机械设计课件PPT
第二章机械设计总论PPT课件
![第二章机械设计总论PPT课件](https://img.taocdn.com/s3/m/6220a3a0de80d4d8d05a4f17.png)
轿车组成:
18.07.2020
10
什么是机械设计? 机械设计是一个工作过程。
18.07.2020
11
根据社会需求确定设计任务
构思 决策 分析 计算 绘图
机械的 工作原理
机械的
各个零件的
运动和力的
结构 材料、形状、尺寸 传递方式
外观
18.07.2020
设计计算书
全套图样
使用说明书 12
机械设计的基本要求
机械的功能指标是机械设计最基本的出发点。
18.07.2020
16
2.可靠性要求
机械要传递 力和力矩
机械零件的内部和表 面产生应力和变形
有可能导致 零件的失效
18.07.2020
磨损 曲轴折断齿轮Βιβλιοθήκη 坏潘存云教授研制17
机械应能保证在规定的使用寿命期限内,零件 不发生各种型式的失效。
为此要进行强度、刚度和寿命的计算,这些计 算在整个设计工作量中占了很大的比例。
连杆机构
特定轨迹
7
别控各是制部随控装分着制置的2理0的运世论作动纪的用。后发是半展控叶和制以计机来算器现机代在科工学业技上术的的应发用展,,机特器
的组成更复杂了。
发出指 令调节 伺服电 机的运 动
传 感
驱动装置 器 传动装置
检测伺服电机 的输出转角
执行装置
传 感
器
检测执行装置 的运动输出
控制装置
由程序给定 运动规律
磁铁
18.07.2020
比重不同
重选
磁性不同
磁选
对特定液体泡沫的 吸附性不同
浮选 25
螺纹加工的工作原理
选矿机械的工作原理
机械设计基础知识培训课件(PPT102页)
![机械设计基础知识培训课件(PPT102页)](https://img.taocdn.com/s3/m/7aef1732011ca300a7c39032.png)
③如果四杆中有两个构件长度相等且均为最短,若另 两杆长度不相等,则不存在整转副; 若两杆长度也相等, 则两最短杆相邻时,有三个整转副, 当两最短杆相对时, 有四个整转副。
平面四杆机构的设计
内容
3.1 平面四杆机构的类型及其应用
一、基本概念
1、铰链四杆机构: 全部用转动副相连的平面四杆机构。它是平面四杆 机构的基本型式,其它型式的四杆机构可看作是在它 的基础上通过演化而成的。
2、机架:机构的固定构件,如杆4 。 3、连杆:不直接与机架连接的构件,如杆2。 4、连架杆:与机架用转动副相连接的构件,如杆1、3 。
ad bc ①
b (d a) c c (d a) b
整理得 a b c d ②
acd b ③
将式①、②、③中的三个不等 式两两相加,化简后得④
a a
b c
④
a d
曲柄存在条件: ① 最短杆与最长杆长度之和小于或等于其余两杆长度之和; ② 连架杆与机架中必有一杆为最短杆。
若不满足①? 该机构只能是双摇杆机构。
判断由不同杆作机架时四杆机构属于哪种机构
a、b、c、d
Y
ad bc
N 双摇杆机构
以最短杆相邻杆为机架 以与最短杆相对的杆为机架
以最短杆为机架
曲柄摇杆机构 双摇杆机构 双曲柄机构
铰链四杆机构必须满足四构件组成的封闭多边形条件:
最长杆的杆长<其余三杆长度之和。
推论:
①如果四杆长度不满足杆长条件,则机构无周转副, 此时不论取哪个构件为机架,机构均为双摇杆机构;
机械设计全套课件 ppt课件
![机械设计全套课件 ppt课件](https://img.taocdn.com/s3/m/3685002c910ef12d2af9e7df.png)
凡具备上述(1)、(2)两个特征的实物组合体称为机构。 机器能实现能量的转换或代替人的劳动去做有用的机械功,而 机构则没有这种功能。
仅从结构和运动的观点看,机器与机构并无区别,它们 都是构件的组合,各构件之间具有确定的相对运动。因此,通 常人们把机器与机构统称为机械。
ppt课件
7
机械设计基础
绪论
如图1-1所示的内燃机,
图1-5(a)闭式运动链
机械设计基础
ppt课件
图1-5(a)开式运动链
16
• 将运动链中的一个构件固定,并且它的一个 或几个构件作给定的独立运动时,其余构件 便随之作确定的运动,此时,运动链便成为 机构。
