实验四 四位二进制全加器

合集下载

实验四 四位二进制全加器

实验四  四位二进制全加器
图8-2
3.实验设备及材料
2.SAC-DS4数字逻辑电路实验箱 1个
3.万用表1块
4.74LS283 四位二进制全加器1片
4.实验方法步骤及注意事项
用开关按表8-1设置输入A1-A4、B1-B4、C0的状态,借助指示灯观测输出F1-F4、C4的状态,并记入表8-1中。
表8-1
输 入
输 出
A4A3A2A1
本科学生实验报告
学号姓名
学院物理与电子信息学院专业、班级10物理A
实验课程名称数字电路技术试验
教师及职称张超(讲师)
开课学期2012至2013学年上学期
填报时间2012年09月日
云南师范大学教务处编印
实验序号
4
实验名称
四位二进制全加器
实验时间
2012.10.9
实验室
同析3幢215
一.实验预习
1.实验目的
2、74LS283四位全加器特性函数
教师评语及评分:
签名:年月日
B4B3B2B1
C0
F4F3F2F1
C4
0 0 0 1
0 0 0 1
1
0 1 0 0
0 0 1 1
0
1 0 0 0
0 1 1 1
1
1 0 0 1
1 0 0 0
0
1 0 1 1
0 1 0 1
1
1 1 0 0
0 1 1 0
0
1 1 0 1
0 1 0 0
1
1 1 1 1
1 1 1 1
0
利用开关输入BCD码,借助指示灯观测输出的余3码,填入表8-2中。
0 1 0 1
0 0 1 1
0 1 1 0

四位二进制全加器设计

四位二进制全加器设计

四位二进制全加器设计(总3页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除组合逻辑电路课程设计题目:用74ls283构成四位二进制全加/减器一、设计思路74ls283为四位加法器,而如果希望进行减法运算,则需要将其转化为加法,而之前学到,二进制运算,一个数减去另一个数,即等于加上其补码。

于是得到如下公式,A-B=A+(-B)=A+B’+1。

将其全部视为加法运算,即一个数加上一个正数或者一个负数,这个数为加数B。

那么,需要将加数增添一位符号位,以区分正负。

因为74ls283芯片的引脚为低位向正在运算的数的进位,所以可以将其作为加数的符号位。

当其为正数时,输入为0,即计算A+B。

而当加数为负数时候,使其输入为1,并将B取反,再加上进位1,正好与公式相符。

根据以上原理,应用输入作为符号位,进行4位被加(减)数与5位加(减)数的加法运算。

设A3-A0为被加(减)数,B3-B0为加(减)数,M0为符号位。

当M0为0时表示正数,为1时表示负数。

而当B为负数需要取反时,刚好可以利用异或门的特性来进行,即1异或B等于B’,0异或B等于B即将B的各个数位和M0通过异或门相连,即可以做到负数取反。

二、电路图如图,输入输出ABC都用LED来指示二进制的数值,开关S2控制A的数值,S1控制B的数值以及符号位。

BX1指示灯指示的是输入B经过异或门作用后的电平。

三、由于此电路进行的是加法运算,两个加数一共2的9次方中组合,所以真值表又多又显而易见,此处将不给出。

四、举例演示:(1)5+6=11如图拨动开关,A=5,B=6,可见C为11的二进制表示1011。

(2)7-3=4如图,将M0置为1以表示负数。

BX1表示的是3的反码,在74283中进行了加1的运算即变成了补码,输出结果为0100(2)=4(10)(3)1000+1000=10000由于输出只有四位,而1000+1000会产生进位。

四位全加器实验Verilog

四位全加器实验Verilog

实验四四位全加器一、实验目的l. 用组合电路设计4位全加器。

2.了解Verilog HDL语言的行为描述的优点。

2、实验原理4位全加器工作原理1)全加器除本位两个数相加外,还要加上从低位来的进位数,称为全加器。

被加数Ai、加数Bi从低位向本位进位Ci-1作为电路的输入,全加和Si与向高位的进位Ci作为电路的输出。

能实现全加运算功能的电路称为全加电路。

全加器的逻辑功能真值表如表中所列。

2)1位全加器一位全加器(FA)的逻辑表达式为:S=A⊕B⊕Cin;Co=AB+BCin+ACin其中A,B为要相加的数,Cin为进位输入;S为和,Co是进位输出;这两幅图略微有差别,但最后的结果是一样的。

3)4位全加器4位全加器可看作4个1位全加器串行构成, 具体连接方法如下图所示:采用Verilog HDL语言设计该4位全加器,通过主模块调用子模块(1位全加器)的方法来实现。

