最新利用导数求参数范围举例

合集下载

利用导数求参数范围举例

利用导数求参数范围举例

利用导数求参数范围举例例1.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f (1) 求a、b的值及函数)(x f 的单调区间.(2) 若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. 解:(1)2,21-=-=b a 2122)2(]2,1[)(,2)2(,21)1(23)1(,2722)32(132023,23)().2(222'>-<+>+=-+=+=-+-=+=-=-==----=c c c ,c c f x f c f c f cf c f x x x x x x x f 或解得从而上的最大值为在所以且或得由例2.已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值 (1) 求函数)(x f 的解析式.(2) 若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围. 解:(1)求得x x x f 3)(3-=(2)设切点为33)(),3,(2'0300-=-x x f x x x M 因为200'20300020300200302066)(332)(,0332)1)(33(3),1)(33(x x x g m x x x g x A m x x x x m x x M x x m y -=++-=**=++---=----=-则设有三个不同的实数根的方程所以关于可作曲线的三条切线因为过点即所以又切线过点所以切线方程为)2,3(230)1(0)0(1,0)(,)1,0(,),1(),0,()(100)(00000000'---<<-⎩⎨⎧<>*==+∞-∞===的取值范围是所求的实数解得条件是有三个不同实根的充要的方程所以关于的极值点为故函数上单调递减在上单调递增在所以或得由m m g g x x x x g x g x x x g 例3.已知,)(2c x x f +=且)1()]([2+=x f x f f 。

导数的应用——利用单调性求参数的取值范围

导数的应用——利用单调性求参数的取值范围

导数的应用——利用单调性求参数的取值范围在解题中,我们首先要确定参数的取值范围是有限的,也就是参数不能无限制地取值。

然后我们利用导数的单调性来排除一些不符合要求的取值范围,从而找到参数的合理取值范围。

为了更好地理解这个方法,我们来看一个具体的例子:问题:已知函数f(x) = ax^2 + bx + c,其中a > 0。

如果函数f(x)在定义域内是递增函数,求参数b的取值范围。

解答:首先,我们要明确函数f(x)是递增函数的定义:对于任意的x1<x2,有f(x1)<f(x2)。

我们可以通过求函数f(x)的导函数f'(x)来判断函数f(x)的单调性。

在本例中,函数f(x)的导函数为f'(x) = 2ax + b。

由于函数f(x)为递增函数,所以f'(x)应该大于0。

即对于任意的x,有f'(x)>0。

我们可以把f'(x) > 0看作是一个一次函数y = 2ax + b > 0的解。

这个一次函数的解为x < -b/2a。

也就是说,对于任意的x<-b/2a,有f'(x)>0。

这样一来,我们就可以得出结论,函数f(x)在x<-b/2a的区间上是递增函数。

但是我们并不能马上就得出参数b的取值范围是x<-b/2a。

因为函数f(x)的定义域可能不包含这个区间。

为了求出参数b的取值范围,我们需要进一步考虑函数f(x)的定义域。

对于函数f(x) = ax^2 + bx + c来说,它的定义域是所有实数集合R。

因此,对于任意实数x,函数f(x)都有定义。

由于我们已经确定了函数f(x)在x<-b/2a的区间上是递增函数,所以我们只需要确定使得这个区间包含在定义域内的参数b的取值范围即可。

如果我们假设b/2a为一个实数k,那么我们可以得出-x>k。

即对于任意的x>-k,函数f(x)是递增的。

然而,x的取值范围是所有实数,所以我们可以把任意实数k当作是b/2a。

利用导数求参数的取值范围

利用导数求参数的取值范围

利用导数求参数的取值范围在微积分中,导数是用来描述一个函数在其中一点上的变化率的工具。

通过求导,我们可以研究函数的增减性、最值、拐点等性质。

而利用导数求参数的取值范围,我们主要关注函数的单调性和极值点,对于包含参数的函数,我们可以利用导数来研究参数的取值范围。

设函数$f(x)$为包含参数$a$的函数,我们的目标是求出参数$a$的取值范围,使得函数$f(x)$满足其中一特定条件。

下面将分别讨论求函数单调性和极值点的情况。

一、函数的单调性:1.1单调递增:要求函数$f(x)$在其中一区间上单调递增,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)<f(x_2)$。

若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒大于零,则函数$f(x)$在该区间上是单调递增的。

因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递增。

具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。

2)解方程$f'(x)>0$,求出与参数$a$有关的不等式。

3)解不等式,得到参数$a$的取值范围。

1.2单调递减:要求函数$f(x)$在其中一区间上单调递减,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)>f(x_2)$。

