沉降及倾斜监测点在建筑物的四角、大转角处及沿外墙每具体间距布置一个沉降观测点,倾斜观测点布置在建筑物的顶部和底部。
6、周边道路及地下管线沉降监测点根据道路和地下管线的走向,每隔具体间距布置一个监测点。
五、监测频率1、基坑开挖期间,每天监测 1 次。
2、底板浇筑完成后,每 2-3 天监测 1 次。
3、主体结构施工期间,每周监测 1-2 次。
4、当监测数据变化较大或遇暴雨等恶劣天气时,应加密监测频率。
六、监测报警值1、围护结构水平位移和竖向位移报警值累计位移达到具体数值或单日位移达到具体数值。
基坑监测方案
基坑监测方案1、监测目的1)通过对监测数据分析,判断上一步施工工艺和施工参数是否符合或达到预期要求,同时实现对下一步的施工工艺和施工进度控制,从而切实实现信息化施工;2)通过监测,及时掌握和提供基坑、围(支)护系统、地表的变化信息和工作状态,确保本工程基坑开挖期间周边道路、管线正常运行;3)通过监测及时发现基坑施工过程中的环境变形发展趋势,及时反馈信息,达到有效控制施工对建筑物及管线影响的目的;4)通过监测及时调整支撑系统的受力均衡问题,使得整个基坑开挖过程能始终处于安全、可控的范畴内;5)及时发现险情,以便采取措施,防止事故发生;6、通过跟踪监测,在支撑拆除阶段,施工科学有序,保障基坑始终处于安全运行状态;2、监测方的确定因基坑开挖深度比较深,建设单位必须委托专业监测单位(第三方)对基坑围护结构和周边环境进行监测;施工单位自行检测。
3、第三方基坑监测1)监测内容根据设计要求本工程须进行监测项目有:支护结构的水平位移及裂缝;基坑周围24米范围内地面的裂缝;基坑周围24米范围内市政设施的变位和破损;基坑周围地面超载情况及基坑渗水状况。
2)监测设备3)监测要求a.须请有资质的单位、人员进行监测,基坑开挖须做好监测方案和观测点的布置、埋设,具体位置和数量由监测单位自定。
b.观测基准点不少于3个,设在影响范围以外。
c.基坑开挖期间每2天观测1次,在开挖卸荷急剧阶段和不良天气时,应加密至1天1次。
基坑开挖完成后每3天一次,位移趋于稳定则5天观测1次。
d.监测点的保护:基坑施工阶段每次完成监测工作后必须对监测点进行覆盖,并设专人看护,以保护监测点。
e.观测资料应在24小时内整理提交监理和甲方、总承包方。
4)监测预警值4施工单位的自我监测1)监测内容除根据设计要求需要监测的项目,施工单位还需对:土方开挖过程中土层分布是否与勘察报告相符及土质变化;支承柱的隆起与沉降进行监测;密切关注观测井的水位变化;观察灌注桩冠梁、环梁及混凝土支撑系统是否出现裂缝;并应密切关注路面是否有裂缝、关注其发展及变化;2)监测要求基坑开挖施工前,施工单位会同建设单位、监理单位共同对基坑四周24m范围内的建筑物、地貌进行检测,确定观测点留有原始检测记录,填入正式的表格;并留有影像资料经三方签字确认;基坑支护监测点的布置按照间隔6m进行,观测变型情况;基坑周围的多层住宅楼按照每个转角进行布置,观测垂直、沉降情况;单层住宅按照每个转角及中间位置进行布置;基坑施工期间,施工单位每天对基坑周边的地貌进行巡视;每3天对基坑周边的观测点进行复测,每周将观测数值与第三方检测单位的数值进行对比;当观测值大于警戒值时,缩短观测时间改为每天进行观测;及时与建设单位联系采取有效措施;紧急情况下立即停止施工,启动应急预案,采取相应措施,并报甲方、设计、监理情况,共同研究处理方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈工大研究院怀来商住项目基坑监测方案编制:审核:审批:江苏标龙建设集团有限公司年月日目录1.