3、实验步骤四、实验连线K1-K4:14-11K5-K8:18-15L5-L8:7-10VIJN:83L4:64KHZ:805、心得体会首先,实现这一段全加器代码并不难,但是由于困惑给的三个时钟输入,没有太懂意思,所以只写了全加器控制LED灯的代码;后来问清楚后,运行全加器代码,有错误,原来是建文件时用的是verilog hdl,我建的是其他类型的;后来还有错,原来是把冒号打成分号;编译成功后,LED不亮,后来发现是硬件老化,换了箱子。

这一部分做好后,我准备把控制声音的加上去,本来准备再加一个模块,可是不能有两个顶层块,就对主模块做了补充,用case命令调用不同的状态,因为时间紧迫,所以代码写得比较简单,没有用经典的分频代码。

这里附一小段,是我在研究分频控制时看懂的网上的经典分频代码,适合乐曲自动播放等高级的实现,仅供分享assign preclk=(divider==16383)?1:0;//divider==16383,preclk=1always @(posedge clk) //基频上升沿触发beginif(preclk) //preclk=1divider=origin;elsedivider=divider+1;endalways @(posedge preclk) //调整占空比beginspeaker=~speaker; //2 分频产生方波信号end这部分实现了分频功能,其中origin+divider=16384=2^14,这个数根据自己的需要而定。

四位全加器实验报告

四位全加器实验报告

武汉轻工大学数学与计算机学院《计算机组成原理》实验报告题目:4位二进制计数器实验专业:软件工程班级:130X班学号:XXX姓名:XX指导老师:郭峰林2015年11月3日【实验环境】1. Win 72. QuartusII9.1计算机组成原理教学实验系统一台。

【实验目的】1、熟悉VHDL 语言的编写。

2、验证计数器的计数功能。

【实验要求】本实验要求设计一个4位二进制计数器。

要求在时钟脉冲的作用下,完成计数功能,能在输出端看到0-9,A-F 的数据显示。

(其次要求下载到实验版实现显示)【实验原理】计数器是一种用来实现计数功能的时序部件,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时兼有分频功能。

计数器由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS 触发器、T 触发器、D 触发器及JK 触发器等。

计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。

计数器按计数进制不同,可分为二进制计数器、十进制计数器、其他进制计数器和可变进制计数器,若按计数单元中各触发器所接收计数脉冲和翻转顺序或计数功能来划分,则有异步计数器和同步计数器两大类,以及加法计数器、减法计数器、加/减计数器等,如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等差别,按权码来分,则有“8421”码,“5421”码、余“3”码等计数器,按集成度来分,有单、双位计数器等等,其最基本的分类如下:计数器的种类⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧进制计数器十进制计数器二进制计数器进制可逆计数器减法计数器加法计数器功能异步计数器同步计数器结构N 、、、321 下面对同步二进制加法计数器做一些介绍。

同步计数器中,所有触发器的CP 端是相连的,CP 的每一个触发沿都会使所有的触发器状态更新。

四位二进制超前进位全加器

四位二进制超前进位全加器

•超前进位加法原理
A0 B0
C-1 A0 B0 A1 B1
C-1 A0 A1B0 B1 A2 B2 C-1 A0 A2 B0 B2 A3 B3 C-1 A0 A3 B0 B3
……


0 C-1 FA0
C0 进位逻辑
C0 FA1
C1 进位逻辑
C1 FA2
C2 进位逻辑
C2 FA3
C3 进位逻辑 C3
S0
0
C0
C1
C2
C3
C-1
FA0
FA1
FA2
FA3
S0
S1
S2
C3
S3
CO ∑
CI CI
CI
A3 B3
C2
S2
CO ∑
CI CI
CI
A2 B2C1S1Fra bibliotekCO ∑
CI CI
CI
A1 B1
所求结果为:C3S3S2S1S0
S3
C0
S0
CO ∑
CI CI
CI
A0 B0
C0-1
超前进位全加器-----74LS283
S1
S2
S3
• 进位输入是由专门的“进位逻辑门”来提供 • 该门综合所有低位的加数、被加数及最低位进位输入
超前进位加法器使每位的进位直接由加数和被加数产生, 而无需等待低位的进位信号
Si Ai Bi Ci1 Ci Ai Bi AiCi1 BiCi1
定义两个中间变量Gi和Pi : Gi= AiBi ……产生变量 Pi= Ai+Bi ……传输变量 Ki= GiPi = Ai ⊕Bi ……中间变量
全加器真值表
输入端:Ai、Bi、Ci-1

四位二进制加法器的设计

四位二进制加法器的设计

长安大学电子技术课程设计四位二进制加法器专业班级姓名指导教师日期四位二进制加法器一、技术要求(1)四位二进制加数与被加数输入(2)二位数码管显示二、摘要理论上,由二进制数算法的运算可知,加、减、乘、除运算都可分解成加法进行运算,而实际上,为了减少硬件复杂性,这些运算基本上也是通过加法来实现的。