若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒小于零,则函数$f(x)$在该区间上是单调递减的。

因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递减。

具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。

2)解方程$f'(x)<0$,求出与参数$a$有关的不等式。

3)解不等式,得到参数$a$的取值范围。

高考热点利用导数求函数参数的范围问题

高考热点利用导数求函数参数的范围问题

难点一 利用导数探求参数的范围问题1. 与函数零点有关的参数范围问题函数的零点,即的根,亦即函数的图象与轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题),进而确定参数的取值范围. 例1(2020·全国高三专题练习)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】()()()()22331x x x x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根, 且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内,或者两个根都在()2,0e -内.()f x ()0f x =()f x xx因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D2. 与曲线的切线有关的参数取值范围问题函数在点处的导数就是相应曲线在点处切线的斜率,即,此类试题能与切斜角的范围,切线斜率范围,以及与其他知识综合,往往先求导数,然后转化为关于自变量的函数,通过求值域,从而得到切线斜率的取值范围,或者切斜角范围问题.例2. (2020·全国高三专题练习(理))已知函数21()2,()f x x ax g x x=+=-,若存在点()()()()1122,,,A x f x B x g x ,使得直线AB 与两曲线()y f x =和()y g x =都相切,当实数a 取最小值时,12x x +=( )A.B.2CD.4-【答案】A 【解析】2()2,f x x ax =+Q ∴ ()22f x x a '=+,∴()1122f x x a '=+,又()21112f x x ax =+,过A 点切线方程为:()21122y x a x x =+-,①又1()g x x =-Q ,∴21()g x x'=,即()2221g x x '=,又()221g x x =-,因此过B 点的切线方程为:22212y x x x =-,② 由题意知①②都为直线AB , 1222121222x a x x x ⎧+=⎪⎪⎨⎪-=-⎪⎩,4118x a x =-, 令4()8x h x x =-,332()122x x h x '-=-=, ()y f x =0x x ='0()f x 00(,())x f x '0()k f x =0x k令()0h x '=,x =(,0)x ∈-∞和时,()h x 单调递减,且(,0)x ∈-∞时()()00h x h >=,恒成立,)x ∈+∞时,()h x单调递增,x ∴=时,()min h x,1x ∴=,则2212x x==12x x ∴+=故选:A . 3.与不等式恒成立问题有关的参数范围问题含参数的不等式恒成立的处理方法:①的图象永远落在图象的上方;②构造函数法,一般构造,;③参变分离法,将不等式等价变形为,或,进而转化为求函数的最值. 3.1 参变分离法将已知恒成立的不等式由等价原理把参数和变量分离开,转化为一个已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则. 例3.【河南省实验中学2019届模拟三】已知函数f (x )=e x −x −1(e 是自然对数的底数). (1)求证:e x ≥x +1;(2)若不等式f (x )>ax −1在x ∈[12,2]上恒成立,求正数a 的取值范围.思路分析:(1)要证e x ≥x +1,只需证f (x )=e x ﹣x ﹣1≥0,求导得f ′(x )=e x ﹣1,利用导数性质能证明e x ≥x +1.(2)不等式f (x )>ax ﹣1在x ∈[12,2]上恒成立,即a <e x −x x在x ∈[12,2]上恒成立,令g (x )=e x −x x,x ∈[12,2],利用导数性质求g (x )=e x −x x在x ∈[12,2]上的最小值,由此能求出正数a 的取值范围.【详解】(1)由题意知,要证e x ≥x +1,只需证f (x )=e x −x −1≥0,求导得f ′(x )=e x −1,当x ∈(0,+∞)时,f ′(x )=e x −1>0,当x ∈(−∞,0)时,f ′(x )=e x −1<0,∴f (x )在x ∈(0,+∞)是增函数,在x ∈(−∞,0)时是减函数,即f (x )在x =0时取最小值f (0)=0,∴f (x )≥f (0)=0,即f (x )=e x −x −1≥0,∴e x ≥x +1.(2)不等式f (x )>ax −1在x ∈[12,2]上恒成立,即e x −x −1>ax −1在x ∈[12,2]上恒成立,亦即a <e x −x x在x ∈[12,2]上恒成立,令g (x )=e x −x x,x ∈[12,2],以下求g (x )=e x −x x 在x ∈[12,2]上的最小值,g ′(x )=e x (x−1)x 2,当x ∈[12,1]时,g ′(x )≤0,当x ∈[1,2]]时,g ′(x )≥0,∴当x ∈[12,1]]时,g (x )单调递减,当x ∈[1,2]]时,g (x )单调递增,∴g (x )在x =1处取得最小值为g (1)=e −1,∴正数a 的取值范围是(0,e −1).()()f x g x >()y f x =()y g x =()()()F x f x g x =-min ()0F x >()a h x >()a h x <()h x3.2 构造函数法参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.例4.(2020·四川三台中学实验学校高三开学考试)已知函数()ln f x x x a =+,()ln ,g x x ax a =-∈R . (1)求函数()f x 的极值; (2)若10a e<<,其中e 为自然对数的底数,求证:函数()g x 有2个不同的零点; (3)若对任意的1x >,()()0f x g x +>恒成立,求实数a 的最大值.(1)函数()f x 的定义域为0x >,因为()ln f x x x a =+,所以()ln 1f x x =+‘,当1x e >时,()0f x >‘,所以函数()f x 单调递增;当10x e<<时,()0f x <‘,所以函数()f x 单调递减,因此1e 是函数()f x 的极小值,故函数()f x 的极值为极小值,值为11()f a e e=-+;无极大值 (2)函数()g x 的定义域为0x >,因为()ln ,g x x ax =-所以'1()g x a x=-,因为10a e <<,所以当1x a >时,'()0g x <,因此函数()g x 是递减函数,当10x a<<时,'()0g x >,函数()g x 是递增函数,所以函数()g x 的最大值为: max 1111()()ln ln 1g x g a a a a a==-⋅=-, 因为10a e <<,所以11ln 1e a a>⇒>,因此有max ()0g x >, 因为1e a >,所以(1)0g a =-<,因此当10x a<<时,函数()g x 有唯一零点;因为10a e <<,所以211a a >,22211111()ln 0g a a a a a =-<-<,故函数()g x 在1x a>时,必有唯一的零点,因此函数()g x 有2个不同的零点;(3)设()()()ln ln h x f x g x x x a x ax =+=++-,(1)0h =,'1()ln 1h x x a x =++-,因为211()0h x x x''=->,所以函数()h x '在1x >时单调递增,即'((2)1)h h a x '>=-当20a -≥时,即2a ≤,1x >时,'()0h x >,函数()h x 在1x >时单调递增,因此有()(1)0h x h >=,即当1x >时,()()0f x g x +>恒成立;当2a >时,''1(1)20,()10,aa h a h e e=-<=+>所以存在0(1,)a x e ∈,使得'0()0h x =,即当0(1,)x x ∈时,函数()h x 单调递减,所以此时0()()(1)0h x h x h <<=,显然对于当1x >时,()()0f x g x +>不恒成立,综上所述,2a ≤,所以实数a 的最大值为2. 4.与函数单调区间有关的参数范围问题若函数在某一个区间可导,函数在区间单调递增;函数在区间单调递减.若函数在某一个区间可导,且函数在区间单调递增恒成立;函数在区间单调递减恒成立.4.1 参数在函数解析式中转化为恒成立和恒成立问题后,利用恒成立问题的解题方法处理 例5. (2020·陕西高三月考)已知函数()sin ln f x a x b x x =+-. (1)当0,1a b ==时,证明:()1f x -„. (2)当6b π=时,若()f x 在0,3π⎛⎫⎪⎝⎭上为增函数,求a 的取值范围. (1)证明:当0,1a b ==时,()ln f x x x =-,所以1()xf x x-'=. 