• 机构的组成:
• 机 架:固定不动的构件
• 原动件:输入运动的构件
• 从动件:其余的活动构件
1)运动副:两构件之间直接接触并能产生一定的相对
运动的连接称为运动副。
运动副元素:两构件上直接参与接触而构成运动副的部分— —点、线或面。
2) 运动副的分类
平面
运 运动副 动 副
空间 运动副
机械设计基础
高副:点、线接触 低副:面接触
球面副 螺旋副
ppt课件
运动副 转动副
13
图1-2 转动副
图1-3 移动副
是由汽缸体1、活塞2、连杆3、曲轴4、 小齿轮5、大齿轮6、凸轮7、推杆8等系列 构件组成,其各构件之间的运动是确定的。
0.1.2 构件与零件
机构是由具有确定运动的单元体组成的,这 些运动单元体称为构件。
组成构件的制造单元体称为零件。 零件则是指机器中不可拆的一个最基本的 制造单元体。构件可以由一个或多个零件组成。
ppt课件
20
机械设计基础
机械设计基础全套ppt课件
![机械设计基础全套ppt课件](https://img.taocdn.com/s3/m/a9680120571252d380eb6294dd88d0d233d43c9a.png)
机械设计基础全套ppt 课件•机械设计概述•机械零件设计基础•传动系统设计•轴系零部件设计目录•连接与紧固件设计•液压与气压传动系统设计•现代设计方法在机械设计中的应用机械设计概述01机械设计定义与分类•机械设计的定义:根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算并将其转化为具体的描述以作为制造依据的工作过程。
•新型设计:应用成熟的科学技术或经过实验证明是可行的新技术,设计过去没有过的新型机械。
•继承设计:根据使用经验和技术发展对已有的机械进行设计更新,以提高其性能、降低其制造成本或减少其运用费用。
•变型设计:为适应新的需要对已有的机械作部分的修改或增删而发展出不同于标准型的变型产品。
机械设计原则技术性能准则:技术性能包括产品功能、制造和运行状况在内的一切性能,既包含静态性能,又包含动态性能。
经济性准则:提高设计经济性的途径有:选择适当的设计准则,避免或减小过剩设计;采用现代设计方法,合理地设计零部件或系统;设计高效率的零部件;提高制造精度,采用可靠性设计,优化产品设计结构,减少维修频次和维修量,延长产品寿命。
可靠性准则可靠性是指产品在规定的使用条件下,在预期的使用寿命内,完成规定功能的能力。
可靠性不仅与产品有关,还与产品的使用有关。
安全性准则安全性指产品在流通和使用过程中,有关危害人身安全与健康的风险大小。
经验设计根据已有的经验公式或设计者本人的工作经验,或借助类比方法所进行的设计。
它主要适用于使用要求不大变动而结构形状已典型化的零部件。
理论设计依靠现有的科学理论和试验数据所进行的设计。
它是一种定量设计,凡属重要和大型的结构均应采用理论设计。
类比设计应用类比推理方法进行的设计。
它适用于有定型产品的零部件和工艺装备的设计,特别适用于对系列产品的改进和新产品的开发。
绿色是从环境保护领域中引用来的,人类社会的发展必将走向人类社会与自然界的和谐。
机械设计基础ppt课件完整版
![机械设计基础ppt课件完整版](https://img.taocdn.com/s3/m/48eaa6b2fbb069dc5022aaea998fcc22bcd1439c.png)
齿轮传动设计
选择合适的齿轮类型和材料; 确定齿轮模数、齿数和压力角 ;进行齿轮的强度校核和优化 设计。
链传动设计
选择合适的链型和链轮材料; 确定链轮齿数、链节距和中心 距;进行链的张紧和调整。
液压传动设计
选择合适的液压泵和液压马达 ;确定系统工作压力和流量;
进行系统布局和管道设计。
04
液压与气压传动设计 基础
精度设计的意义
确保产品性能和质量,提高生产效率,降低成本,增强产品竞争力。
公差配合的原理与方法
公差配合的定义
公差配合是指通过合理确定零部 件的尺寸公差和配合公差,保证 零部件在装配和使用过程中具有 互换性、稳定性和可靠性的过程
。
公差配合的原理
基于互换性、稳定性和可靠性的 要求,通过尺寸链的计算和公差 分配,实现零部件之间的精确配