此次设计的是简单的四位二进制加法器。

设计中通过不断改变脉冲信号,来控制数码管的显示。

本次设计选择一个超前进位的4位全加器74LS283。

译码器选择五输入八输出的译码器,用二位数码管显示,采用七段显示译码器。

本次设计采用的是共阴极数码管,所以选择74ls48译码器三、总体设计方案论证与选择设计四位二进制加法器,可以选择串行二进制并行加法器,但为了提高加法器的运算速度,所以应尽量减少或除去由于进位信号逐级传递所花费的时间,使各位的进位直接由加数和被加数来决定,而无须依赖低位进位,因而我们选择超前进位的4位全加器74LS283。

设一个n位的加法器的第i位输入为a i、b i、c i,输出s i和c i+1,其中c i是低位来的进位,c i+1(i=n-1,n-2,…,1,0)是向高位的进位,c0是整个加法器的进位输入,而c n是整个加法器的进位输出。

则和s i=a i + b i + c i+a i b i c i (1)进位c i+1=a i b i+a i c i+b i c i (2)令g i=a i b i,(3)p i=a i+b i, (4)则c i+1= g i+p i c i (5)只要a i b i=1,就会产生向i+1位的进位,称g为进位产生函数;同样,只要a i+b i=1,就会把c i传递到i+1位,所以称p为进位传递函数。

把(5)式展开,得到c i+1= g i+ p i g i-1+p i p i-1g i-2+…+ p i p i-1…p1g0+ p i p i-1…p0c0 (6)随着位数的增加(6)式会加长,但总保持三个逻辑级的深度,因此形成进位的延迟是与位数无关的常数。

4位二进制数加法器实验

4位二进制数加法器实验

《电子线路设计、实验、测试》实验报告实验名称:4位二进制数加法器实验院系:电子信息与通信学院专业班级:电信1401班姓名:XXX学号:xxxxxx时间:地点:南一楼指导教师:2016 年 4 月 13 日4位二进制加法器实验一.实验目的1.熟悉ISE软件的使用2.熟悉并初步掌握Verilog HDL描述电路的方法3.掌握用仿真波形验证电路功能的方法4.熟悉使用ISE软件创建文件并下载到basys2开发板上的过程二.实验内容用ISE软件对4位二进制全加器实验进行仿真,采用4位二进制数加法器的数据流描述方式,由于被加数A和加数B都是4位的,而低位的进位Cin为1位,所以运算的结果可能为5位,用{Cout,Sum}拼接起来表示。

然后对其进行仿真,最后创建约束文件,生成bit文件下载到basys2开发板上,对开发板进行操作。

三.实验原理除本位两个数相加外,还要加上从低位来的进位数,称为全加器。

图1为全加器的方框图。

图2全加器原理图。

被加数Ai、加数Bi从低位向本位进位Ci-1作为电路的输入,全加和Si与向高位的进位Ci作为电路的输出。

能实现全加运算功能的电路称为全加电路。

全加器的逻辑功能真值表如表1中所列。

表1 全加器逻辑功能真值表图1 全加器方框图图2 全加器原理图四位全加器四位全加器如图3所示,四位全加器是由半加器和一位全加器组建而成:图3四位全加器原理图四、实验步骤与要求1.创建一个子目录,并新建一个工程项目。

2.创建一个Verilog HDL文件,并将文件添加到工程项目中并编译整个项目,查看该电路所占用的逻辑单元(Logic Elements,LE)的数量。

3.对设计项目进行时序仿真,记录仿真波形图。

4.根据FPGA开发板使用说明书,对设计文件中的输入、输出信号分配引脚。

即使用开发板上的拨动开关代表电路的输入,用发光二极管(LED)代表电路的输出。

5.重新编译电路,并下载到FPGA器件中。

改变拨动开关的位置,并观察LED灯的亮、灭状态,测试电路的功能。

4位全加器实验报告

4位全加器实验报告

4位全加器实验报告篇一:四位全加器实验报告实验一:四位全加器实验报告实验日期:学生姓名:陆小辉(学号:25)指导老师:黄秋萍加法器是数字系统中的基本逻辑器件,是构成算数运算电路的基本单元。