令()0f x '>,得01x <<;令()0f x '<,得1x >. 所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以max ()(1)1f x f ==-, 故()1f x -„. (2)解:当6b π=时,()cos 16f x a x xπ'=+-,由题可知()0f x '≥ 所以cos 106a x xπ+-…在0,3π⎛⎫ ⎪⎝⎭上恒成立,即66cos x a x x π-…在0,3π⎛⎫⎪⎝⎭上恒成立.令6(),0,6cos 3x h x x x x ππ-⎛⎫=∈ ⎪⎝⎭,显然当0,6x π⎛⎫∈ ⎪⎝⎭时,()0h x <; ()f x D '()0f x >⇒()f x D '()0f x <⇒()f x D ()f x D ()f x D ⇒'()0f x ≥()f x D ⇒'()0f x ≤'()0f x ≥'()0f x ≤当,63x ππ⎛⎫∈⎪⎝⎭时,()0h x >. 而当,63x ππ⎛⎫∈⎪⎝⎭时,22cos (6)sin ()06cos x x x x h x x x ππ+-'=>, 所以()h x 在,63ππ⎛⎫⎪⎝⎭上单调递增, 所以()13h x h π⎛⎫<=⎪⎝⎭, 所以1a …,即a 的取值范围是[1,)+∞. 点评:导数与函数的单调性(1)函数单调性的判定方法:设函数y =f(x)在某个区间内可导,如果f′(x)>0,则y =f(x)在该区间为增函数;如果f′(x)<0,则y =f(x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法. 4.2 参数在定义域中函数解析式确定,故可先确定其单调区间,然后让所给定义域区间包含在单调区间中. 例6.已知函数ln ()a x f x x +=,曲线ln ()a x f x x+=在点(,())e f e 处的切线与直线20e x y e -+=垂直.注:e 为自然对数的底数.(1)若函数()f x 在区间(,1)m m +上存在极值,求实数m 的取值范围;(2)求证:当1x >时,1()21(1)(1)x xf x e e x xe ->+++. 思路分析:(1)求函数ln ()a x f x x +=的导数()f x ',由曲线ln ()a xf x x +=在点(,())e f e 处的切线与直线20e x y e -+=垂直可得21()f e e '=-,可求出a 的值,这时2ln '()(0)xf x x x=->,讨论导数的符号知函数()f x 仅当1x =时,取得极值,由1(,1)m m ∈+即可求实数m 的取值范围;(2)当1x >时,1()21(1)(1)x x f x e e x xe ->⇔+++11(1)(ln 1)211x x x x e e x xe -++>++g 令(1)(ln 1)()x x g x x++=,令12()1x x e h x xe -=+,由max min()()1g x h x e ⎛⎫>⎪+⎝⎭证之即可.试题解析: (1)因为ln ()a x f x x +=,所以21ln '()a x f x x --=.又据题意,得21'()f e e =-,所以221a e e -=-,所以1a =.所以1ln ()x f x x +=.所以2ln '()(0)xf x x x=->.当(0,1)x ∈时,'()0f x >,()f x 为增函数;当(1,)x ∈+∞时,'()0f x <,()f x 为减函数.所以函数()f x 仅当1x =时,取得极值.又函数()f x 在区间(,1)m m +上存在极值,所以11m m <<+,所以01m <<.故实数m 的取值范围是(0,1).(2)当1x >时,1()21(1)(1)x x f x e e x xe ->+++,即为11(1)(ln 1)211x xx x e e x xe -++>++g .令(1)(ln 1)()x x g x x++=,则22[(1)(ln 1)]'(1)(ln 1)ln '()x x x x x x x g x x x ++-++-==.再令()ln x x x ϕ=-,则11'()1x x x xϕ-=-=. 又因为1x >,所以'()0x ϕ>.所以()x ϕ在(1,)+∞上是增函数.又因为(1)1ϕ=,所以当1x >时,'()0g x >. 所以()g x 在区间(1,)+∞上是增函数.所以当1x >时,()(1)g x g >,又(1)2g =,故()211g x e e >++.令12()1x x e h x xe -=+,则11122(1)(1)'2(1)'()2(1)(1)x x x x x x x x e xe xe e e e h x xe xe ---+-+-==++g .因为1x >,所以122(1)0(1)x x x e e xe --<+.所以当1x >时,'()0h x <,故函数()h x 在区间(1,)+∞上是减函数.又2(1)1h e =+, 所以当1x >时,2()1h x e <+,所以()()1g x h x e >+,即1()21(1)(1)x x f x e e x xe ->+++. 点评:本题考查了利用导数判断函数单调性等基础知识,理解单调性的概念是解题关键. 5.与逻辑有关的参数范围问题新课程增加了全称量词和特称量词应用这一知识点,并且在考试卷中屡屡出现,使得恒成立问题花样推陈出新,别有一番风味,解决的关键是弄懂量词的特定含义.例7.已知函数()()22 01 0x x ax e x f x x x b⎧->⎪=⎨≤⎪⎩,,在2x =处的切线斜率为272e .(1)求实数a 的值;(2)若0x >时,()y f x m =-有两个零点,求实数m 的取值范围. (3)设()()ln x g x b f x =+-,若对于130 2x ⎛⎤∀∈ ⎥⎝⎦,,总有()21 2.71828x e e e ⎡⎤∈=⎢⎥⎣⎦,…,使得()()12f x g x ≥,求实数b 的取值范围.思路分析:(1)根据导数几何意义得()27'22e f =,所以求导数()()2'222x f x e x a x a ⎡⎤=+--⎣⎦列出等量关系,求解得34a =(2)利用导数研究函数()()22xf x x ax e =-单调变化趋势:在()0 1,单调递减,在()1 +∞,单调递增,再考虑端点值:()300,()2f f f ⎛⎫==+∞→+∞ ⎪⎝⎭,所以要有两个零点,需 02e m ⎛⎫∈- ⎪⎝⎭,(3)不等式恒成立问题,一般方法为转化为对应函数最值:()()min f x g x ≥,由前面讨论可知()()min 12ef x f ==-,所以()()ln ln 12x x e g x b b f x x ⎛⎫=+=-≤- ⎪-⎝⎭在1 x e e ⎡⎤∈⎢⎥⎣⎦,有解,即1ln 21e b x x ≤-⋅-的最大值,先求ln 1x y x =-,1 x e e ⎡⎤∈⎢⎥⎣⎦,最大值,而=利用导数易得1x e =时ln 1x y x =-取最大值1e +,即()21e b e ≤-+ 试题解析:(1)0x >时,()()()()222 '222x x f x x ax e f x e x a x a ⎡⎤=-=+--⎣⎦,,由条件知()27'22e f =,∴34a =. (2)0x >时,()()22xf x x ax e =-,∴()()()1'1232x f x e x x =-+,()f x 在()0 1,单调递减,在()1 +∞,单调递增,()3002f f ⎛⎫== ⎪⎝⎭,则()min 12e f f ==-,∴ 02e m ⎛⎫∈- ⎪⎝⎭,时,()y f x m =-有两个零点. (3)由题意,即要()()min min f x g x ≥ (*)当0x >时,()232xf x x x e ⎛⎫=- ⎪⎝⎭,由(2)知()()min 12e f x f ==-,当0x >时,0x -<,∴()()ln ln 1x x g x b b f x x ⎛⎫=+=- ⎪-⎝⎭,()2ln 1'x g x b x -=⋅,∵21 x e e ⎡⎤∈⎢⎥⎣⎦,,∴2ln 10x x -≤.①若0b >,()g x 在1 e e ⎡⎤⎢⎥⎣⎦,上是减函数,()()min 11g x g e b e ⎛⎫==- ⎪⎝⎭.∵()()min min f x g x <,∴(*)不成立.②若0b <,()g x 在1 e e ⎡⎤⎢⎥⎣⎦,上是增函数,()()min 11g x g b e e ⎛⎫==+ ⎪⎝⎭.要使()()min min f x g x ≥,只要()12e b e -≥+,则()21e b e ≤-+. (3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 综合上述五种类型,利用导数求解含参问题时,首先具备必要的基础知识(导数的几何意义、导数在单调性上的应用、函数的极值求法、最值求法等),其次要灵活掌握各种解题方法和运算技巧,比如参变分离法,分类讨论思想和数形结合思想等,涉及极值和最值问题时,一般情况下先求导函数,然后观察能否分解因式,若能则比较根的大小,并与定义域比较位置关系、分段考虑导函数符号,划分单调区间,判断函数大致图像;若不能分解因式,则考虑二次求导,研究函数是否具有单调性.利用导数处理参数范围问题并不可怕,关键在于通过解题不断摸索解题思路,形成一种解题格式和套路.。

