信号与系统第3章'

合集下载

信号与系统-第三章习题讲解

信号与系统-第三章习题讲解

Fn

1 T
T f (t)e jntdt 1
0
T
T E(1 t )e jntdt
0
T
E T e jnt dt 1 T te jnt dt]
T0
T0

E { 1 [t TT
1 e jnt
jn
|T0

T e jnt
0 jn
dt]}
E { 1 [T 1 0]} j E ; n 1, 2,....
E cos( )
2




2E cos( ) 2E cos( )

2
2 2 2

2
[1 ( )2 ]

3 32已知阶跃函数和正弦、余弦函数的傅立叶变换:
FT[u(t)] 1 (); j
FT[cos(0t)] [ ( 0 ) ( 0 )]; FT[sin(0t)] j[ ( 0 ) ( 0 )];
E
n

e
j

2
,
n为奇数
0,
n为偶数
故:f (t ) jE e jt jE e jt jE e j3t jE e j3t ....


3
3
4、求题图3-4所示周期三角信号的傅里叶级 数并画出幅度谱。
解:将该信号表示为三角形式的傅里叶级数,有
1T
2
频谱图如下所示:
3 7利用信号f (t)的对称性,定性判断题图3-7中各 周期信号的傅里叶级数中所含有的频率分量。
解:(1)图(a)中f (t)为偶函数,同时也是奇谐函数,故其 傅氏级数中只含奇次余弦分量。 (2)图(b)中f (t)为奇函数,同时也是奇谐函数,故其傅 氏级数中只含奇次正弦分量。 (3)图(c)中f (t)为奇谐函数,故其傅氏级数只含奇次谐 波分量。 (4)图(d )中f (t)为奇函数,故其傅氏级数中只含正弦分量。 (5)图(e)中f (t)既为偶函数又为偶谐函数,故其傅氏级数 中仅含直流和偶次谐波的余弦分量。

信号与系统第三章PPT课件

信号与系统第三章PPT课件
③ 在任何单个周期内,只有有限个第一类间断点, 且在间断点上的函数值为有限值。
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运

1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为

信号与系统第三章

信号与系统第三章

a0 ∞ fT ( t ) = + ∑ 2 n=1
Fne jnΩt + F− ne − jnΩt ) (
jnΩt
=
n =−∞


Fn e
F0
a0 2
an + jbn = 2 ∗ = Fn

指数形式的傅立叶级数(2) 指数形式的傅立叶级数(2)
1. 傅里叶系数
a − jbn 1 Fn = n = 2 T T
ε =0
2

t2 t1
f (t ) d t = ∑ C 2 K j j
2 j =1

(Parseval 公式 公式)

§3.2
周期信号的频谱分析
-----傅里叶级数 傅里叶级数
5 页
一、三角形式的傅立叶级数 二、周期信号的频谱 三、指数形式的傅立叶级数 周期信号的功率——Parseval等式 Parseval等式 四、周期信号的功率 Parseval 五、函数对称性与频谱特性
bn ϕn = −arctg an an = An cos (ϕn ) , bn = − An sin (ϕn )
A0 a0 = 2 2
An = an 2 + bn 2

二、周期信号的频谱
概念:周期信号中各次谐波分量的幅度、初相位随频率的变化关系。 概念:周期信号中各次谐波分量的幅度、初相位随频率的变化关系。 An~ω:幅度谱; :幅度谱; 例1: :
在正交函数集 满足: 满足:
1
之外, {ϕ ( t ) ,ϕ ( t ) ,L,ϕ ( t )} 之外,不存在 ϕ ( t ) ≠ 0
2 n

t2 t1

信号与系统第三章

信号与系统第三章
例3.1-2 描述一阶LTI系统的常系数微分方程如 式(3.1-3)所示
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得

信号与系统 第3章-3

信号与系统 第3章-3

解 若直接按定义求图示信号的频谱,会遇到形如te-jωt的繁 复积分求解问题。而利用时域积分性质,则很容易求解。 将f(t)求导,得到图 3.5-5(b)所示的波形f1(t),将f1(t)再求导, 得到图 3.5-5(c)所示的f2(t), 显然有
第3章 连续信号与系统的频域分析
f 2 (t ) = f (t ) = f " (t )
ω )为各频率点
上单位频带中的信号能量,所以信号在整个频率范围的全部
W = ∫ G (ω )dω
0