1位加法器有全加器和半加器两种。

多位加法器构成方式有并行进位方式和串行进位方式。

并行进位加法器设有并行进位产生逻辑,运算速度较快;串行进位加法器是将全加器级联构成多位加法器。

并行进位加法器通常比串行进位加法器占用更多的资源,随着位数的增多,相同位数的并行进位加法器比串行进位加法器的资源占用差距快速增大。

因此,在工程中使用加法器时,要在速度与容量之间寻求平衡。

一、设计要求:设计四位全加器,完成相应的功能。

可采用并行进位方式和串行进位方式,可采用三种常用建模方式中的任意一种。

三、测试代码如(转载自:小草范文网:4位全加器实验报告)下: module text_fulladd4; 二、设计代码如下:(此处采用数据流建模)wire [3:0]sum; module fulladd4(sum,cout,a,b,cin); wire cout; output [3:0]sum; reg [3:0]a,b; output cout; reg cin; input [3:0]a,b; fulladd4 f1(sum,cout,a,b,cin);input cin; initial assign {cout,sum}=a+b+cin; begin endmodule a=4'b0; b=4'b0; cin=1'b0; #210 $stop; end always #10 a=a+1; always #5 b=b+1; always #100 cin=cin+1;endmodule 四、仿真波形如下:续图篇二:4位全加器实验报告数电第一次实验通信1402 程杰 UXX13468【实验目的】采用ISE集成开发环境,利用verilog硬件描述语言中行为描述模式、结构描述模式或数据流描述模式设计四进制全加器。

4位二进制全加器的设计

4位二进制全加器的设计

4位二进制全加器的设计摘要加法器是产生数的和的装置。

加数和被加数为输入,和数与进位为输出的装置为半加器。

若加数、被加数与低位的进位数为输入,而和数与进位为输出则为全加器。

常用作计算机算术逻辑部件,执行逻辑操作、移位与指令调用。

在电子学中,加法器是一种数位电路,其可进行数字的加法计算。

在现代的电脑中,加法器存在于算术逻辑单元(ALU)之中。

加法器可以用来表示各种数值,如:BCD、加三码,主要的加法器是以二进制作运算。

多位加法器的构成有两种方式:并行进位和串行进位方式。

并行进位加法器设有并行进位产生逻辑,运行速度快;串行进位方式是将全加器级联构成多位加法器。

通常,并行加法器比串行加法器的资源占用差距也会越来越大。

我们采用4位二进制并行加法器作为折中选择,所选加法器为4位二进制先行进位的74LS283,它从C0到C4输出的传输延迟很短,只用了几级逻辑来形成和及进位输出,由其构成4位二进制全加器,并用Verilog HDL进行仿真。

关键字全加器,四位二进制,迭代电路,并行进位,74LS283,Verilog HDL仿真总电路设计一、硬件电路的设计该4位二进制全加器以74LS283(图1)为核心,采用先行进位方式,极大地提高了电路运行速度,下面是对4位全加器电路设计的具体分析。

图11)全加器(full-adder )全加器是一种由被加数、加数和来自低位的进位数三者相加的运算器。

基本功能是实现二进制加法。

输入输出输入输出CI B A S ⊕⊕==AB'CI'+A'BCI'+A'B'CI+ABCI()AB CI B A CO ++=其中,如果输入有奇数个1,则S 为1;如果输入有2个或2个以上的1,则CO=1。

实现全加器等式的门级电路图如图2所示,逻辑符号如图3所示.图2 图32)四位二级制加法器 a) 串行进位加法器四位二进制加法器为4个全加器的级联,每个处理一位。

四位全加器实验报告

四位全加器实验报告

四位全加器实验报告四位全加器实验报告引言:在计算机科学领域,加法器是一种常见的数字电路,用于将两个二进制数相加。

全加器是一种特殊的加法器,能够处理三个输入位:两个用于相加的位和一个用于进位的位。

本实验旨在设计和实现一个四位全加器电路,并验证其正确性。

一、实验背景全加器是计算机中常用的逻辑电路之一。

在二进制加法中,当两个位相加时,如果产生进位,则需要将进位传递到下一位的计算中。

全加器的作用就是处理这种进位情况,确保加法运算的正确性。

二、实验目的1. 设计一个四位全加器电路。

2. 实现全加器电路的逻辑功能。

3. 验证全加器电路的正确性。

三、实验原理1. 全加器的逻辑功能:全加器的逻辑功能可以通过真值表表示。

对于两个输入位A和B以及进位输入位Cin,全加器的输出位和进位输出位可以通过以下公式计算:Sum = A ⊕ B ⊕ CinCout = (A ∧ B) ∨ (Cin ∧ (A ⊕ B))2. 四位全加器电路的设计:四位全加器由四个全加器和三个2-1多路选择器组成。

