线性代数 N维向量空间 第4节 基与维数
线性代数之第4章.向量空间与线性变换
![线性代数之第4章.向量空间与线性变换](https://img.taocdn.com/s3/m/f26c172b453610661ed9f451.png)
4.1 Rn的基与向量关于基的坐标
Rn的基与向量关于基的坐标 显然Rn的基不是唯一的,而α关于给定的基的坐标是唯 一确定的。以后,我们把n个单位向量组成的基称为自 然基或标准基。 在三维几何向量空间R3中,i, j, k是一组标准基,R3中任 一个向量α可以唯一地表示为: α=a1i +a2j +a3k 有序数组(a1, a2, a3 )称为α在基i, j, k下的坐标。如果α的 起点在原点,(a1, a2, a3 )就是α的终点P的直角坐标(以 后我们常利用R3中向量α与空间点 P 的一一对应关系, 对Rn中的一些问题及其结论在R3中作几何解释)。
4.1 Rn的基与向量关于基的坐标
基之间的变换举例 解:由 β1 ε1 2ε2 ε3
β2 ε1 ε2 β ε ε3 3 1
即
1 1 1 ( β1 , β2 , β3 ) ( ε1 , ε2 , ε3 ) 2 1 0 1 0 1
n n
只有零解xj=0 (j=1, 2, … , n) 。
4.1 Rn的基与向量关于基的坐标
基之间的变换 由于α1, α2, „, αn线性无关,由上式得:
a x
j 1 ij
n
j
0 i 1, 2, , n
因此,前方程只有零解(即上面齐次线性方程组只有零 解)的充要条件是上面齐次线性方程组的系数行列不等 于零,即定理中条件式成立。
4.1 Rn的基与向量关于基的坐标
基之间的变换 定义:设Rn的两组基B1={α1,α2,… ,αn}和 B2={η1,η2,… ,ηn}满足下式式的关系,
a11 a η1, η2 , , ηn α1, α2 , , αn 21 an1 a12 a1n a22 a2 n α α , , α A 1, 2 n an 2 ann
向量空间的基底与维数
![向量空间的基底与维数](https://img.taocdn.com/s3/m/ab3bd68788eb172ded630b1c59eef8c75fbf9500.png)
向量空间的基底与维数在线性代数中,向量空间是一个具有特定运算规则的集合。
在向量空间中,基底是一组线性无关的向量,它们可以生成该向量空间中的任意向量。
维数则是指向量空间中基底的个数。
本文将介绍向量空间的基底与维数的概念及其相关性质。
一、基底的定义与性质基底是向量空间中的一组线性无关的向量。
具体来说,如果向量空间V中的向量集合B={b1, b2, ..., bn}满足以下两个条件:1. B中的向量相互独立,即对于任意不全为0的标量c1, c2, ..., cn,有c1b1 + c2b2 + ... + cnbn ≠ 0;2. B中的向量可以生成向量空间V中的任意向量,即对于向量v∈V,存在标量c1, c2, ..., cn,使得v = c1b1 + c2b2 + ... + cnbn。
根据基底的定义,我们可以得出一些基本性质:1. 基底中的向量个数是唯一的。
换言之,一个向量空间只有一个维数。
2. 基底中的向量个数与向量空间中的任意一组基底的向量个数相等。
3. 如果一个向量空间有有限维,则其基底中的向量个数也是有限的。
二、维数的定义与性质维数是指向量空间中基底的个数。
记作dim(V)。
如果向量空间V中存在一组基底包含m个向量,那么V的维数就是m。
维数具有以下性质:1. 维数是向量空间的基本属性,不依赖于具体的表示方式。
2. 同一个向量空间中的不同基底具有相同的维数。
3. 对于向量空间R^n,其维数为n。
三、基底和维数的关系与应用基底和维数在线性代数中具有重要的应用价值。
首先,基底的存在性保证了向量空间中的向量可以用基底中的向量线性表示出来,这对于求解线性方程组、解决线性相关与线性无关的问题非常有帮助。
其次,维数在研究向量空间的结构和性质时起到了关键作用。
例如,两个向量空间V和W的维数相等,则它们同构;若维数不相等,则它们不同构。
此外,在计算机科学、信号处理以及物理学等领域中,基底和维数的概念也被广泛应用,如图像压缩、数据降维等。
线性代数§6.2线性空间的维数、基与坐标
![线性代数§6.2线性空间的维数、基与坐标](https://img.taocdn.com/s3/m/f067d3b6102de2bd960588a8.png)
0 0
10,
E 21
0 1
00,
E 22
0 0
10,
设
k1E11
+
k2E12
+
k3E21
+
k4E22
=O
0 0
0 0
,
而
k1E11 +
k2E12 + k3E21 +
k4E22 =
k1 k3
k k
2 4
,
因此, 有
k1=k2=k3=k4=0.