式中
G (ω ) =
1
π
F ( jω )
2
第3章 连续信号与系统的频域分析 表 3.2 傅里叶变换的性质
第3章 连续信号与系统的频域分析
3.6 周期信号的傅里叶变换
设f(t)为周期信号,其周期为T,依据周期信号的傅里叶级数分 析, 可将其表示为指数形式的傅里叶级数。即
f ( −t ) ↔ F ( − jω )
也称为时间倒置定理 倒置定理。 倒置定理
第3章 连续信号与系统的频域分析
若已知f(t) ↔ F(jω ),求f(at - b)的傅立叶变换。
此题可用不同的方法来求解。 解 此题可用不同的方法来求解。
第3章 连续信号与系统的频域分析
(2) 先利用尺度变换性质,有 先利用尺度变换性质,
第3章 连续信号与系统的频域分析 2. 时移性 时移性 若f(t) ←→ F(jω), 且t0为实常数(可正可负),则有
f ( t − t0 ) ↔ F ( jω ) e
此性质可证明如下
− jω t 0
F [ f (t − t 0 )] = ∫− ∞ f (t − t 0 )e 令τ = t − t 0

信号与系统王明泉第三章习题解答

信号与系统王明泉第三章习题解答
(3)周期信号的傅里叶变换;
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。

信号与系统 第三章 信号分析

信号与系统 第三章 信号分析
(t ) f1 (t ) C12 f 2 (t )
进一步定义均方误差(方均误差)
1 1 2 * (t ) (t ) (t )dt f 1 (t ) C12 f 2 (t ) dt t 2 t1 t1 t 2 t1 t1
2 t2 t2
与矢量的分解相似,要使均方误差最小应 取它的垂直投影,所以分量系数
t2
f1 (t ), f 2 (t ) C12 f 2 (t ), f 2 (t )
t1 t2

t2
f1 (t ) f 2* (t )dt
2

t1
f1 (t ) f 2* (t )dt
t2
f
t1
(t ) f (t )dt
* 2

t1
f 2 (t ) dt
2
这个结论也可仿照前面的做法,令均方误 差对分量系数的偏导数等于0来推出。显然也有 类似的结论当f1(t),f2(t)正交时C12=0,当f1(t)=f2(t) 时C12=1,C12也与两个函数的的相似程度有关。 但一般不直接将它作为相关系数,这是因为当 f1(t)=f2(t)+f3(t)并且f2(t),f3(t)正交时
上的分量系数,对于函数集与矢量一样有类似 的结论: 1、n维函数空间中的任一函数可分解为n个分 量; 2、如果分量小于n个则产生误差,如要均方误 差最小则应取它的垂直投影; 3、函数的分解一般也采用正交函数集,即正 交分解。
现在我们来看两个函数的情况,假定f1(t),f2(t) 是定义在区间[t1,t2]上的两个函数,取f1(t)在f2(t) 上的分量C12 f2(t)近似f1(t)。那么也将产生误差 εΔ(t)。
A1 , A2 ,, An,如它们是线性无关

信号与系统第3章,甘俊英

信号与系统第3章,甘俊英

(n) u(n) u(n 1) u(n)
u(n) (n) (n 1) (n 2) L (n m) m0
n
或 u(n) (k) k
3.矩形序列 1, 0 n N 1
RN (n) 0, n 0
RN (n) 1
0 1 2 N 1
n
N表示矩形序列的长度, RN (n) 还可以表示为
是连续正弦信号 xa (t) 的角频率,称为模拟域频率。
Ts
2 f
fs
又称为归一化频率。
3.2.4 序列的周期性
对于所有 n 值,若存在一个最小正整数 N ,满足
x(n) x(n N) 则称序列 x(n)为周期序列,最小周期为 N
下面讨论正弦序列 x(n) Asin(n ) 的周期性。
x(n N) Asin[(n N) ] Asin(n N )
RN (n) u(n) u(u N )
4.实指数序列 x(n) an , n
通常,单边实指数序列应用更广。单边实指数序列定义为
an , n 0 x(n)

0, n 0
x(n) anu(n)
a 1 ,序列是发散的。 a 0 序列的所有样值都为正值
a 1 ,序列是收敛的
a 0 序列正、负摆动
(n) 是一个确定的物理量,在 n 0时取值为1 ,在其它非零的
离散时间点上取值为零
(t) 不是一个物理量,只是一个数学抽象。
任何序列都可以用一些延迟的单位取样序列的加权和来表示,即
x(n) x(k) (n k) k
【例3-2-6】已知序列x(n) 如图所示,利用单位取样序列 (n) 写出
x(n
1)
(
1 2
)n
1