(完整版)利用导数求参数的取值范围方法归纳

(完整版)利用导数求参数的取值范围方法归纳

(完整版)利用导数求参数的取值范围方法归纳利用导数求参数的取值范围一.已知函数单调性,求参数的取值范围类型1.参数放在函数表达式上例1.设函数R a ax x a x x f ∈+++-=其中86)1(32)(23.的取值范围求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(.,3)()1(-∞=二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上例3.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f(1)求a、b的值及函数)(x f 的单调区间.(2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.323的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--=类型2.参数放在区间上例4.已知三次函数d cx x ax x f ++-=235)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值.(1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围.分析:(1)935)(23++-=x x x x f ]3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,31(9)0()()(,0)()31,0(3,310)()3)(13(3103)().2(''21‘2'的取值范围为所以内恒成立在时当且仅当内不恒成立在时所以当所以单调递减时当所以单调递增时当得由m m x f m ,m x f m f x f x f x f x f x f ,x f x f x x x x f x x x x x f >∈>>=><∈=>>∈===--=+-=基础训练:.___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-三.知函数图象的交点情况,求参数的取值范围.例5.已知函数1,13)(23=-=-+=x x x bx ax x f 在处取得极值(1) 求函数)(x f 的解析式.(2) 若过点)2)(,1(-≠m m A 可作曲线y=)(x f 的三条切线,求实数m 的取值范围.略解(1)求得x x x f 3)(3-=(2)设切点为33)(),3,(2'0300-=-x x f x x x M 因为200'20300020300200302066)(332)(,0332)1)(33(3),1)(33(x x x g m x x x g x A m x x x x m x x Mx x m y -=++-=**=++---=----=-则设有三个不同的实数根的方程所以关于可作曲线的三条切线因为过点即所以又切线过点所以切线方程为)2,3(230)1(0)0(1,0)(,)1,0(,),1(),0,()(100)(00000000'---<<-<>*==+∞-∞===的取值范围是所求的实数解得条件是有三个不同实根的充要的方程所以关于的极值点为故函数上单调递减在上单调递增在所以或得由m m g g x x x x g x g x x x g总结:从函数的极值符号及单调性来保证函数图象与x 轴交点个数.基础训练:轴仅有一个交点与曲线在什么范围内取值时当的极值求函数为实数设x x f y a x f ax x x x f a )(,)2()()1()(,.523=+--=变式2:若函数5)(23-+-=x x ax x f 在),(+∞-∞上单调递增,求a的取值范围。

例说高考题中的使用导数求参数范围

例说高考题中的使用导数求参数范围

∴在[ln(3a), ln(4a)]上,
(x)
max
=

(ln(4a))
故原不等式成立,当且仅当
=
12a ln(
5

)
min

(ln(4a))
g
(
x)
ex a ex a
<
min
m
8a = g (ln(3a)) = ln( ) ,
<
g
点评:问题(2)涉及的式子看似复杂,难以下手,一旦使不等式问题函数化,问题就变得 简单多了。再借用导数判断出新函数的单调性,即可求出在给定区间的最值,问题即迎刃 而解。 二 与极值点的个数有关
∴ f (x) = 3x2 + 2x +t .
若 f ( x) 在区间(-1,1)上是增函数,则有 f ( x) ≥0
t ≥ 3x2 - 2x 在 (-1,1)上恒成立.
若令 g ( x) = 3x2 - 2x =-3( x 1 ) 2 - 1
33
在区间[-1,1]上, g ( x) = g (1) =5,故在区间(-1,1)上使 t ≥ g ( x) 恒成立,
例说高考题中的利用导数求参数范围
河北 高亚平
导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。也越来越 受到高考命题专家的“青睐”。其中,利用导数求参数的取值范围,更是成为近年来高考的 热点。在 04 年高考中,湖北、辽宁等地考查了这点;在 05 年的高考中,湖北、辽宁、湖 南、山东、重庆、天津等地更着重考查了这一点,甚至很多都安排在倒数第一、二题的位 置上!
2
24
② 若 a >1,则 g ( x) 在(- 1 ,0)上为增函数,须使 g ( x) = 3x 2 a >0 在(- 1 ,0)上恒成立,

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类

利用导数求含参数的函数单调区间的分类讨论归类一、根据判别式 △=b ²-4ac 讨论↵例1.已知函数. f(x)=x ³+ax ²+x+1(a∈R),求f(x)的单调区间.解: f ′(x )=3x²+2ax +1,判别式△=b ²-4ac=4(a ²-3),(1)当 a >√3或 a <−√3时,则在 (−∞,−a−√a 2−33)和 (−a+√a 2−33,+∞)上,f'(x)>0, f(x)是增函数;在 (−a−√a 2−33,−a+√a 2−33),f ′(x )<0,f(x)是减函数;(2)当 −√3<a <√3时,则对所有x∈R, f'(x)>0, f(x)是(-∞,+∞)上的增函数;↵二、根据判二次函数根的大小讨论↵例2:已知函数. f (x )=(x²+ax −3a²+3a )eˣ(a ∈R 且 a ≠23),求f(x)的单调区间. 解: f ′(x )=[x²+(a +2)x −2a²+4a ]⋅eˣ,f ′(x )=(0得x=-2a 或x=a-2↵(1)当 a >23时,则-2a<a-2,在(-∞,-2a)和(a-2,+∞)上, f'(x)>0, f(x)是增函数;在(-2a,a-2)上, f'(x)<0, f(x)是减函数;(2)当 a <23时,则a-2<-2a,在(-∞,a -2)和(-2a,+∞)上, f'(x)>0, f(x)是增函数;在(a-2,-2a)上, f'(x)<0, f(x)是减函数;题型归纳总结:求导后是二次函数的形式,如果根的大小不确定,应对根的大小讨论确定单调区间.练习2↵三、根据定义域的隐含条件讨论。

例3:已知函数f(x)=lnx-ax(a∈R),求f(x)的单调区间.解: f ′(x )=1x −a (x ⟩0), (1)当a≤0时, f ′(x )=1x −a >0,在(0,+∞)上,f'(x)>0, f(x)是增函数;(2)当a>0时,令 f ′(x )=1x −a =0,得 x =1a ,题型归纳总结:定义域有限制时,定义域与不等式解集的交集为分类标准讨论。

导数恒成立问题求参数范围

导数恒成立问题求参数范围

导数恒成立问题求参数范围好嘞,今天咱们聊聊“导数恒成立问题求参数范围”这个话题,别看这个名字听上去高大上,其实说白了就是要搞清楚,什么情况下一个函数的导数总是成立。