p(x) =(a0, a1, a2, a3, a4)T.
若取另一个基: q0=1, q1=1+x, q2=2x2, q3=x3, q4=x4,
则
p( x)
(a0
a1 )q0
a1q1
1 2 a2q2
a3q3
a4q4 .
因此, p(x)在这个基下的坐标为
p( x)
(a0
a1 ,
a1 ,
间V的维数.
维数为n的线性空间V称为n维线性空间, 记作Vn. 当一个线性空间V中存在任意多个线性无关的向
量时, 就称V是无限维的.
若1, 2, ···, n为Vn的一个基, 则Vn可表示为:
Vn = { = x11+x22+···+xnn | x1, x2, ···, xnR }
生成的子空间的基与维数.
思考题解答
f2(x) = 2x3–3x2+9x–1, f4(x) = 2x3–5x2+7x+5
线性代数N维向量空间基与维数
![线性代数N维向量空间基与维数](https://img.taocdn.com/s3/m/94686578e009581b6bd9ebc4.png)
§ 4.4 向量空间
12 解: 0 1
1 0
1 1 1
1 1 1
初等 行变换
1 0 0
2 1 0
1 1 0
1 1 0
可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基.
注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.
分别为x, y, 则
x = Py, y = P1x.
证明: = (1, 2, …, r)x = (1, 2, …, r)y = (1, 2, …, r)Py
(1, 2, …, r)(x Py) = 0. 又因为1, 2, …, r线性无关,
所以x Py = 0, 即x = Py, 进而y = P1x.
L(A1, A2, …, As)——A的列空间(column space) dimL(A1, A2, …, As) = 秩(A).
1 2 1 1Biblioteka 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 ,
1 0 1 1
求L(A1, A2, A3, A4)的一组基和维数.
第四章 n维列向量空间
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.
第四章 n维列向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
§ 4.4 向量空间
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr .
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
线性代数基和维数
![线性代数基和维数](https://img.taocdn.com/s3/m/154ddf99d4d8d15abe234e6d.png)
定义4.5.1 R n 的非零子空间H的线性无关生成 集称为H的基(basis).
n R 例4.5.2 可逆n阶方阵的n个列向量构成 的基.
证明:设可逆方阵 A 1,2 ,...,n , 其列向量组线性无 关. 对 R n 中的任意向量 ,由性质4.2.5, 1,2 ,...,n , 线性相关. 由例4.2.7知, 可由1 ,2 ,...,n 线性表出, 1 ,2 是 ,...,n 的基 Rn . 因此
证明:证明方法类似于上例中的讨论. 令B是A的行最简形矩阵. B的主元列线性无关, 而A行等价于B,由定理4.5.2可知,A的主元列线性 无关.
B的非主元列可表成B的主元列的线性组合,则A 的非主元列也可表成A的主元列的线性组合,因而 可以从ColA的生成集中删除. 这样,A的主元列构成了ColA的基.
如果 能用两种方式表成1,2 ,..., p 的线性 组合,即
k11 k22 ... k p p ,
l11 l22 ... l p p .
两式相减,有
0 (k1 l1 )1 (k2 l2 )2 ... (k p l p ) p .
例4.5.7 NulA的维数是方程组Ax=0中自由变 量的个数. ColA的维数是A的主元列的数目.
n R 定理4.5.6 若H是 的子空间,dim H p. 则
(1)H中任意p个线性无关的向量构成H的一 组基; (2)如果H中p个向量构成H的生成集,则这 p个向量也构成H的一组基.