工程概况 (1)2.监测项目 (2)2.1监测项目及工作量 (2)2.2监测工期 (2)3.基坑监测项目管理机构 (2)3.1项目组责任划分及成员选用原则 (2)3.2设备配置表 (3)4. 执行规程、规范及监测流程 (4)4.1执行规范、标准及文件 (4)4.2监测前准备 (4)4.3监测工作基本流程 (4)5. 基坑支护监测方法 (4)5.1基点布设 (4)5.2水平位移观测 (5)5.3竖向位移观测 (6)5.4巡视监测 (7)6 .监测频率、报警值 (7)6.1监测频率 (7)6.2报警值的确定原则 (8)6.3警戒值的确定 (9)6.4报警 (9)6.5异常情况下的监测措施 (9)7.数据处理与信息反馈 (9)7.1基本要求 (9)7.2当日报表 (10)7.3监测周报告 (11)7.4总结报告 (11)7.5信息反馈 (11)8.基坑监测应急预案 (12)8.1领导责任分工 (12)8.2监测措施、报警 (12)8.3监测人员、监测仪器、材料及其他物资准备 (13)9.监测工期保证措施 (14)10.质量和安全保证措施 (14)10.1质量保证措施 (14)10.2安全保证措施 (15)1.编制依据及工程概况1.1编制依据《危险性较大的分部分项工程管理办法》(建质2009-87号文)《施工现场临时用电安全技术规范》(JGJ46-2005)《建筑地基基础设计规范》(GB 50007-2012)《建筑地基处理技术规范》(JGJ 79-2012)《建筑基坑工程监测技术规范》(GB50497-2009)1.2工程概况本项目为哈工大研究院怀来商住项目总承包工程,由高层住宅楼、合院、高层办公楼、低层商业、地下车库工程组成,建筑面积约190419.09 平方米;低层写字楼6栋:(T1#-T6#楼),建筑面积约7260.45;高层写字楼2栋:(T7#、T8#楼),建筑面积约为19495.9平方米;地下车库二约8027.89平方米;合院16栋:(S10#-S25#楼),建筑面积约为14965.86平方米。
高层住宅楼9栋:(S1#-S9#楼),建筑面积约为113680.99平方米;S27#大门,建筑面积约为60.4平方米;低层商业(S26#楼),建筑面积约为2896.08平方米;地下车库一约24031.52平方米。
本工程基础类型:筏板基础、条形基础;结构类型:钢筋混凝土剪力墙结构,设计使用年限为50年;抗震设防烈度:8度;防水等级:屋面I级、地下II级;合同质量等级:合格。
建设单位:怀来京御房地产开发有限公司设计单位:廊坊轩辕建筑设计有限公司勘察单位:张家口市京北岩土工程有限公司监理单位:河北方舟工程项目管理有限公司施工单位:江苏标龙建设集团有限公司工程地点:本工程位于河北省张家口市怀来县新兴产业园内,南临葡萄大道。
2.监测项目2.1监测项目及工作量根据《建筑基坑工程监测技术规范》规定,基坑开挖深度超过5m、或开挖深度未超过5m但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程监测。
本工程开挖深度超过5米深的基坑分别是:S1-S9#楼、T7-T8#楼;人防车库、普通车库一;属于深基坑范围;其中T8/S9需换填,换填开挖深度分别为8.6m和8.61m;T8#楼距离临近建筑T7:15.6m;S9:37.62m;S9#楼距S25:13.7m; S8:32.4m,上述开挖深度超过5m基坑采取监测措施。
2.2监测工期本工程监测工期为整个基坑工程施工至主体建筑出±0后一个月,暂定为五个月。