先来个简单的背景介绍,导数嘛,就是数学里用来描述一个函数变化速度的工具,像车速表一样。

你要是开车,看看速度表,啊,今天我开得挺快,这就是导数在起作用。

好了,咱们举个简单的例子,想象你有个函数,它的样子就像是弯弯曲曲的山路。

你走这条路的时候,有时候上下起伏,有时候平平的。

如果这条路一直都是上坡或者下坡,那导数就恒成立了。

反过来,如果你遇到的路况不一样,比如突然出现个大坑,那导数就不再恒成立了,懂了吗?再来点具体的,假设有个函数,像是f(x) = ax² + bx + c。

这个函数的导数就是f'(x) = 2ax + b。

如果我说这个导数恒成立,那么就意味着不管你给我什么x,这个导数都必须有意义,也就是说,不会变成无穷大,或者不连续。

这里的参数a、b、c就成了关键角色,像是我们生活中的小伙伴,得看他们的表现。

现在,你可能会问,怎么才能搞清楚这参数的范围呢?我们得先了解什么是“恒成立”。

就像你每天吃饭,不管怎样都得吃,不可能今天想吃米饭,明天又想吃饺子,哈哈,没门儿!所以对于我们的函数,如果它的导数在某个范围内都是稳定的,那我们就得找出这个范围。

这些参数就像是调味料,放多了味道会太重,放少了又不够。

这时候我们可以考虑导数的零点,特别是2ax + b = 0的时候,咱们可以解出x的值。

想象一下,如果有个b恰好是0,那这个函数就像是一个平稳的湖面,没有波澜,真是太好啦!但是,若是a也为0,那这个函数直接就成了常数函数,导数自然也成了0。

这样一来,大家都快乐,哈哈。

不过,若是a大于0或者小于0,那我们就得小心了。

因为这时候函数的形状会随着x的变化而变化。

我们不想一会儿上天,一会儿入地,对吧?所以参数a就像是把握方向的舵,得仔细考虑。

利用导数处理不等式恒成立求参数范围

利用导数处理不等式恒成立求参数范围

(ea-1,+∞).
(2)∵f(x)≤2a,∴a≤______________,
令g(x)= ,x≥2,则g′(x)= , __________________________
______________________
令t(x)=ln x-x+1,则t′(x)= = , _________________________ ___________________ 由t′(x)>0解得0<x<1,由t′(x)<0解得x>1, 故t(x)在(0,1)上单调递增,在(1,+∞)上单调递减, t(x)max=t(1)=0, ∴当x≥2时,t(x)<0,所以ln x<x-1, ∴g′(x)>0,g(x)在[2,+∞)上单调递增,∴g(x)min= g(2) ∴a≤g(2)=2ln 2,∴a的取值范围(-∞,2ln 2].
利用导数研究恒成立问题
一.已知不等式恒成立求参数范围问题 常见处理的方法: 1. 部分分离参数后,数形结合(适用于选择填空题); 2. 完全分离参数,转化为求函数(不含参数)的最值;
3. 含参数,直接讨论求函数最值(讨论) 4. 同构式转化,利用复合函数的单调性进行转化等。
例1 (2022·浙江嘉兴高三模拟)已知函数f(x)=-xln x +a(x+1),a∈R.
在区间(1,e]上,g′(x)>0,函数g(x)为增函数.
故g(x)min=g(1)=4,所以a≤4, 所以实数a的取值范围是(-∞,4].
【答案】 (-∞,4]
(1)求函数f(x)的单调区间; (2)若关于x的不等式f(x)≤2a在[2,+∞)上恒成立,求 a的取值范围.
【解析】 (1)当a=0时,f(x)=-xln x(x>0), f′(x)=-ln x-1,由f′(x)>0解得0<x<e-1,由f′(x)<0解得x>e-1, 故f(x)的单调递增区间为(0,e-1),单调递减区间为(e-1,+ ∞); 当a≠0时,由f(x)=-xln x+a(x+1),得f(x)的定义域为(0, +∞), f′(x)=-(ln x+1)+a,令f′(x)=-(ln x+1)+a=0,解得x= ea-1,

例说高考题中的利用导数求参数范围

例说高考题中的利用导数求参数范围

例说高考题中的利用导数求参数范围导数,作为解决与高次函数有关问题的一种工具,有着无可比拟的优越性。

也越来越受到高考命题专家的“青睐”。

其中,利用导数求参数的取值范围,更是成为近年来高考的热点。

在04年高考中,湖北、辽宁等地考查了这点;在05年的高考中,湖北、辽宁、湖南、山东、重庆、天津等地更着重考查了这一点,甚至很多都安排在倒数第一、二题的位置上!现以04和05年的几道高考题为例,探讨一下用导数求参数范围的几种常见题型及求解策略。

一 与二次函数的性质、单调性、不等式等相联系 求解策略:利用“要使a x f >)(成立,只需使函数的最小值a x f >m in)(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <m ax)(恒成立即可”.这也是近两年高考考查和应用最多的一种.例1(05湖北理)已知向量a =(2x ,1+x ),a =(x -1,t ),若b a x f ∙=)(在区间(-1,1)上是增函数,求t 的取值范围.解析:由向量的数量积定义,)(x f =2x (x -1)+(1+x)t =3x-+2x +tx +t∴)(x f '=23x -+x 2+t .若)(x f 在区间(-1,1)上是增函数,则有)(x f '≥0⇔t ≥23x -x 2在 (-1,1)上恒成立.若令)(x g =23x -x 2=-3(31-x )2-31在区间[-1,1]上,max)(x g =)1(-g =5,故在区间(-1,1)上使t ≥)(x g 恒成立,只需t ≥)1(-g 即可,即t ≥5.即t 的取值范围是[5,∞).点评:本题除了用导数反映单调性,还借助了二次函数的性质求出最值,且要注意边界值的取舍。

例2使不等式4x -22x >a -2对任意的实数x 都成立,求实数a 的取值范围. 解析:注意到不等式的次数较高,应想到构造函数,求导.令)(x f =4x -22x ,则如果原不等式对任意的实数x 都成立等价于min)(x f >a -2.又)(x f '=34x -x 4=42x (1-x ),令)(x f '=0,解得,x =0或x =1.)(x f '的符号及)(x f 的单调性如下:x(-∞,0) 0 (0,1) 1 (1,+∞) )(x f ' - 0 - 0 + )(x f↘无极值↘极小值↗因为)(x f 在R 上的极值只有一个,故此极小值即为最小值,即min)(x f =)1(f = -1,∴min)(x f = -1>a -2,即a >3.点评:本题是利用导数求得函数的最值,进而求出参数范围的。