子空间H的基相对于生成集的另一个优点是: H中的每个向量仅能用一种方式写成基向量 的线性组合,即表出是唯一的. 定理4.5.8 若 1 , 2 ,..., p 是子空间H的基,则H 中的任一向量能且仅能用一种方式表为 1 ,2 ,..., p 的线性组合. 证明:因为 1 , 2 ,..., p 是H的生成集,H中任 一向量 必可表为 1,2 ,..., p 的线性组合.
线性空间的基与维数
![线性空间的基与维数](https://img.taocdn.com/s3/m/c84f4c96b04e852458fb770bf78a6529647d358e.png)
线性空间的基与维数线性空间是线性代数中的重要概念,它是指具有加法和数乘运算的集合,并满足线性空间的定义和性质。
在线性空间中,基和维数是两个核心概念,它们对于理解线性空间的结构和性质具有重要意义。
一、线性空间的定义和性质线性空间是指满足以下定义和性质的集合:1. 集合中存在加法运算,即对于任意两个元素x和y,存在相应的元素x+y;2. 集合中存在数乘运算,即对于任意元素x和数k,存在相应的元素kx;3. 加法和数乘运算满足封闭性,即对于任意元素x和y,x+y和kx 仍然属于该集合;4. 加法满足结合律和交换律,即对于任意元素x、y和z,(x+y)+z=x+(y+z)和x+y=y+x;5. 加法满足单位元存在性,即存在一个元素0,对于任意元素x,有x+0=x;6. 加法满足逆元存在性,即对于任意元素x,存在相应的元素-y,使得x+(-y)=0;7. 数乘运算满足结合律和分配律,即对于任意元素x和k、l,有k(lx)=(kl)x和(k+l)x=kx+lx;8. 数乘运算满足单位元存在性,即对于任意元素x,有1x=x。
二、在线性空间中,基是指一个线性无关且能生成整个空间的向量组。
即对于线性空间V,存在向量组{v1, v2, ..., vn},满足以下条件:1. 线性无关性:向量组中的任意有限个向量线性无关,即不存在非零标量c1, c2, ..., cn,使得c1v1 + c2v2 + ... + cnvn = 0;2. 生成性:向量组的线性组合能够生成整个线性空间V,即对于任意向量v∈V,存在标量c1, c2, ..., cn,使得v = c1v1 + c2v2 + ... + cnvn。
线性空间的维数是指基中向量的个数,用n表示。
记作dim(V) = n。
三、线性空间的基与维数的性质线性空间的基与维数具有以下性质:1. 基的个数是唯一的:线性空间V的任意两个基所含向量个数相同;2. 维数的唯一性:线性空间V的维数唯一,与基的选择无关;3. 向量组的性质:线性空间V中的任意向量组若线性无关,则含有的向量个数不超过维数;4. 维数与子空间:线性空间V的任意非零子空间的维数小于等于V的维数;5. 维数与线性变换:线性空间V到线性空间W的线性映射T是满射时,有dim(W) ≤ dim(V);当T是一一映射时,有dim(W) ≥ dim(V)。
基和维数的关系
![基和维数的关系](https://img.taocdn.com/s3/m/d98af3c2112de2bd960590c69ec3d5bbfd0adabf.png)
基和维数的关系
基和维数是线性代数中的两个重要概念,它们之间有着密切的关系。
在矩阵论中,基的数量决定了矩阵的列空间的维数,也就是列向量的线性独立的数量。
因此,如果一个矩阵的列向量数量为 n,但其列向量中有重复的向量,那么矩阵的列空间的维数就会小于 n。
这时,我们需要找到一组线性无关的向量作为基,从而得到列空间的基和维数。
另一方面,矩阵的行空间的维数也和其基的数量有关系。
矩阵的行空间是由其行向量张成的向量空间,而行向量的数量和它们的线性独立的数量相同。
因此,矩阵的行空间的维数取决于它的行向量的线性独立的数量,也就是它的基的数量。
除了列空间和行空间,矩阵还有一个重要的概念——零空间。
零空间是由矩阵的所有零空间向量张成的向量空间。
零空间向量是指矩阵乘以该向量得到的结果为零向量的向量。