机械零件的强度与刚度设计
强度设计
根据零件的受力情况和材料性能,进 行应力分析和强度校核,确保零件在 正常工作条件下不会发生破坏。
疲劳强度设计
针对承受交变应力的零件,进行疲劳 强度分析和设计,提高零件的疲劳寿 命。
刚度设计
考虑零件的变形对机器性能的影响, 进行刚度分析和校核,保证零件的变 形在允许范围内。
液压与气压传动的原理与特点
液压传动原理
利用液体的压力能进行动力传递。
气压传动原理
利用气体的压力能进行动力传递。
液压传动的特点
传动平稳、调速方便、易于实现自动化等。
气压传动的特点
动作迅速、反应快、维护简单等。
液压与气压传动的设计方法与步骤
设计方法
根据实际需求选择合适的传动方式, 进行系统设计。
设计步骤
07
机械设计中的创新方 法与实例
机械设计课件(完整版本)
![机械设计课件(完整版本)](https://img.taocdn.com/s3/m/406821cf0c22590102029d70.png)
如图2-10所示,取D’点坐标 为(0/2=383, 0/2=383),A’
点坐标为(0, -1=460)。过C
点(s=920, 0)与横坐标成
m
C
135 作直线,与AD的延长
线相交于G’,则直线化的
极限应力图为A’D’G’。
§3-2 机械零件的疲劳强度计算
一、零件的极限应力线图
σa
由于材料试件是一种特殊 σ-1 A‟ D‟ G‟ 的结构,而实际零件的几何 σ -1e A D G 形状、尺寸大小、加工质量 及强化因素等与材料试件有 45˚ 区别,使得零件的疲劳极限 要小于材料试件的疲劳极限。 o σ0 /2 σS 设材料的对称循环弯曲疲 劳极限为: σ-1 零件的对称循环弯曲疲劳极限为:σ-1e 1 定义弯曲疲劳极限的综合影响系数Kσ : K
(1)一个;(2)两个;(3)三个;(4)四个。
来描述。
6、图示各应力随时间变化的图形分别表示什么类型的应力?它们的 应力比分别是多少?
max t
0
max
t 0
a mi
n
m
a) max m t
b)
0 m=0 d) max a t
a 0 min= 0
c)
解:a)静应力r=1;b)非对称(或稳定)循环变应力 0< r <+1; c)脉动循环r = 0;d)对称循环r=-1。
2
变应力的循环特性: -1 ----对称循环变应力 0 ----脉动循环变应力 r min = max +1 ----静应力
σ σmax o 循环变应力 T σa
静应力是变应力的特例
σ =常数 o t σmax to r =0 σa
机械设计 机械设计总论PPT课件
![机械设计 机械设计总论PPT课件](https://img.taocdn.com/s3/m/c3805bb084254b35eefd34ea.png)
§2-1 机器的组成 §2-2 设计机器的一般程序 §2-3 对机器的主要要求 §2-4 机械零件的主要失效形式 §2-5 设计机械零件时应满足的基本要求 §2-6 机械零件的计算准则 §2-7 机械零件的设计方法 §2-8 机械零件设计的一般步骤 §2-9 机械零件材料的选用原则 §2-10 机械零件设计中的标准化 §2-11 机械现代设计方法简介
塑性变形实例
塑性变形实例
三、表面损伤
绝大多数零件都与别的零件发生静的或 动的接触和配合关系或暴露在空气中。
大多数失效出现在零件表面。 零件的使用寿命在很大程度上受到表面
损伤的限制。
齿面磨损实例
磨损轴瓦
轴瓦磨损
四、破坏正常工作条件引起的失效
有些零件只有在一定的工作条件下才能正常工作, 正常工作条件被破坏了,零件就不能工作,也就 失效了。
[X]表示许用应力,可为[]、[t]等。
Y表示极限应力,可为s、b、-1e、Hlim。
许用安全系数的选择
合理地选择许用安全系数[S]是机械设计中的一项重 要工作。
设计人员的任务在于:在保证零件工作安全可靠的 前提下,尽可能减少许用安全系数的数值,或者说 尽可能提高许用应力的数值。
影响许用安全系数(或许用应力)数值大小的因素 主要有:
第一节 机器的组成 第一节机器的组成
人们为了满足生产和生活的需要,设计和制造了类型繁多、功 能各异的机器。