其中,每个全加器的输入位分别与两个相邻位的输出位相连,最高位的进位输入位与电源连接,最低位的进位输出位与地线连接。

每个2-1多路选择器的选择位分别与两个相邻位的进位输出位相连。

四、实验步骤1. 根据实验原理设计四位全加器电路。

2. 使用逻辑门电路和多路选择器等器件搭建电路。

3. 连接电路中的输入和输出端口。

4. 转接开关设置输入位的值。

5. 连接电源,观察输出位的值。

6. 更改输入位的值,再次观察输出位的值。

7. 对比实际输出值与预期值,验证电路的正确性。

五、实验结果与分析经过实验观察和计算,我们得到了四位全加器电路的输出结果。

与预期结果相比较,实际输出值与预期值完全一致,证明了电路的正确性。

六、实验总结通过本次实验,我们成功设计并实现了一个四位全加器电路,并验证了其正确性。

全加器作为计算机中常用的逻辑电路,具有重要的应用价值。

通过深入学习和掌握全加器的原理和设计方法,我们可以更好地理解和应用计算机科学中的相关知识。

4位2进制全加器仿真电路

4位2进制全加器仿真电路

4位2进制全加器仿真电路4位2进制全加器仿真电路是一种常见且重要的电路设计,它能够将两个4位的二进制数相加,并输出其和与进位。

本文将介绍4位2进制全加器仿真电路的原理、设计过程以及仿真结果。

1. 原理介绍4位2进制全加器由4个单独的全加器组成,每个全加器负责相应的位相加运算,并输出该位上的和与进位。

全加器的输入包括两个待相加的二进制位和上一位的进位,输出则包括该位上的和与进位。

4位2进制全加器的输入为两个4位的二进制数和上一位的进位,输出为一个5位的二进制数,其中低4位为相加结果,高1位为最高位的进位。

2. 设计过程我们需要设计一个单独的全加器电路。

全加器由两个半加器和一个或门组成。

半加器用于计算两个二进制位的和,而或门用于计算进位。

然后,将4个全加器按照位对齐的方式连接起来,形成4位2进制全加器。

具体连接方式如下:- 将待相加的两个4位二进制数的最低位与上一位的进位分别连接到第一个全加器的输入端。

- 将待相加的两个4位二进制数的其他位分别连接到相应位置的全加器的输入端。

- 将第一个全加器的进位输出与第二个全加器的进位输入相连,以此类推,直到第三个全加器的进位输出与第四个全加器的进位输入相连。

- 将四个全加器的和输出连接起来,形成4位二进制数的和。

- 将最后一个全加器的进位输出作为最高位的进位输出。

3. 仿真结果为了验证4位2进制全加器的正确性,我们可以使用电路仿真软件进行仿真。

通过输入不同的待相加的二进制数和进位,观察输出结果是否符合预期。

在进行仿真时,我们可以将待相加的二进制数和进位表示为输入向量,将输出结果表示为输出向量。

然后,将输入向量依次输入到电路中,观察输出向量是否与预期结果一致。

通过仿真结果,我们可以验证4位2进制全加器的正确性,并对其性能进行评估。

如果仿真过程中存在错误或不符合预期的情况,我们可以对电路进行调整或优化,以提高其性能和可靠性。

总结:本文介绍了4位2进制全加器的原理、设计过程以及仿真结果。

4位二进制加法器解析

4位二进制加法器解析

《电工与电子技术基础》课程设计报告题目四位二进制加法计数器学院(部)汽车学院专业汽车运用工程班级22020903学生姓名郭金宝学号220209031006 月12 日至06 月22 日共 1.5 周指导教师(签字)评语评审人:四位二进制加法器一.技术要求1.四位二进制加数与被加数输入2.二位显示二.摘要本设计通过逻辑开关将A3,A2,A1,A0和B3,B2,B1,B0信号作为加数和被加数输入到超前进位加法器74LS283中进行四位二进制相加,将输出信号S4,S3,S2,S1和向高位的进位C1输入一个译码器译码。

再将输出信号X4,X3,X2,X1和Y4,Y3,Y2,Y1分别输入一个74LS247型的七段显示译码器译码,最后分别接一个BS204数码管进行二位显示。

关键字:74LS283 74LS247 BS204三.总体设计方案的论证及选择1.加法器的选取加法器有两种,分别是串行进位加法器和超前进位加法器。

串行进位加法器由全加器级联构成,高位的运算必须等到低位加法完成送来进位时才能进行。

它虽然电路简单,但运算速度较慢,而且位数越多,速度就越慢。

T692型集成全加器就是这种四位串行加法器。

超前进位加法器由逻辑电路根据输入信号同时形成各位向高位的进位。

使各位的进位直接由加数和被加数来决定,而不需依赖低位进位,这就省去了进位信号逐级传送所用的时间,所以这种加法器能够快速进位。

因为它的这个优点我们选取超前进位加法器。

超前进位加法器的型号有多种,由于我们是非电专业,对电子器件的选取要求不高,为使设计简单所以选74LS283型加法器。

2.译码器的选取译码器的功能是将二进制代码(输入)按其编码时的原意翻译成对应的信号或十进制数码(输出)。

译码器是组合逻辑电路的一个重要器件,其可以分为:变量译码和显示译码两类。

译码器的种类很多,但它们的工作原理和分析设计方法大同小异,其中二进制译码器、二-十进制译码器和显示译码器是三种最典型,使用十分广泛的译码电路。

EDA-四位二进制加法器设计实验步骤

EDA-四位二进制加法器设计实验步骤

作业2:4位加法器设计(1)任务设计带进位的4位二进制加法器。

(2)要求要考虑低位的进位。

进行仿真。

用ispLSI1016E-80LJ44实现。

步骤一:打开ispDesign EXPERT,单击file,选择new project,弹出如下创建新项目对话框,建子目录,在“保存在(I)”栏,用鼠标点击▼,任选可用区(盘),如 D:区(盘),用鼠标点击从右数的第三个小图标(新建文件夹),自动生成新建文件夹子目录,起一个项目文件夹名(应为便于你记住的英文或拼音),如liu2009,并用鼠标双击文件夹名。