矩阵的零空间的维数也和其基的数量有关系。
根据线性代数的基本定理,矩阵的列空间和零空间的维数之和等于矩阵的列数。
因此,如果知道了矩阵的列空间的维数,就可以求得它的零空间的维数。
总之,基和维数在线性代数中起着至关重要的作用。
它们的关系非常紧密,互相影响。
通过矩阵的基和维数,我们可以更好地理解矩阵的性质和特征。
向量空间的基与维数
![向量空间的基与维数](https://img.taocdn.com/s3/m/763846b7bb0d4a7302768e9951e79b8969026846.png)
向量空间的基与维数在线性代数中,向量空间是一个具有特定性质的数学结构,它由一组向量组成,并满足一些线性运算规则。
在向量空间中,我们经常讨论两个重要的概念,即基和维数。
一、基的定义和性质向量空间的基是指一组线性无关的向量,它们能够生成该向量空间中的所有向量。
具体而言,设V是一个向量空间,S={v1,v2,...,vn}为V 中的向量组,如果满足以下两个条件:1. 向量组S中的向量线性无关;2. 向量空间V中的每一个向量都可以由向量组S线性表示,则称S 为向量空间V的基。
基的性质包括:1. 基的向量个数是确定的。
如果两个基包含的向量个数不同,那么它们所在的向量空间也是不同的。
2. 基的向量组中的向量个数是向量空间的维数。
二、维数的定义和性质在向量空间中,维数是指该向量空间的基中所含向量的个数。
通常用符号dim(V)表示,其中V是一个向量空间。
维数的性质包括:1. 如果V是一个向量空间,那么V的两个基所含向量的个数相同。
也就是说,向量空间的维数是唯一确定的。
2. 一个向量空间的维数是非负整数。
3. 如果向量空间的维数是有限的,则称该向量空间为有限维向量空间。
否则,称该向量空间为无限维向量空间。
三、例子和应用1. 二维平面上的向量空间R^2,其基可以选择为{(1,0),(0,1)},其中(1,0)和(0,1)分别是R^2的两个标准单位向量。
因此,R^2的维数为2。
2. 三维空间中的向量空间R^3,其基可以选择为{(1,0,0),(0,1,0),(0,0,1)},其中(1,0,0)、(0,1,0)和(0,0,1)分别是R^3的三个标准单位向量。
因此,R^3的维数为3。
基和维数的概念不仅在线性代数中有着重要的应用,也在其他数学领域和物理学、工程学等各个领域得到广泛应用。
它们帮助我们更好地理解和描述向量空间的结构和性质,为解决实际问题提供了强有力的工具和方法。
总结起来,向量空间的基是一组线性无关的向量,它们能够生成该向量空间中的所有向量;维数是该向量空间基所含向量的个数。
线性空间的概念,维数、基与坐标
![线性空间的概念,维数、基与坐标](https://img.taocdn.com/s3/m/54bab090767f5acfa0c7cd8e.png)
统计软202件1/4分/22析与应用
线性代数A
4
6.1-6.2 线性空间的概念,维数、基与坐标
(5) 1 ;
(6) ; (7) ; (8) .
那么,V 就称为数域 F上的线性空间(或向量空 间),V 中的元素称为向量(或元).
线性代数A
19
6.1-6.2 线性空间的概念,维数、基与坐标
三、线性空间的子空间
定义2 设 V 是一个线性空间, U 是 V 的一个 非空子集,如果 U 对于 V 中所定义的加法和乘数 运算也构成一个线性空间, 则称 U 是 V 的一个子 空间.
线性空间中的零元构成一子空间, 称为零空间. V 自身是V 的子空间. 我们称这两个子空间为V 的 平凡子空间.
记作
;
统计软202件1/4分/22析与应用
线性代数A
3
6.1-6.2 线性空间的概念,维数、基与坐标
如果上述两种运算满足以下八条运算规律
( 设 , , V;, F ):
(1) ;
(2) ;
(3) 在V中存在零元素 0 ,对任何 V ,都有 0 ;
于是有 定理2 线性空间V 的非空子集U 构成子空间的
充分必要条件是: ⑴ 如果 , U, 则 U;
⑵ 如果 U, k R,则 k U.