信号与系统 第三章 周期信号的傅里叶级数展开

信号与系统 第三章 周期信号的傅里叶级数展开
1 T
2 n 2

T1
f (t ) dt

F ( n1 )
左边是周期信号f(t)在一个周期里的平均功率(即单位时间内的能量)
2 2 1 1 2 jnt F ( n ) e dt F ( n ) dt F ( n ) 而同时有 T 1 1 1 T1 1 T1 T1
n 1
——余弦形式
x(t ) d 0 d n sin( n1t n )
n 1
——正弦形式
(1). f (t ) a0 an cosnt bn sin nt
n1

三角函数形式
(2). f (t ) A0 An cos(nt n )
而无物理意义。将来可以看出,指数函数形式比正弦函数形式在数 学上处理起来要方便的多。
§3.2 周期矩形脉冲的谱线特点
x(t )
E

T1

t
2 2
T1
脉冲为 ,脉冲高度为E,周期为T1
1 21 1 E 1 jn1t jn1t 2 X (n1 ) T1 x(t )e dt E e dt e jn1t T1 2 T1 2 T1 jn1 jn jn 1 2E 1 1 2 2 e sin(n1 ) e jn1T1 2 n1T1 sin(n1 ) E E 2 Sa (n1 ) T1 n T1 2 1 2
电子信息与电气工程学院
本章内容
连续时间周期信号的傅立叶级数表示 周期矩形脉冲的谱线特点
§3.1 连续时间周期信号的傅立叶级数表示
{1, cos n1t ,sin n1t} n=1,2, , 是一个完备的正交函数集

精品文档-信号与系统(第四版)(陈生潭)-第3章

精品文档-信号与系统(第四版)(陈生潭)-第3章

An cos(nt n )
Fne jnt
n 1
n
F0 2 Fn cos(nt n )
其中:
n 1
an
2 T
t0 T t0
fT (t )cosntdt
bn
2 T
t0 T t0
fT (t )sin ntdt
n0,1,2...
1
n1,2...
Fn
T
t0 T t0
fT (t)e jnt dt
fT (t)sin ntdt
A0 a0 An an2 bn2
n 1,2...
n
arctg
bn an
说明:1.周期信号可分解表示为三角函数的线性组合。
2.物理意义:周期信号可分解为众多频率成整数倍
和正(余)弦函数或分量的线性组合。具体有:
a0 A0 直流分量cost, sin t 基波分量 22
fT (t)
Fne jnt
F e j (nt n ) n
F0
2 Fn cos(nt n )
n
n
n1
各谐波分量的角频率nΩ 是基波角频率Ω的n倍且有不同的
振幅和相位,均有傅立叶系数 Fn Fn e jn 反映出来。
为揭示各谐波振幅、初相随角频率变化情况,特画出振幅
及相位随w变化的曲线称其为频谱图。
的模
最小,(此时的C12称为最佳),当C12=0时,Ve的
模最小,此时V1和V2正交。
2.矢量分解
在平面空间里,相互正交的矢量
V1和V2构成一个正交矢量集,而且为
完备的正交矢量集。平面空间中的任
一矢量V都可表示为V1和V2的线性组合 (如上图)。即:
V=C1V1+C2 V2。式中V1、V2为单位矢量,且V1·V2=0。其中:

信号与系统-第3章

信号与系统-第3章

第3章连续系统的时域分析本章内容LTI系统的时域分析方法线性微分方程的经典解法零输入-零状态微分算子与传输算子冲激响应和阶跃响应冲激响应阶跃响应卷积积分及其应用卷积积分的概念卷积积分的性质卷积积分在LTI系统分析中的应用LTI 连续系统的时域分析1)建立系统数学模型;2)求解线性微分方程。

由于在其分析过程涉及的函数变量均为时间t ,故称为时域分析法。

这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。

其过程可以归结为:线性微分方程的经典解法)()()()()()()()(01)1(1)(01)1(1)(t f b t f b t f b t f b t y a t y a t ya t y m m m m n n n +′+++=+′+++−−−−L L 微分方程的经典解:y (t ) = y c (t ) + y p (t )(完全解)(齐次解)(特解)经典解法-齐次解不同特征根对应的齐次解的解。

y c (t )的函数形式由上述微分方程的特征根确定。

齐次解是齐次微分方程0)()()()(01)1(1)(=+′+++−−t y a t y a t y a t y n n n L经典解法-齐次解(续)=)(t y c 例如::则微分方程的齐次解为个根是单根,其余,即有重根,是特征方程的假设 - 211r n r r λλλλ===L ∑+=+nr j tj j e c 1λ∑=−r i t i r i i e t c 1λ经典解法-特解特解的函数形式与激励函数的形式有关。