利用导数求参数取值范围的几种类型

利用导数求参数取值范围的几种类型

利用导数求参数取值范围的几种类型类型1. 与函数单调性有关的类型 例1.已知0a>,函数3()f x x ax =-在[)1,x ∈+∞是一个单调函数。

(1) 试问函数()f x 在[)1,+∞上是否为单调减函数?请说明理由; (2) 若函数()y f x =在[)1,+∞上是单调增函数,试求a 的取值范围。

解:(1)'2()3f x x a =-,若函数()f x 在区间[)1,+∞上单调递减,则'2()30f x x a =-≤在[)1,x ∈+∞上恒成立,即23x a ≤对[)1,x ∈+∞恒成立,这样的a 值不存在。

所以函数()f x 在区间[)1,+∞上不是单调减函数。

(2)函数()y f x =在区间[)1,+∞上是单调增函数,则'2()3f x x a =-0≥,即23a x ≤在[)1,x ∈+∞上恒成立,在此区间上233y x =≥,从而得03a <≤规律小结:函数在区间(a ,b)上递增'()0f x ⇔≥,递减'()f x ⇔0≤在此基础上再研究参数的取值范围(一般可用不等式恒成立理论求解)注意:解出的参数的值要是使'()f x 恒等于0,则参数的这个值应舍去,否则保留。

类型2:与极值有关的类型例2:.(创新拓展)设函数f (x )=a 3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.(1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式; (2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围. 解 由f (x )=a3x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c .∵f ′(x )-9x =ax 2+(2b -9)x +c =0的两个根分别为1,4,∴⎩⎪⎨⎪⎧a +2b +c -9=0,16a +8b +c -36=0,(*)(1)当a =3时,由(*)式得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0,解得b =-3,c =12,又因为曲线y =f (x )过原点, 所以d =0,故f (x )=x 3-3x 2+12x .(2)由于a >0,∵f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点,∴f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立. 由(*)式得2b =9-5a ,c =4a ,又Δ=(2b )2-4ac =9(a -1)(a -9).解⎩⎪⎨⎪⎧a >0,Δ=9(a -1)(a -9)≤0.得a ∈[1,9],即a 的取值范围为[1,9].类型3. 与不等式有关的类型例3.(2008安徽高考题理20)设函数1()(01)ln f x x x x x=>≠且 (1) 求函数()f x 的单调区间;(2) 已知12axx >对任意(0,1)x ∈成立,求实数a 的取值范围解:(1)'22ln 1()ln x f x x x +=-,'1()0,f x x e==若则,列表如下:x1(0,)e 1e1(,1)e(1,)+∞'()f x+ 0—— ()f x单调增极大值1()f e单调减单调减所以的单调增区间为,单调减区间为(3) 在12axx >两边取对数,得1ln 2ln a x x >由于01x <<所以1ln 2ln a x x>① 由(1)的结果知,当(0,1)x ∈时,1()()f x f e e≤=-。

利用导数求参数的取值范围

利用导数求参数的取值范围

利用导数求参数的取值范围在数学中,导数是一个非常重要的概念,用于刻画函数在其中一点的变化率。

利用导数求参数的取值范围,常常用于优化问题、最值问题等等。

下面我将从几个典型的例子入手,详细介绍如何利用导数求参数的取值范围。

首先,我们考虑一个简单的一元函数的例子。

假设有一个函数f(x),它的导数f'(x)在一些区间内恒大于0。

那么我们可以推知,在这个区间内,f(x)是递增的。

反过来,如果f'(x)在一些区间内恒小于0,那么f(x)在该区间是递减的。

利用这一点,我们可以通过求导数的方式来确定参数的取值范围。

举个例子来说明。

假设我们要求函数f(x) = ax^2 + bx + c(x > 0)在0到正无穷的取值范围。

我们可以先计算导函数f'(x) = 2ax + b。

由于题目中没有给定a的取值范围,我们要通过导数f'(x)来确定a的取值范围。

首先,我们要求f'(x)大于0。

这意味着2ax + b大于0。

当a大于0时,方程2ax + b = 0没有实数解,所以我们要求a小于0。

然后,我们要求f'(x)在x > 0时恒大于0,即对所有的x > 0,2ax + b > 0。

这表明a也必须小于0才能满足这个条件。

因此,我们可以得出结论,a小于0。

至于b和c,没有给出取值范围的要求,所以可以是任意实数。

接下来,我们考虑一个多元函数的情况。

同样地,我们希望通过求导数来确定参数的取值范围。

假设有一个二元函数f(x, y) = x^2 + y^2 + ax + by + c。

我们可以分别计算f对x和y的偏导数f_x和f_y。

如果f_x和f_y的取值范围有限,那么我们可以据此确定a和b的取值范围。

举个例子来说明。

假设我们要求函数f(x, y) = x^2 + y^2 + ax +by + c在整个二维平面的取值范围。

我们计算f对x和y的偏导数,得到f_x = 2x + a和f_y = 2y + b。

导数中求参数的取值范围

导数中求参数的取值范围

导数中求参数的取值范围导数是微积分中的一个重要概念,用于描述函数在其中一点的变化率。

在实际应用中,经常需要根据导数的特性来求解参数的取值范围。

下面我们将讨论几种常见的求解参数取值范围的方法。

一、导数的符号在其中一点的导数的符号能够告诉我们函数在该点的增减性。

具体地,如果导数大于零,则函数在该点是增函数;如果导数小于零,则函数在该点是减函数;如果导数等于零,则函数在该点取得极值(可能是极大值或极小值)。

1.寻找函数的增减区间要求解参数的取值范围,首先需要找到函数的增减区间。

具体步骤如下:(1)找到函数的导数;(2)将导数求零,即找到导数为零的点,这些点可能是函数的极值点;(3)根据导数的符号可知道函数增减的情况。

2.判断函数的极值是否为最值找到函数的极值点并不一定能够得到最值。

我们可以使用二阶导数的符号来判断函数的极值是否为最值。

具体来说,如果二阶导数大于零,说明该极值点为函数的极小值;如果二阶导数小于零,说明该极值点为函数的极大值;如果二阶导数等于零,无法判断该极值点的大小。

3.列出函数的不等式当我们已经找到了函数的增减区间和极值点以后,可以通过列出函数的不等式来求解参数的取值范围。

比如,如果我们需要找到函数在一些区间上的最大值,可以列出函数在该区间上的不等式,并且将该区间的端点带入函数进行比较,最终求解出参数的取值范围。

二、导数的连续性导数的连续性是求解参数取值范围的另一个重要条件。

在一些点处,如果函数的导数存在且连续,则函数在该点处具有可导性。

如果函数在一些点处不可导,那么该点就是一个临界点。

1.求解临界点为了找到可能的临界点,我们需要计算函数的一阶导数和二阶导数,并求解出导数为零或不存在的点。

通过这些点,我们可以判断参数的取值范围。

2.判断导数的连续性对于一般的函数而言,一阶导数存在且连续的点称为可导点。

如果函数在一些点的导数不连续,那么该点为不可导点。

针对不可导点,我们需要观察其特点,并结合其他条件来进行求解。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)