[证略]
统计软202件1/4分/22析与应用
线性代数A
22
6.1-6.2 线性空间的概念,维数、基与坐标
例7
证明: N 2
a 0
b
0
a, b R
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?
基与维数的几种求法
![基与维数的几种求法](https://img.taocdn.com/s3/m/659ea4d35901020206409c4a.png)
线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数, 即:在线性空间V 中,如果有n 个向量1,,n满足:(1) 1, 2 , n 线性无关。
(2) V 中任一向量总可以由 1 , 2, , n 线性表示。
那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n ,并称1, 2,, n 为线性空间V 的一组基。
如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。
例 1 设V X AX的维数和一组基。
0 ,A 为数域P 上m n 矩阵,X 为数域P 上n 维向量,求V解设矩阵 A 的秩为r ,则齐次线性方程组维数为n r 。
AX 0 的任一基础解系都是V 的基,且V 的例 2 数域P 上全体形如0 a的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成a b的线性空间,求此空间的维数和一组基。
0 1 0 0 0 a解易证,1 0 0 1 为线性空间V|a,b pa b的一组线性无关的向量组,且对V 中任一元素0 a 0 a有0 1 0 0a +ba b a b 1 0 0 1按定义0 1 0 0,1 0 0 1为V 的一组基,V 的维数为2。
方法二在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。
例 3 假定R xn是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:1, x 1 , x21 ,L , x n 11 构成R xn的基。
证明考察k1 1k2x 1 L n 1knx 1 0由x n 1 的系数为0 得k0 ,并代入上式可得x n 2 的系数kn 1依此类推便有kn k n 1 L k1 0 ,nnn故1, x 1 ,L , x n 11线性无关又 R x 的维数为 n , 于是 1, x 1 ,L , x n 11 为 R x 的基。
方法三 利用定理:数域 p 上两个有限维线性空间同构的充分必要条件是它们有相同的维数。
向量空间的基与维数定理
![向量空间的基与维数定理](https://img.taocdn.com/s3/m/40261ce1b1717fd5360cba1aa8114431b80d8e49.png)
向量空间的基与维数定理一、基的定义与性质在向量空间中,基是指能够通过线性组合生成整个向量空间的一组向量。
具体来说,若向量空间V中的向量组{v1, v2, ..., vn}:1. 线性无关:任意一个向量vi都不能由其他向量的线性组合表示出来。
2. 生成性:任意一个向量v都可以表示成向量组{v1, v2, ..., vn}的线性组合。
二、基的存在性与维数定理对于任意一个向量空间V,都存在一组基。
而且,不同的基所含有的向量个数是相同的,称为这个向量空间的维数,记作dim(V)。
三、基的个数与维数之间的关系设V是一个有限维向量空间,则:1. 若V中存在有限个向量,它们组成了V的一组基,则称V是有限生成的;2. 若V是有限生成的,则V中的任何一组基所含有的向量个数都相同。
四、维数定理相关的证明与推论1. 维数定理的证明:设V为一个有限维向量空间,存在两个有限的基:{v1, v2, ..., vm} 和 {u1, u2, ..., un}。
首先,我们需要证明向量组{v1, v2, ..., vm}线性无关。
即对于任意一个向量的线性组合:a1v1 + a2v2 + ... + amvm = 0,若存在不全为零的系数a1, a2, ..., am,则上述方程成立,从而基{u1, u2, ..., un}中的向量也可以表示成{v1, v2, ..., vm}的线性组合,与其构成基的定义相矛盾,所以{v1, v2, ..., vm}是线性无关的。