3.基坑监测项目管理机构项目组织机构见图3.1。
图3.1项目组织机构图3.1项目组责任划分及成员选用原则3.1.1 项目组责任划分(1)项目经理:全面负责本项目的管理工作,组织编写项目实施计划、质量计划、经费预算;在批准的项目计划范围内,负责项目的技术决策、工作安排和资金的使用与调配,监督控制项目进度、质量与投资。
负责其它应负责完成的工作。
(2)技术负责:负责本项目所有有关技术方面问题的把关和处理,负责监测数据、资料审核。
(3) 综合部:项目内外事务管理接洽、后勤服务保障、场内车辆调度管理制订、健全有关规章制度并组织实施和执行;妥善处理来往信件和接待事务;负责各类会议组织和准备工作,做好相关会议纪要,协助领导落实会议确定的事项;技术资料和文件的分类、建档管理工作,并做好重要资料的保密工作;负责仪器采购、保管、领用等工作。
(4)工程部:协调人员和施工设备、材料进入工地,按施工总进度要求完成施工准备工作;按照监理人发出的与合同有关的指示,按合同规定的内容和时间完成全部属于本专业的工作,并密切配合和协助其它专业;按照国家现行的技术标准和规范规程的要求、合同规定的程序和要求对已埋设的仪器设备进行监测测试,记录全部原始观测数据;充分发挥专业群体的技术和组织优势,做好事先指导、中间检查和实施完成全过程的技术质量管理;及时对观测资料进行整理分析,按时提供观测月报、和各阶段的分析报告。
3.1.2 项目成员选用原则(1)项目经理具有丰富的安全监测工程实施、监测及资料整理工作经验。
(2)挑选具有丰富操作经验的工程技术人员直接在现场负责组织指导和监督监测项目的土建、全部仪器(含数据采集仪器)的采购、埋设安装、电缆敷设、设备调试、监测及资料整理等项工作。
(3)所有的工作人员均有高度的责任心和质量意识,并会密切配合监理人的工作。
(4)派遣具有丰富操作经验的安全监测、机械、测量专业人员。
所有观测专业人员在类似工程中负责过安全监测设备的安装与调试工作,具有一定的实践经验和理论知识,并能按施工图纸要求,对监测设备的选购、测试、安装、观测和维护提供技术服务。
3.2设备配置表4. 执行规程、规范及监测流程4.1执行规范、标准及文件(1)《建筑基坑工程监测技术规范》(GB50497-2009).4.2监测前准备监测工作开始之前,对工程场地周围建筑物和有关设施的现状开展等情况进行详细调查并详细记录。
设制基准点,数量为3个,并测定其坐标且进行正常保护,确保其在整个施工期间正常使用。
4.3监测工作基本流程为保障监测工作的系统性, 使之能及时反馈基坑和周边环境的安全状态,监测和施工的配合一般按以下工作流程进行,其流程图见图4.3.1。
图4.3.1基坑监测流程图5. 基坑支护监测方法5.1 基点布设5.1 基点布设(1)观测基点根据现场情况设在变形区域以外,位置稳定、易于长期保存的地方,共3个。
观测基点为现浇钢筋混凝土墩,安装强制对中基座,材质不锈钢,最大对中误差0.05mm,混凝土强度为C20,工作基点墩平面图见图工作基点墩平面图(2)基坑周边地表及基坑边坡变形观测点为钢制观测标志,连接杆打入地下深度不小于300mm。
(3)基坑周边建筑物、道路、管线变形观测标志采用冲击钻安装金属观测标志。
5.2 水平位移观测5.2.1 监测部位监测部位:边坡顶部。
5.2.2 监测方法(1)采用平面导线测量,以基点A和B为坐标起算点,通过测量距离、方位角等参数,求出各点位的坐标,平差后计算得到桩顶水平位移值。
在基坑开挖前采集坐标点初始值,开挖全过程进行跟踪监测。