选择 project type:Verilog HDL 。

步骤二:给项目起名(应为便于你记住的英文或拼音,如liu),用鼠标点击保存(S)。

选中器件为ispLSI1016E-80LJ44。

并用鼠标双击下图第一行,并给项目源文件加标题名如liu蓝条示(如将有多个项目源文件,加标题名时要加以区分,这里只针对一题,为了简单,标题名用 liu)。

图1.步骤三:点击Source下拉选New,弹出窗口,选择上面左下角的Verilog Module ,设置名称如图所示:步骤四:在TextEditer中编辑输入Verilog 语言源程序:module liu1(a,b,c1,cout,sum);output cout;output[3:0] sum;input[3:0] a,b;input c1;assign {cout,sum}=a+b+c1;endmodule步骤五:在Text Editor中点File下拉Save As,将源文件Liu1.v存D盘Liu2009,退出。

选择tools ,synplicity synplify synthesis,点击菜单栏上的“P”,ADD :步骤六:在如下界面下部点击Chang,确认选器件ispLSI1016E-80LJ44,并运行。

通过Done!在该界面点File下拉Save As,以Liu1保存,退出。

四位二进制全加全减器

四位二进制全加全减器

数字逻辑设计及应用课程设计组合逻辑电路课程设计四位二进制全加/全减器姓名:学号:指导教师:一、任务与要求使用74LS83构成4位二进制全加/全减器。

具体要求:1)列出真值表;2)画出逻辑图3)用Verilog HDL进行仿真二、设计思路1)原理分析:74LS83是四位二进制先行加法器,所以直接接入输入可以得到全加器,下面主要讨论四位二进制全减器的构造。

对于减法,可以作相应的代数转换编程加法,二进制减法也是如此,原理如下:这样就把减法变为了加法,而[]=,这里利用补码性质,具体实现方法就是:逐位取反并在最低权一位加上1。

在全减器中,进位输入Cin变为借位输出,所以要减去Cin,且全加器的输出端Cout为进位输出,全减器为借位输出,所以将So取反后即可得到全减器的借位输出。

在以上分析基础可知,可在全加器的基础上设计全减器。

四位二进制全加/全减器真值表如下:(因原始真值表行数太过庞大,列出部分真值的例子)真值表A3 A2 A1 A0 B3 B2 B1 B0 Co Bo S0 S1 S2 S3C/B0 0 1 0 0 1 0 1 0 1 0/1 1/1 1/0 1/1 01 0 1 1 1 1 1 0 1 1 1/1 0/1 0/0 1/1 00 1 1 0 0 0 1 1 0 0 1/0 0/0 0/1 1/1 01 1 1 1 0 0 1 1 1 0 0/1 0/1 1/0 0/0 00 0 1 0 0 1 0 1 0 1 1/1 0/1 0/0 0/0 11 0 1 1 1 1 1 0 1 1 1/1 0/1 1/0 0/0 10 1 1 0 0 0 1 1 0 0 1/0 0/0 1/1 0/0 11 1 1 1 0 0 1 1 1 0 0/1 0/0 1/1 1/1 1*表格后半部分内容,斜线前为全加结果,斜线后为全减结果*XOR门的函数为:,所以当EN=A=0时,得到F=B与第二输入相同,当EN=A=1时,F=B’与第二输入相反。

最新组合逻辑课程设计4位二进制全加器全减器原创

最新组合逻辑课程设计4位二进制全加器全减器原创

精品资料组合逻辑课程设计4位二进制全加器全减器原创........................................组合逻辑电路课程设计——4位二进制全加器/全减器作者:学号:课程设计题目要求:1)使用74LS283构成4位二进制全加/全减器。

2)阐述设计思路。

3)列出真值表。

4)画出设计的逻辑图。

5)用VHDL对所画电路进行仿真。

目录摘要加法器是数字系统中产生数的和的装置。

加数和被加数为输入,和数与进位为输出的装置为半加器。

若加数、被加数与低位的进位数为输入,而和数与进位为输出则为全加器。

例如:为了节省资源,减法器和硬件乘法器都可以用加法器来构成。

但宽位加法器的设计是很耗资源的,因此在实际的设计和相关饿得设计与开发中需要注意资源的利用率和进位速度两方面的问题,多位加法器的构成主要有两种:并行进位和串行进位。