其次,我们需要证明向量组{v1, v2, ..., vm}能生成整个向量空间V。
任意一个向量u都可以表示为基{u1, u2, ..., un}的线性组合:u = b1u1 + b2u2 + ... + bun,并且可以将基{u1, u2, ..., un}中的向量表示成基{v1, v2, ..., vm}的线性组合:ui = a1i v1 + a2i v2 + ... + ami vm,因此,u也可以表示成基{v1, v2, ..., vm}的线性组合:u = (b1a11 + b2a21 + ... + banan) v1 + (b1a12 + b2a22 + ... + banan) v2 + ... + (b1a1m + b2a2m + ... + banan) vm,即向量组{v1, v2, ..., vm}能够生成整个向量空间V。
线性代数N维向量空间第4节基与维数
![线性代数N维向量空间第4节基与维数](https://img.taocdn.com/s3/m/5b36c356fe00bed5b9f3f90f76c66137ef064f68.png)
03 不同的基可以用来表示同一个向量空间,但基的 个数是唯一的。
04
基与维数的应用
在线性变换中的应用
01
线性变换
基与维数在研究线性变换中具有重要作用。线性变换是向量空间中的一
种保持线性关系的变换,其可以通过基底表示。通过确定基底,可以确
维数定理
对于任何向量空间,其维数等于其基中向量的个数。
下节预告
向量空间的子空间
介绍如何定义和识别一个向量空 间的子空间,以及子空间的性质 和特点。
子空间的维数
探讨如何计算子空间的维数,以 及子空间维数与原向量空间维数 的关系。
向量空间的线性变换
介绍线性变换的概念、性质和分 类,以及线性变换在向量空间中 的重要作用。
线性代数n维向量空间第4节基与维数
目录 Contents
• 引言 • 向量空间与基的定义 • 维数的概念 • 基与维数的应用 • 总结与回顾
01
引言
主题概述
本节将介绍向量空间中的基与维数概 念,这是线性代数中重要的基础概念 之一。
通过学习本节,学生将理解向量空间 中基的作用,掌握维数的计算方法, 并能够在实际问题中应用这些概念。
逆矩阵与伴随矩阵
逆矩阵和伴随矩阵也是矩阵理论中的重要概念,它们的计 算也涉及到基与维数。逆矩阵是线性变换的逆过程,而伴 随矩阵则代表了线性变换的另一种形式。
在几何学中的应用
向量空间
基与维数可以用来描述向量空间的结构和性质。向量空间中的每一个元素都可以由基底线性表示,而维数则代表 了向量空间中独立元素的个数。
仿射变换
仿射变换是几何学中的一种重要概念,它可以由线性变换表示。通过确定仿射变换的基底和维数,可以研究其性 质和特征,进而应用于几何学中的各种问题。
维数和基的个数的关系
![维数和基的个数的关系](https://img.taocdn.com/s3/m/b673181a66ec102de2bd960590c69ec3d5bbdb0f.png)
维数和基的个数的关系
维数和基的个数是线性代数中的重要概念。
在n维向量空间V 中,如果存在一组线性无关的向量{v1,v2,……,vn},那么就称为V 的一组基,基的个数记作dim(V)。
同时,如果存在一组向量
{v1,v2,……,vm},能够生成V,即V中的任何向量都能够表示成它们的线性组合,那么就称为V的一个生成组,生成组中向量的最大个数记作rank(V)。
显然,rank(V) ≤ dim(V)。
维数和基的个数之间的关系可以由一个简单的定理描述:任何有限维向量空间V中的每个基含有相同数量的向量。
这个定理告诉我们,无论选择哪个基,它们的个数都是相同的。
这个定理也可以用来证明另外一个重要的结论:任何有限维向量空间V的任意两个基中,都存在一种线性变换把一个基变换成另一个基。
这个结论被称为基变换定理。
总之,维数和基的个数是线性代数中不可分割的重要概念,它们之间有着紧密的联系和相互依存的关系,对于研究线性代数的各种理论和应用都具有重要意义。
- 1 -。
线性代数中的向量空间的基与维数计算与应用
![线性代数中的向量空间的基与维数计算与应用](https://img.taocdn.com/s3/m/104349610622192e453610661ed9ad51f01d54cb.png)
添加标题
添加标题
添加标题
添加标题
特征值分解(EVD):用于主成分 分析和图像处理
矩阵分解在推荐系统中的应用:通 过分解用户-物品交互矩阵,推荐 相关物品