水平位移测试示意图如图5.2.1:图5.2.1 水平位移测试示意图 (2) 每次观测前按技术要求对仪器进行检查和校正,观测固定测量人员,测量仪器和固定路线的要求进行,以保证观测结果精确。
(3)测量精度控制依据《建筑基坑工程监测技术规范》(GB50497-2009)相关规定,本工程水平位移监测精度要求为:5.3 5.3.1 监测部位监测部位:边坡顶部。
5.3.2 监测方法(1) 根据埋设好的基准点,施测一条闭合路线建立初始数据。
(2) 每次观测前按技术要求对仪器进行检查和校正,观测固定测量人员,固定测量仪器和固定路线的要求进行,以保证观测结果精确。
(3)沉降观测工作采用精密几何水准测量方法进行,观测过程中,各项偏差控制及内业数据处理均按照国家《建筑基坑工程监测技术规范》中各项规定执行。
(4)测量精度控制依据《建筑基坑工程监测技术规范》(GB50497-2009)相关规定,本工程竖向位移监测精度要求为:5.4 巡视监测5.4.1 支护结构(1)支护结构成型质量;(2)土体有无沉陷、裂缝及滑移;(3)基坑有无涌土、流砂、管涌。
5.4.2 施工工况(1)开挖后暴露的土质情况与岩土勘察报告有无差异;(2)基坑开挖分段长度及分层厚度是否与设计要求一致,有无超长、超深开挖;(3)场地地表水、地下水排放状况是否正常,基坑降水、回灌设施是否运转正常;(4)基坑周围地面堆载情况,有无超堆荷载。
5.4.3 基坑周边环境(1)地下管道有无破损、泄露情况;(2)周边建(构)筑物有无裂缝出现;(3)周边道路(地面)有无裂缝、沉陷;(4)邻近基坑及建(构)筑物的施工情况。
5.4.4 监测设施(1)基准点、测点完好状况;(2)有无影响观测工作的障碍物;(3)监测元件的完好及保护情况。
5.4.5 检查方法巡视检查的检查方法以目测为主,可辅以锤、钎、量尺、放大镜等工器具以及摄像、摄影等设备进行;巡视检查应对自然条件、支护结构、施工工况、周边环境、监测设施等的检查情况进行详细记录;如发现异常,应及时通知委托方及相关单位;巡视检查记录应及时整理,并与仪器监测数据综合分析。
6 .监测频率、报警值6.1 监测频率基坑工程监测工作贯穿于基坑工程和地下工程施工全过程。
监测工作从基坑工程施工前取得初始数据,直至地下工程完成为止。
监测项目的监测频率考虑基坑工程等级、基坑及地下工程的不同施工阶段以及周边环境、自然条件的变化。
当监测值相对稳定时,可适当降低监测频率。
对于本基坑工程而言,安全等级为一级,基坑的监测项目在无数据异常和事故征兆的情况下,开挖后基坑及支护结构监测频率见表6.1。
基坑及支护结构监测频率表表6.1.1报告监测结果:(1)监测数据达到报警值;(2)监测数据变化量较大或者速率加快;(3)存在勘察中未发现的不良地质条件;(4)基坑及周边大量积水、长时间连续降雨、市政管道出现泄漏;(5)基坑附近地面荷载突然增大或超过设计限值;(6)支护结构出现开裂;(7)周边地面出现突然较大沉降或严重开裂;(8)邻近的建(构)筑物出现突然较大沉降、不均匀沉降或严重开裂;(9)基坑底部、坡体或支护结构出现管涌、渗漏或流砂等现象;(10)出现其他影响基坑及周边环境安全的异常情况。
此外,当有危险事故征兆时,进行实时跟踪监测。
6.2 报警值的确定原则(1)满足设计计算的要求,不可超出设计值;(2)满足测试对象的安全的要求,达到保护的目的;(3)考虑环境和施工因素的影响;(4)满足各保护对象的主管部门提出的要求;(5)满足现行规范、规程的要求;(6)在保证安全的前提下,综合考虑工程质量和经济因素,减少不必要的资金投入。