并行进位加法器设有并行进位产生逻辑,运行速度比串行进位快;串行进位是将全加器采取并行级联或菊花链式级联构成多位加法器。

加法器也是常用作计算机逻辑部件,执行逻辑操作、移位与调用。

此外还可以用来表示各种数值,如:BCD、加三码,主要的加法器是以二进制作运算。

本文将采用4位二进制并行加法器作为折中选择,所选加法器为74LS283,74LS283是4位二进制先行进位的加法器,它只用了几级逻辑来形成和及进位输出,故由其构成4位二进制全加器;而四位全减器可以用加法器简单的改造而来,最后本文采用 VHDL对四位全加器/全减器进行仿真。

关键字74LS283全加器、四位二进制、迭代电路、并行进位、串行进位、VHDL1总电路设计1.1硬件电路的设计该4位二进制全加器以74LS283为核心,74LS283芯片引脚图如下图,本文采用先行进位方式,极大地提高了电路运行速度,下面是对4位全加器电路设计的具体分析。

图1.1 74LS283芯片引脚图1.2全加器(full-adder )全加器是针对超过一位的操作数相加,必须提供位与位之间的进位而设计的一种加法器,具有广泛而重要的应用。

EDA实验报告——四位二进制加法器的设计

EDA实验报告——四位二进制加法器的设计

(2)部分真值表: (2)部分真值表: 部分真值表
四位加法器部分真值表(括号内的是十六进制) :
输 入 C4 A43 A42 A41 A40 B43 0 1111(F) 1 0000(0) 0 0010(2) 1 0100(4) 0 0110(6) 1 1000(8) 0 1010(A) 1 1100(C) 输 出 B42 B41 B40 S43 S42 S41 S40 CO4 1111(F) 1110(E) 1 0000(0) 0001(1) 0 0010(2) 0010(4) 0 0100(4) 1001(9) 0 0110(6) 1100(C) 0 1000(8) 0001(1) 1 1010(A) 0010(4) 1 1100(C) 1001(9) 1
1 1 1 0 0 1 1 0 0 1 0 0 1 1
3

(附页) 附页)
设计一个四位二进制加法器
(1)实验程序: (1)实验程序: 实验程序
LIBRARY ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; entity siweijiafaqi is port( C4: in std_logic; A4: in std_logic_vector(3 downto 0); B4: in std_logic_vector(3 downto 0); S4: out std_logic_vector(3 downto 0); CO4:out std_logic); end entity siweijiafaqi; architecture art of siweijiafaqi is signal S5 :std_logic_vector(4 downto 0); signal A5,B5:std_logic_vector(4 downto 0); begin A5<='0' & A4; B5<='0' & B4; S5<=A5+B5+C4; S4<=S5(3 downto 0); CO4<=S5(4); end archi3)实验仿真结果: (3)实验仿真结果: 实验仿真结果

4位二进制全加器设计

4位二进制全加器设计

任务一4位全加器设计一、实验目的1、掌握运用Quartus II原理图编辑器进行层次电路系统设计的方法。

2、进一步熟悉利用Quartus II进行电路系统设计的一般流程。

3、掌握4位全加器原理图输入设计的基本方法及过程。

二、实验原理(1)设计一位半加器真值表:(2)设计一位全加器真值表:SOn=n n n−1;COn=(A n⨁B n)C n−1+A n B n;(2)设计多位全加器由一位全加器组合成多位全加器。

依次将低位全加器的进位输出端接到高位全加器的进位输入端,由四个一位全加器构成四位全加器。

三、实验过程1、一位半加器的设计(1)电路图①执行“Files”─>“New”─>“Block Diagram/Sch matic”─>“OK”②在编辑窗口输入“与非”门电路原理图,保存电路为“01.bdf”,如图:(2)仿真波形①执行“Files”─>“New”─>“Vector Waveform File”─>“OK”②在波形编辑窗口双击左键,执行“Insert Node or Bus”─> “New Finder”─> “List”─>“》”─>“OK”。

③保存文件为“01.vwf”。

④执行菜单“Processing”─> “Start Simulation”,如图:(3)仿真波形分析:(4)封装之后的图:设“01.bdf”为顶层文件,执行“Files”─>“Create、Update”─> “Create Symbol Files forCurrent Files”,保存。

如图:2、一位全加器(1)电路图①执行“Files”─>“New”─>“Block Diagram/Sch matic”─>“OK”②在编辑窗口输入“与非”门电路原理图,保存电路为“02.bdf”,如图:(2)仿真波形①设“02.bdf”为顶层文件。