数据降维案例
数据降维的背景:高维数据难以处理,需要降低维度以便分析
基与维数的概念:基是向量空间的一组线性无关的向量,维数是向量空 间的秩,即基向量的个数
响,例如小波变换、中值滤波等。
THANKS
汇报人:XX
向量空间在解析几何、线性代数等领域中有着广泛的应用。
向量空间的基的定义
基是向量空间中线性无关的 向量组
向量空间是由同维线性组合 生成的向量集合
基的个数是向量空间的维数
基可以用来描述向量空间中 的任意向量
基的个数与向量空间的维数的关系
基的个数必须 等于向量空间
的维数
基的个数不能 超过向量空间
的维数
06 基 与 维 数 的 计 算 注 意事项
Part One
单击添加章节标题
Part Two
向量空间与基的定 义
向量空间的定义
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、加法的结合律和交换律、数乘的 结合律和分配律。
向量空间中的向量可以进行加法、数乘等运算,且满足一定的性质。
向量空间中的向量可以表示为坐标系中的点或矢量,具有方向和大小。
迭代法:利用迭 代算法求解基
维数的计算方法
定义:基与维数是线性代数中描述向量空间的重要概念,维数等于向量空间的基中向量的个数。 计算方法:通过求解线性方程组,可以得到向量空间的基,从而计算出维数。 应用:维数的计算在解决实际问题中具有广泛的应用,如机器学习、图像处理等领域。 注意事项:在计算维数时,需要注意线性相关性的问题,避免出现计算错误。
线性代数基和维数
![线性代数基和维数](https://img.taocdn.com/s3/m/7da6345f0b1c59eef8c7b4cd.png)
对于矩阵A,A的列之间的线性关系可以表 成Ax=0,其中x为相应的组合系数构成的列 向量.(如果A的某列在某个关系式中不出现, 则相应的系数为零.)
A经初等行变换化为B后,B的列一般与A的 列完全不同,但Ax=0和Bx=0两个方程组同 解,这意味着,A的列与B的相应列之间有 完全相同的线性关系. 因而有以下结果:
一向量 必可表为 1,2,..., p 的线性组合.
如果 能用两种方式表成1,2,..., p 的线性 组合,即
k11 k22 ... k p p , l11 l22 ... lp p.
两式相减,有
0 (k1 l1)1 (k2 l2 )2 ... (k p lp ) p.
(2) 如果 H 0, 则必有S的某个子集是H的基.
证明:(1)不妨设 p 是1, , p1 的线性组合:
p c11 c p1 p1.
H中的任意向量 可以表为
k11 k p1 p1 k p p ,
代入上式,容易验证 是1, , p1的线性组合.
可以看出,线性相关的生成集包含了冗余信息,
即如果 S 1,2, ,p是子空间H的线性相关生成
集,则至少有一个向量可以写成其余p-1个向量的 线性组合,从而可以从S中去除,得到一个较小的 生成集.
另一方面,如果B 1, 2, , r是H的线性无关生成
集,则B中任一向量都不能由其余r-1个向量线性表 出,因此从B中去除一个向量后得到的B的子集一 定不是H的生成集(去除的向量不能由剩余向量线 性表出).
解: 设 在基 1, 2 , 3下的坐标为 x1, x2, x3 T,则
x1
1
2
向量空间的基、维数与向量的坐标
![向量空间的基、维数与向量的坐标](https://img.taocdn.com/s3/m/b564e0b1a45177232e60a22d.png)
同一个向量在不同基下的坐标一般是不同的,
但这两个坐标向量有着必然联系.
4.3 向量组的秩
4.3.4 向量空间的基、维数与向量的坐标
3. 基变换公式和过渡矩阵
设1 , 2 , , n及 1 , 2 , , n为n维向量
空间 Rn的两个基,并且
4.3 向量组的秩
本节基本要求
u理解向量组的极大线性无关组及矩阵的秩的概念 u理解向量组的秩与矩阵的秩的关系 u掌握向量组的秩及极大线性无关组的求法 u理解向量空间的基、维数与向量的坐标等概念
本节重点、难点
u 重点: 1.向量组的极大线性无关组及矩阵的秩的 概念;
2.求向量组的秩及极大线性无关组的方法; 3.向量空间的基变换公式、坐标变换公式. u 难点:向量组的秩与极大线性无关组的相关结论.
12cc111211
c21 2 c22 2
cn1n , cn2n ,
(4.3.4)
n c1n1 c2n2 cnnn .