则f '( x) 0在(0,2)上恒成立
即2ax 3x 2
a 3 x, x (0,2)
2
a
(
3 2
x)max
,
x
(0,2),
a3
2020/4/4
5
分离参数法: 分离参数 构造函数g(x) 求g(x)的最值 求得参数范围
2020/4/4
6
例2:已知函数f (x) x3 3ax2 2a2 x 1在[0,2]上是单调递增函数, 求参数a的取值范围.
a 3x2 3 , 2x
3x2 3 a ( 2 x )min
令g( x) 3x2 3 , x [2,4] 2x
2020/4/4
3
练习1: 已知函数f (x) x3 ax 3x 1在[0,)上是单调递增函数, 求参数a的取值范围.
解: f '( x) 3x2 a 3, x [0,) 则f '( x) 0在[0,)上恒成立
解:f (x)的定义域为(0, )
f (x) 1 2ax (2 a) (2x+1)(ax 1)
x
x
当a 0时, f (x) 0,故f (x)在(0, )单调递增;
当a 0时,令f (x) 0,解得x 1 a
则当x (0, 1 )时,f (x) 0; x ( 1 , )时,f (x) 0
[3x2 2ax (a2 1)]min 0, x [0,) y

a
3
0
f ' (0) 0
a 1
o
x

a 3
f
0 '(a)
3
0
a 6 29
分类讨论法:
在利用函数的单调性求参数的取值范围时, 当导函数可化为二次函数形式时,应注意

利用导数求参数的取值范围

利用导数求参数的取值范围

利用导数求参数的取值范围一. 已知函数单调性,求参数的取值范围类型1.参数放在函数表达式上例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23.的取值范围求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(.,3)()1(-∞=类型2.参数放在区间边界上 例2.已知函数)(,0)(23x f y x d cx bx ax x f ==+++=曲线处取得极值在过原点和点p(-1,2),若曲线)(x f y =在点P 处的切线与直线 452的夹角为x y =且切线的倾斜角为钝角.(1) 求)(x f 的表达式(2) 若)(x f 在区间[2m-1,m+1]上递增,求m 的取值范围..)().2(;)().1(1,1)1(32)(.123的极值讨论的单调区间求其中设函数x f x f a x a x x f ≥+--=.,]1,[)(,73)(.223的取值范围求上单调递增在若已知函数a a a x f x x x f +-+=二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上例3.已知时都取得极值与在132)(23=-=+++=x x c bx ax x x f (1) 求a、b的值及函数)(x f 的单调区间.若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围.类型2.参数放在区间上例4.已知三次函数d cx x ax x f ++-=235)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值.(1) 求)(x f 的解析式.(2) 当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围.__________)(]2,1[,522)(.323的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--= .___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-三.参数含在函数表达式上的单调区间1.已知1)+-=ax e x f x (,求单调区间2. 已知131)(3+-=ax x x f (a 0≠),求单调区间。

利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围方法归纳导数在数学中广泛应用,它可以表示函数的变化率。

在求取参数的取值范围时,可以利用导数的性质来推导出函数与参数之间的关系。

下面将介绍利用导数求参数取值范围的一些常见方法。

一、利用导数判断函数的单调性:考虑函数$f(x)$的单调性,可以使用导数来帮助我们判断。

如果函数$f(x)$在其中一区间上的导数恒大于零,那么函数在该区间上是递增的;如果导数恒小于零,那么函数递减。

1.对于一元函数$f(x)$,可以计算其导数$f'(x)$,然后解方程$f'(x)=0$,将问题转化为求解函数的极值点。

如果求解出的极值点满足题目给定的参数范围条件,则参数的取值范围就是极值点的区间。

2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函数$g(x)=f(x,y)$。

然后计算$g'(x)$,利用一元函数的方法来判断参数的取值范围。

3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量求导,将其它变量视为常数,从而转化为一元函数的问题。

二、利用导数判断函数的极值:考虑函数$f(x)$的极值情况,可以求取其导数$f'(x)$,然后判断导数的正负性。

1.对于一元函数$f(x)$,如果导数$f'(x)$在特定点$x_0$处为零,并且$x_0$处的导数的左右性质相异,那么函数在$x_0$处取得极值。

2.对于二元函数$f(x,y)$,可以将其看作一个以参数$y$为变量的函数$g(x)=f(x,y)$。

然后计算$g'(x)$,判断导数的正负性来确定参数的取值范围。

3.对于多元函数$f(x_1,x_2,...,x_n)$,我们可以对其中的一个变量求导,将其它变量视为常数。

然后再对求得的一元函数进行求导判断极值。

三、利用导数判断函数的凸凹性:考虑函数$f(x)$的凸凹性质,可以使用导数$f''(x)$来判断。

导数中的求参数取值范围问题

导数中的求参数取值范围问题

帮你归纳总结(五〕:导数中的求参数取值范围问题 一、常见基此题型:〔1〕函数单调性,求参数的取值范围,如函数()f x 增区间,那么在此区间上 导函数()0f x '≥,如函数()f x 减区间,那么在此区间上导函数()0f x '≤。