表3-1 不同激励对应的特解A(常数)B(常数)线性微分方程的经典解法1)根据齐次方程的特征根求齐次解;2) 根据激励信号的函数形式求特解;3) 将特解代入原微分方程,根据方程两端对应项系数相等,求得特解中的待定系数;4) 将系统的n个初始条件代入全解中,确定齐次解中n个待定系数。

线性微分方程的经典解法(续)激励信号在t =0时刻接入系统:由于激励信号的作用,响应y (t )及其各阶导数有可能在t =0时刻发生跳变,为区分跳变前后的数值,我们用0-表示激励接入之前的瞬间,并称此时刻为“起始时刻”;而用0+表示激励接入之后的瞬间,并称此时刻为“初始时刻”。

信号与系统第3章 傅里叶变换

信号与系统第3章  傅里叶变换

P
f
2 (t) 1 T1
t0 T1 t0
f
2 (t)d t
a0 2
1 2
n1
(an
2
bn 2 )
2
Fn _____ 帕塞瓦尔定理
n
结论:周期信号的平均功率等于傅里叶级数展开 式中基波分量及各谐波分量有效值的平方 和,即时域和频域的能量守恒。
五. 周期信f号(t)的频c0 谱 (c三n c角os函(n数1t形 式n )) n1
(1) 偶函数 f (t) f (t)
4
an T1
T1
2 0
f (t) cos(n1t)dt
Fn
Fn
an 2
bn 0
傅里叶级数中不会含有正弦项, 只可能含有直流项和余弦项。
(2) 奇函数 f (t) f (t)
a0 0 , an 0
bn
4 T1
T1
2 0
f (t) sin(n1t)d t
e j n1t
T1 n 2
画频谱图:
c0
a0
E
T1
an
2E
T1
Sa
n1
2
, n
1,2,
cn an
1)令 m
2

2
m
即在
2
m,m为整数处有零点。
2)
2
2
T1
T1
零点间谱线个数
3) c n值为正,相位为0,值为负,相位为π
4)谱线间隔为 1 带宽
2
T1
,第一个过零点带宽定义为信号的
1 3
s in31t
1 4
sin41t
E
1 n1

信号与系统 第3章(xin ) 信号的频域分析

信号与系统 第3章(xin ) 信号的频域分析

3 信号的频域分析
2.基本形式(三角形式)
满足狄氏条件的任一周期信号都是由cos,sin组成。 连续周期信号的基本形式可以表示为:
a0 f ( t ) ( ak cos k0 t bk sin k0 t ) 2 k 1
2 T 其中:a0 2T f (t )dt T 2
a0 f ( t ) An cos( k0 t n ) 2 t
2 其中:a0 f ( t )dt 是 k 的 偶 T

An ak bk
2
2
函数
bk n arctan ak
是k的奇函 数
3 信号的频域分析
2.基本形式
满足狄氏条件的任一周期信号都是由cos,sin组成。 离散周期信号的基本形式可以表示为:
1 n
f1 (t )
(t nT )
n

重复性、定义域、n、周期等四个要素
3 信号的频域分析
§3.1.1 周期信号的展开( expansion )
离散周期信号:
f (n) f (n iN ); n (, ); i 0, 1, 2, ; N C f (n iN )
jk0 t0 jk
有 fT ( t -t0 ) e
C( jk0 ) 2 C( jk ) N
f N ( n n0 ) e
2 n N 0
3 信号的频域分析
§3.1.3 离散频谱的性质
3. 比例特性

2 fT ( t ) / f N ( n ) C( jk0 ) / C( jk ) N jk t 0 1 T 2 a
3 信号的频域分析
§3.1.3 离散频谱的性质