(4.3.4)式称为基变换公式,系数矩阵C (cij )nn
称为从基1 ,2 , ,n到1 ,2 , ,n的过渡矩阵.
4.3 向量组的秩
4.3.4 向量空间的基、维数与向量的坐标 4. 向量在不同基下的坐标变换公式
4.3 向量组的秩
4.3.4 向量空间的基、维数与向量的坐标
2. 向量在基下坐标
设1 , 2 , , r 是向量空间V的一个基,则 V中的任一向量 都能由 1 , 2 , , r 线性表
示, 且表示式唯一, 即有
x11 x22 xrr , 表示系数x1 , x2 , , xr 称为向量 在基1 , 2 , , r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 4.4 向量空间
2. 设V是Rn的非空子集, 且对向量的加法及数 乘封闭(closed), 即 , V, kR, 有+V, kV,
closure conditions
则称V是Rn的一个子空间(subspace), 或直接 称为一个(实)向量空间(real vector space). 仅含有零向量0的集合{0}关于向量的线性运 算也构成一个向量空间.
事实上, 对于这个例子, 除了A3, A4以外, A1, A2, A3, A4中任意两个向量都构成 L(A1, A2, A3, A4)的一组基.
第四章 n维列向量空间
§ 4.4 向量空间
三. 向量在基下的坐标
1, 2, …, r——V 的一组基,
由定义, 对V, 唯一的一组有序实数 k1, k2, …, kr使得 = k11+k22+…+krr . {k1, k2, …, kr}T —— 在1, 2, …, r 这组
1, 2, …, s——生成元(generator).
第四章 n维列向量空间
§ 4.4 向量空间
二. 向量空间的基(basis)与维数(dimension) 1, 2, …, r ——V的一组基:
① 1, 2, …, r线性无关, ② V都能由1, 2, …, r线性表示. r称为V的维数. 记为维(V)或dim(V). n维基本单位向量组就是Rn的一组基, dim{Rn} = n; 零空间没有基, 规定dim{0} = 0. 例2. 求例1中的各向量空间的基与维数.
Rn和{0}称为Rn的平凡(trivial)子空间.
第四章 n维列向量空间来自§ 4.4 向量空间例1. 检验下列集合是否构成向量空间. (1) V = {(x, y, 0) | x, y R};
(2) V = {(x, y, z) | x, y, z R, x+yz = 0};
(3) ARmn, bRm, b0, KA = {Rn | A = 0}; SB = {Rn | A = b}.
基下的坐标(coordinate).
第四章 n维列向量空间
§ 4.4 向量空间
四. 基变换与坐标变换 设1, 2, …, r和1, 2, …, r是V 的两组基,
则存在rr矩阵P使
(1, 2, …, r) = (1, 2, …, r)P. 称P为从基1, 2, …, r到1, 2, …, r的过 渡矩阵(transition matrix).
第四章 n维列向量空间
§ 4.4 向量空间
定理2.7. 1, 2, …, s的极大无关组是 L(1, 2, …, s)的基 dimL(1, …, s) = r(1, …, s). 特别地, A = (A1, A2, …, As),
L(A1, A2, …, As)——A的列空间(column space)
1 2 1 1 例3. 设A = [A1, A2, A3, A4] = 0 1 1 1 , 1 0 1 1 求L(A1, A2, A3, A4)的一组基和维数.
dimL(A1, A2, …, As) = 秩(A).
第四章 n维列向量空间
§ 4.4 向量空间
1 2 1 1 1 2 1 1 初等 解 : 0 1 1 1 0 1 1 1 1 0 1 1 行变换 0 0 0 0 可见dim L(A1, A2, A3, A4) = 2, A1, A2是L(A1, A2, A3, A4)的一组基. 注: 此外A1, A3也是L(A1, A2, A3, A4)的一组基. 还有A1, A4.
第四章 n维列向量空间
§ 4.4 向量空间
(4) 1, 2, …, sRn, L(1, 2, …, s) = { kii | 诸kiR}.
i=1
s
——由1, 2, …, s生成的向量空间 (generated/spanned by 1, …)或
{1, 2, …, s}的线性包(linear closure).
由r = r(1, 2, …, r) r(P) r可得r(P) = r.
故|P| 0, 即P可逆.