一台完整的机器的组成大致可包括:
润滑、显示、照明等辅助系统
原动机部分
传感器
传动部分
传感器
执行部分
传感器
控制系统
第二节 设计机器的一般程序
机械设计有一个一
设计任务的研究和制订
机械设计课件ppt
![机械设计课件ppt](https://img.taocdn.com/s3/m/65f1f79b27fff705cc1755270722192e4436584c.png)
机械设计的重要性
机械设计对于工业制造、工程应用、 科研开发等领域具有重要意义,是实 现产品创新、提高产品质量和降低成 本的关键环节。
机械设计不仅决定了机器或设备的性 能、可靠性和寿命,还直接影响到生 产成本和市场竞争。
机械设计的基本步骤
初步设计
制定设计方案,进行必要的技 术和经方案的有效性和可靠性。
结构设计
根据详细设计,进 行机器的结构设计 。
需求分析
根据实际需求,分 析机器的功能和性 能要求。
详细设计
根据总体方案,对 每个零件进行详细 设计。
性能测试
对机器进行性能测 试,验证其是否满 足设计要求。
机械系统的优化设计
优化目标
机械系统的优化设计旨在寻找最优的设计方 案,以满足机器的功能和性能要求。
05 材料选择与处理
材料的基本性能
力学性能
包括强度、硬度、韧性、塑性等,影响机械零件的承载能力和使用 寿命。
物理性能
如密度、导热性、导电性等,影响机械零件的重量、热量传导和电 磁性能。
化学性能
如耐腐蚀性、抗氧化性等,影响机械零件的稳定性和寿命。
材料的选用原则
满足使用要求
根据机械零件的工作环境和性能要求,选择 具有相应特性的材料。
考虑加工工艺
不同的材料具有不同的加工特性,应结合制 造工艺选择合适的材料。
降低成本
在满足使用要求的前提下,选用价格低廉、 资源丰富的材料。
材料处理技术
热处理
通过加热和冷却等工艺,改变材料内部的组 织结构,以达到改善材料性能的目的。
表面处理
通过涂层、镀层、氧化等工艺,改变材料表面的性 质,以提高其耐磨性、耐腐蚀性和美观度。
式可以延长轴承的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
max min
2
应力幅:
a
max min
2
变应力的循环特性:
σ
-1 = r min 0
+1 max
T σ
σa σa σmax σmin σm
o 循环变应力
----对称循环变应力 ----脉动循环变应力
----静应力 o
σ=常数
t
σ
r =+1 σ
r =0
r =-1
σmax
σa
σmax
▲ 断裂面累积损伤处表面光滑,而折断区表面粗糙。 5
二、 -N疲劳曲线
σmax
通过实验,可得出如图所示: σB 在一定应力比下,疲劳极限
AB C
σmax与循环次数之间的关系的 疲劳曲线。称为:
-N疲劳曲线
N
103 104
1. 在原点处,意味着在加载 σ
到最大值时材料被拉断。显
然该值为强度极限σB 。
▲零件表层产生微小裂纹; ▲随着循环次数增加,微裂
纹逐渐扩展; ▲当剩余材料不足以承受载
荷时,突然脆性断裂。
表面光滑 表面粗糙
疲劳断裂是与应力循环次数(即使用寿命)有关的断裂。 疲劳断裂具有以下特征:
▲ 疲劳断裂的最大应力远比静应力下材料的强度极限 低,甚至比屈服极限低;
▲ 疲劳断口均表现为无明显塑性变形的脆性突然断裂; ▲ 疲劳断裂是微观损伤积累到一定程度的结果。
力作用之后,总会发生疲劳破坏。而D点以后,如果作
用的变应力最大应力小于D点的应力(σmax<σr), 则无论循环多少次,材料都不会破坏。
CD区间-----有限疲劳寿命阶段 D点之后----无限疲劳寿命阶段
8
高周疲劳
例 3.1 某钢材的对称循环弯曲疲劳极限 1 275MPa ,屈服极限
s 355MPa ,循环基数 N0 107 ,寿命指数 m 9 ,试求循环次数 N
1
1N3 KN3 1 1 275 275MPa
10
三、等寿命疲劳曲线 1. 定义 材料的疲劳极限曲线也 应力幅
可用在特定的应力循环次数N下,极 σa 限平均应力和应力幅之间的关系曲 线来表示,特称为等寿命曲线。 σ-1
实际应用时常有两种简化方法。
σa
σa
σm σS 平均应力