〔2〕不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。

例1.a ∈R ,函数2()()e x f x x ax -=-+.〔x ∈R ,e 为自然对数的底数〕〔1〕假设函数()(1,1)f x -在内单调递减,求a 的取值范围;〔2〕函数()f x 是否为R 上的单调函数,假设是,求出a 的取值范围;假设不是,请说明 理由. 解: 〔1〕2-()()e x f x x ax =-+-2-()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e x x a x a ⎡⎤-++⎣⎦.()()f x 要使在-1,1上单调递减, 那么()0f x '≤ 对(1,1)x ∈- 都成立, 2(2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2()(2)g x x a x a =-++,那么(1)0,(1)0.g g -≤⎧⎨≤⎩1(2)01(2)0a a a a +++≤⎧∴⎨-++≤⎩, 32a ∴≤-.〔2〕①假设函数()f x 在R 上单调递减,那么()0f x '≤ 对x ∈R 都成立即2-(2)e 0xx a x a ⎡⎤-++≤⎣⎦对x ∈R 都成立.2e 0,(2)0x x a x a ->∴-++≤ 对x ∈R 都成立令2()(2)g x x a x a =-++,图象开口向上 ∴不可能对x ∈R 都成立②假设函数()f x 在R 上单调递减,那么()0f x '≥ 对x ∈R 都成立,即2-(2)e 0xx a x a ⎡⎤-++≥⎣⎦ 对x ∈R 都成立,e 0,x -> 2(2)0x a x a ∴-++≥ 对x ∈R 都成立. 22(2)440a a a ∆=+-=+>故函数()f x 不可能在R 上单调递增.综上可知,函数()f x 不可能是R 上的单调函数例2:函数()()ln 3f x a x ax a R =--∈,假设函数()y f x =的图像在点(2,(2))f 处的切线的倾斜角为45,对于任意[1,2]t ∈,函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围;解: /(2)1,22af a =-==-由32/2()2ln 23()(2)2, ()3(4)22f x x x mg x x x x g x x m x ∴=-+-∴=++-=++- 令/()0g x =得,2(4)240m ∆=++>故/()0g x =两个根一正一负,即有且只有一个正根函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数 ∴/()0g x =在(,3)t 上有且只有实数根///(0)20,()0,(3)0g g t g =-<∴<>∴237, (4)233m m t t >-+<-故243m t t +<-,而23y t t =-∈在t [1,2]单调减, ∴9m <-,综合得3793m -<<-例3.函数14341ln )(-+-=xx x x f . 〔Ⅰ〕求函数)(x f 的单调区间;〔Ⅱ〕设42)(2-+-=bx x x g ,假设对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥ 恒成立,求实数b 的取值范围. 解:〔I 〕14341ln )(-+-=xx x x f 的定义域是(0,)+∞22243443411)(x x x x x x f --=--=' 由0>x 及0)(>'x f 得31<<x ;由0>x 及0)(<'x f 得310><<x x 或, 故函数)(x f 的单调递增区间是)3,1(;单调递减区间是),3(,)1,0(∞+ 〔II 〕假设对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立, 问题等价于max min )()(x g x f ≥,由〔I 〕可知,在(0,2)上,1x =是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min 1()(1)2f x f ==-; []2()24,1,2g x x bx x =-+-∈当1b <时,max ()(1)25g x g b ==-; 当12b ≤≤时,2max ()()4g x g b b ==-; 当2b >时,max ()(2)48g x g b ==-;问题等价于11252b b <⎧⎪⎨-≥-⎪⎩ 或212142b b ≤≤⎧⎪⎨-≥-⎪⎩ 或21482b b >⎧⎪⎨-≥-⎪⎩解得1b <或12b ≤≤或 b ∈∅即2b ≤,所以实数b的取值范围是,⎛-∞ ⎝⎦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数求参数范围举例利用导数求参数范围举例例1.已知«Skip Record If...»(1)求a、b的值及函数«Skip Record If...»的单调区间.(2)若对«Skip Record If...»恒成立,求c的取值范围.解:(1)«Skip Record If...»«Skip Record If...»例2.已知函数«Skip Record If...»处取得极值(1)求函数«Skip Record If...»的解析式.(2)若过点«Skip Record If...»可作曲线y=«Skip Record If...»的三条切线,求实数m的取值范围.解:(1)求得«Skip Record If...»(2)设切点为«Skip Record If...»«Skip Record If...»«Skip Record If...»例3.已知«Skip Record If...»且«Skip Record If...»。

(1)设«Skip Record If...»,求«Skip Record If...»的解析式。

(2)设«Skip Record If...»,试问:是否存在«Skip Record If...»,使«Skip Record If...»在(«Skip Record If...»)上是单调递减函数,且在(«Skip Record If...»)上是单调递增函数;若存在,求出«Skip Record If...»的值;若不存在,说明理由。

解:(1)易求c=1,«Skip Record If...»(2)«Skip Record If...»=«Skip Record If...»,∴«Skip Record If...»由题意«Skip Record If...»在(«Skip Record If...»)上是单调递减函数,且在(«Skip Record If...»)上是单调递增函数知,«Skip Record If...»是极小值,∴由«Skip Record If...»得«Skip Record If...»当«Skip Record If...»,«Skip Record If...»时,«Skip Record If...»∴«Skip Record If...»是单调递增函数;«Skip Record If...»时,«Skip Record If...»∴«Skip Record If...»是单调递减函数。

所以存在«Skip Record If...»,使原命题成立。

例4.已知«Skip Record If...»是实数,函数«Skip Record If...»(Ⅰ)求函数«Skip Record If...»的单调区间;(Ⅱ)设«Skip Record If...»为«Skip Record If...»在区间«Skip Record If...»上的最小值。

(«Skip Record If...»)写出«Skip Record If...»的表达式;(«Skip RecordIf...»)求«Skip Record If...»的取值范围,使得«Skip Record If...»。

解:(Ⅰ)函数的定义域为«Skip Record If...»,«Skip Record If...»,由«Skip Record If...»得«Skip Record If...»。

考虑«Skip Record If...»是否落在导函数«Skip Record If...»的定义域«SkipRecord If...»内,需对参数«Skip Record If...»的取值分«Skip Record If...»及«Skip Record If...»两种情况进行讨论。

(1)当«Skip Record If...»时,则«Skip Record If...»在«Skip Record If...»上恒成立,所以«Skip Record If...»的单调递增区间为«Skip Record If...»。

(2)当«Skip Record If...»时,由«Skip Record If...»,得«Skip Record If...»;由«Skip Record If...»,得«Skip Record If...»。

因此,当«Skip Record If...»时,«Skip Record If...»的单调递减区间为«SkipRecord If...»,«Skip Record If...»的单调递增区间为«Skip Record If...»。

(Ⅱ)(«Skip Record If...»)由第(Ⅰ)问的结论可知:(1)当«Skip Record If...»时,«Skip Record If...»在«Skip Record If...»上单调递增,从而«Skip Record If...»在«Skip Record If...»上单调递增,所以«SkipRecord If...»。

(2)当«Skip Record If...»时,«Skip Record If...»在«Skip Record If...»上单调递减,在«Skip Record If...»上单调递增,所以:①当«Skip Record If...»,即«Skip Record If...»时,«Skip Record If...»在«SkipRecord If...»上单调递减,在«Skip Record If...»上单调递增,所以«Skip Record If...»«Skip Record If...»。

②当«Skip Record If...»,即«Skip Record If...»时,«Skip Record If...»在«SkipRec ord If...»上单调递减,所以«Skip Record If...»。

综上所述,«Skip Record If...»(«Skip Record If...»)令«Skip Record If...»。

①若«Skip Record If...»,无解;②若«Skip Record If...»,由«Skip Record If...»解得«Skip Record If...»;③若«Skip Record If...»,由«Skip Record If...»解得«Skip Record If...»。

综上所述,«Skip Record If...»的取值范围为«Skip Record If...»。

例5.已知函数«Skip Record If...»,其中«Skip Record If...»。

(Ⅰ)当«Skip Record If...»时,求曲线«Skip Record If...»在点«Skip Record If...»处的切线方程;(Ⅱ)当«Skip Record If...»时,求函数«Skip Record If...»的单调区间与极值。

解:(Ⅰ)当«Skip Record If...»时,曲线«Skip Record If...»在点«Skip Record If...»处的切线方程为«Skip Record If...»。

(Ⅱ)由于«Skip Record If...»,所以«Skip Record If...»。

由«Skip Record If...»,得«Skip Record If...»。

这两个实根都在定义域R内,但不知它们之间的大小。

因此,需对参数«Skip Record If...»的取值分«Skip Record If...»和«Skip Record If...»两种情况进行讨论。

相关文档
最新文档