四位二进制加法器

四位二进制加法器

用原理图层次化设计法设计一个4位二进制加法器一、实训目的1.掌握原理图输入法中的层次化设计方法。

2.进一步巩固原理图输入法。

二、实训器材计算机与Quartus Ⅱ工具软件。

三、实训指导(一)实训原理1.系统分析两个4位二进制数相加运算:a3 a2 a1 a0+ b3 b2 b1 b0 co s3 s2 s1 s0 其中: s0=a0+b0s1=a1+b1+进位co0s2=a2+b2+进位co1 s3=a3+b3+进位co2so=进位co3根据以上分析,4位二进制加法器可分解为4个全加器按一定方式连接而成。

2.全加器电路真值表全加器的真值表如表2-1所示。

表2-1 全加器电路真值表(二)实训步骤1.输入编辑底层原理图文件fadd.bdf(1)建立工程项目,其工程文件夹为fsdd,以fadd.bdf为顶层实体文件名。

(2)根据全加器电路的真值表建立原理图文件fsdd,bdf。

(3)编辑原理图文件fsdd.bdf。

一位全加器原理图如图2-1所示。

图2-1 一位全加器原理图2.编译仿真原理图文件fadd.bdf并生成符号文件fadd.bsf(1)编译原理图文件fadd.bdf。

若编译不过关,先双击第一个错误提示,可使鼠标出现在第一个错误处附近,检查纠正第一个错误后保存再编译,如果还有错误,重复以上操作,直至最后通过。

(2)仿真原理图文件fadd.bdf。

认真核对输入/输出波形,检查设计的电路功能正确与否。

一位全加器仿真波形如图2-2所示。

图2-2 一位全加器仿真波形图(3)生产符号文件fadd.bdf。

在原理图编辑界面下执行File→Greate/Update→Greate Symbol File for Current File命令,生成符号fadd.bsf。

3.输入编辑顶层电路原理图文件add4.bdf新建一个工程文件夹add4,把fadd.bdf、fadd.bsf文件放入其中,新建一个原理图文件,使用插入符号命令,选择fadd.bsf将它放置于原理图编辑区中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验序号实验题目四位二进制全加器实验时间实验室
1.实验元件(元件型号;引脚结构;逻辑功能;引脚名称)
1.SAC-DS4数字逻辑电路实验箱 1个
2.万用表 1块
3.74LS283 四位二进制全加器1片
74LS283 四位二进制全加器引脚结构及逻辑功能
2.实验目的
1、掌握中规模集成电路四位全加器的工作原理及其逻辑功能。

2、学习全加器的应用。

3.实验电路原理图及接线方法描述:
(1)74LS283四位全加器实验电路图
(2)用74LS283四位全加器实现BCD码到余3码的转换实验电路图
4.实验中各种信号的选取及控制(电源为哪些电路供电;输入信号的分布位置;输出信号的指示类型;总结完成实验条件)
(1)用开关按表下图设置输入A1-A4、B1-B4、C0的状态,借助指示灯观测输出F1-F4、C4的状态。

(2)将每个BCD码加上0011,即可得到相应的余3码。

故应按下图接线。

5.逻辑验证与真值表填写
(1)74LS283四位全加器真值表
输入输出
A4 A3 A2 A1B4 B3 B2 B1C0F4 F3 F2 F1C4
0 0 0 1 0 0 0 1 1 0 0 1 1 0
0 1 0 0 0 0 1 1 0 0 1 1 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 0 0 1 1
1 0 1 1 0 1 0 1 1 0 0 0 1 1
1 1 0 0 0 1 1 0 0 0 0 1 0 1
1 1 0 1 0 1 0 0 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0 1 1 1 0 1
(2)用74LS283四位全加器实现BCD码到余3码的转换真值表
输入BCD码输出余3码
B4 B3 B2 B1 F4 F3 F2 F1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
6.实验总结(安全事注意项,操作要点,实验结果分析)
注意事项:1、连接线路时要关闭电源,检查电路连接无误后方可打开电源。

2、使用电压表或电流表时,应参考测试参数的规范值及测试电
路,正确选择量程
3、在安装各种芯片是应注意选择正确的插孔,同时注意芯片的
左右不能接反,否则将导致芯片烧毁。

4、在使用是严格参照相关芯片的参数图,明确各引脚的作用及
接线方式,防止因接错引脚而无法得出真确的运算结果或烧
坏芯片。

操作要点:1、在接线前应对将使用到的导线进行检查,防止有开路的导
线混在其中,接好线后检查很麻烦,影响实验的效率和质
量。

2、在连接芯片时有半圆缺口的一段朝向左边安装。

3、接线时同种类型的接线端使用相同颜色的线连接以便进行
线路的检查。

4、操作中使用到较多的开关及电平显示器,应按其编号进行
排序,以防在实验中弄错而使实验失败。

教师评语及评分:
签名:年月日。

相关文档
最新文档