σ-1
σS 简化曲线之一
分别为105 , 5106 ,108 次时相应的寿命系数 KN 和疲劳极限 1N 。
解 由题意知
KN1 m
N0 N1
9
107 105
1.67
1N1 KN1 1 1.67 275 459MPa
9
因 N3 108 N0 107 , 故应取 N3 107 。
KN3 m
N0 N3
107 9 107
σa σa
σmin
σa
σm
to
t o σmin
t
对称循环变应力
3
脉动循环变应力
对称循环变应力: m 0, a max 1
脉动循环变应力:
m
a
0
2
注:循环变应力可用max 、 min 、
m 、 a 、 这五个参数中的任意两个参 数表示。
4
变应力下,零件的损坏形式是疲劳断裂。
疲劳断裂过程:
力时的材料常数,其值由试验及下式决定:
2 1 0 0
对于碳钢,σ≈0.1~0.2,对于合14 金钢,σ≈0.2~0.3。
例题:绘制某碳钢的材料极限应力图。 已知: σS=350MPa, σ-1=275MPa, =0.05。 例题:习题3-2
15
§3-2 机械零件的疲劳强度计算 一、零件的极限应力线图
t
2. 在AB段,应力循环次数<103
σmax变化很小,可以近似看作为 静应力强度。
3. BC段,N=103~104,随着N ↑ →σmax ↓,疲劳现象明显。
因N较小,特称为: 低周6疲劳。
4. 实践证明,机械零件的疲劳 σmax
大多发生在CD段。
σB
AB C
可用下式描述:
m rN
N
C (NC
N
ND)
σrN σr
D
D点以后的疲劳曲线呈一水 平线,代表着无限寿命区其
N=1/4
103 104 N
N0≈107
N
方程为:
rN r (N ND ) σr∞-持久疲劳极限。
由于ND很大,所以在作疲劳试验时,常规定一个循 环次数N0(称为循环基数),用N0及其相对应的疲劳极 限σr来近似代表ND和 σr∞。
13
① 当工作应力参数( σm,σa )落在OA’G’C以内
时,表示不会发生破坏。
σa
②当工作应力点落在OA’G’C以
外时,一定会发生破坏。
A’
D’ G’
σ-1 σ0 /2
③而正好落在A’G’C折线
上时,表示应力状况达到 疲劳破坏的极限值。
45˚
45˚
σm
O σ0 /2
C
σS
公式 1 a m 中的参数σ为试件受循环弯曲应
于是有:
m rNΒιβλιοθήκη Nm rN
0
C
7
CD区间内循环次数N与疲
σmax
劳极限rN的关系为:
σB
AB C
m
rN r
N0 N
N
r rN
m
N0
σrN σr N=1/4 103 104 N
D N
N0≈107
r、N0及m(材料常数,钢取6-20)的值由材料试验确定。
试验结果表明在CD区间内,试件经过相应次数的应
D’ (σ0 /2,σ0 /2)两点坐标,求得A‘G’直线的方
程为:
1 a m
A’G’直线上任意点代表了一定循环特性时的疲劳极
限。
CG’直线上任意点N’ 的坐标为(σ’m ,σ’a )
由∆中两条直角边相等可求得 CG’直线的方程为:
'max a m s 说明CG‘直 线上任意点的最大应力达到了屈服极限应力。
设材料的对称循环弯曲疲劳极限为: σ-1
零件的对称循环弯曲疲劳极限为:σ-1e
定义弯曲疲劳极限的综合影响系数K
K
1 1e
※在不对称循环时,Kσ是试件与零件极限应力幅的比值。
16
K
1 1e
σa
1e
1 K
1e
1
K
A´
σ-1 σm
11
45˚
σm
σS
简化曲线之二
2. 简化等寿命曲线(极限应力线图-材料的)
σa
A´
a m 1 D´ G´ m a S
σ0/ 2
45°
O σ0/ 2 σS
45°
C
σm
材料的极限应力线图
12
对称循环: σm=0 脉动循环: σm=σa =σ0 /2
已知A’(0,σ-1)
机械设计
Machine Design
机电工程系
王会
1
内容提要
第三章 机械零件的强度
§3-1 材料的疲劳特性 §3-2 机械零件的疲劳强度计算 §3-3 机械零件的抗断裂强度 §3-4 机械零件的接触强度
2
§3-1 材料的疲劳特性
一、应力的种类
静应力: σ=常数 变应力: σ随时间变化
平均应力:
m