信号与系统第3章

信号与系统第3章

于变量n从
,所以称为双边频谱。
25
直流 分量
复指数谐波幅值分量
复指数谐波相位分量
26
3.2.2 周期信号频谱的特点及频带宽度 1. 周期信号频谱的特点 ★离散性 ★谐波性 ★收敛性
27
2. 周期矩形脉冲信号的频谱
f(t) E
0
T
t
周期矩形脉冲信号的周期为T,脉冲宽度为 。
28
周期矩形脉冲信号的傅里叶系数,即频谱 函数为
➢ 三角形式中的傅里叶系数是实函数,而指数形 式中的傅里叶系数一般是复函数。
➢ 是 的偶函数, 是 的奇函数。
19
➢三角傅里叶级数:可以通过不同频率正 弦分量的合成进行仿真。
➢指数傅里叶级数:由于客观上复频率分 量无法描述,所以不能进行仿真。
➢引入复频率分量的意义在于使得数学分 析更加方便,容易描述。
用频谱图描述信号是频域表示的一种方式,它简便、 直观地反映出各个频率分量中振幅和相位与频率变 化的关系。(见图3.2-1、图3.2-2)
23
1.单边频谱
直流• 三角傅里叶级数
分量
正弦谐正波弦分谐量波(分n量>(1)n>,1幅)值都 随着频率的变化而变化
24
2.双边频谱 • 指数傅里叶级数
其中 称为幅度频谱; 称为相位频谱。由
本节要求: 熟悉傅里叶变换的主要性质其含义
51
3.4.1 线性



,则对于任意常数 a1 和 a2,
注意:只有同频率的分量才能进行运算。而 频域加法运算后,其频域范围为两个频谱函 数中最小的下限值,到最大的上限值。
52
3.4.2 对称性

,则
若 为偶函数,则

《信号与系统》第三章讲稿

《信号与系统》第三章讲稿

第三章信号与系统的频域分析3.1 引言 一. 信号与系统的时域分析1. 信号的大小是时间的函数f ( t )2. 任何一个信号都可分解为位于不同时刻、具有不同冲激强度的冲激信号的时间连续的叠加,具体表达式:⎰∞--⋅=t d t f t f ττδτ)()()(3. 系统的数学模型:微分方程4. 系统分析:(1) 输入和输出信号都是时间函数。

(2) 求系统的响应就是将信号分解为冲激信号的叠加,并利用系统的时不变性和线性等性质来求得。

具体的数学工具——卷积积分。

二. 信号与系统的频域分析1. 信号可以表示为频率的函数F( ω ).2. 任何一个信号都可分解为不同频率、不同振幅、不同初相角的正弦信号的叠加。

具体的数学工具——傅里叶级数和傅里叶变换。

3. 系统的数学模型:频率响应——代数方程4. 系统分析:分析同一个系统对不同频率的正弦信号的叠加(加权)作用。

3.2 周期性信号的频域分析一. 傅里叶级数:任何一个周期为T 1的周期性函数f( t ),即:)()(1t f T t f =±如果满足“狄利克雷(Dirichlet )条件”:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个;(3) 在一个周期内,信号是绝对可积的,即∞<⎰+100)(T t t dt t f (等于有限值,T 1 为周期)就可分解为正弦信号的叠加: 次谐波倍频三次谐波三倍频二次谐波二倍频基波(一次谐波)基频次谐波正弦分量的振幅次谐波余弦分量的振幅直流分量n t Sinn t Cosn n n t Sin t Cos t Sin t Cos t Sin t Cos T n tdt Sinn t f T b n tdt Cosn t f T a dt t f T a t Sinn b t Cosn a a t f T t t n T t t n T t t n n n n ⎭⎬⎫⎭⎬⎫⎭⎬⎫⎭⎬⎫====++=⎰⎰⎰∑∑+++∞=∞=1111111111111111110111103332222)4()(2)3()(2)2()(12)1(2)(100100100ωωωωωωωωωωωπωωωωω二. 纯余弦形式的傅里叶级数次谐波的初相角或次谐波的初相角n b a tg b a d a d t n Sin d d t f n a b tg b a c a c t n Cos c c t f n nn nn n n n n nn n nn n n n n 12200110122001102)8()()()7()6(2)5()()(-∞=-∞==+==++=-=+==++=∑∑θθωϕϕω 三. 频谱的概念f ( t )为时间函数,而c 0、c n 、ϕn 为频率函数。

信号与系统第3章正交函数集

信号与系统第3章正交函数集

2
1 { T2 T2 T1 T1
f
2(t)dt
T2 T1
n i1
ai2 fi2(t)dt
T2 2 f (t) n
T1
i1
ai
fi (t)dt}
(2)
(ai )
1{ T2 T1
2a T2
T1
i
fi2(t)dt
T2 2 f
T1
(t) fi (t)dt} 0有:
T2
T1
2ai
fi2
(t)dt
T2 T1
2
f
(t)
fi
(t
)dt
ai
f T2
T1 T2
T1
(t) fi (t)dt fi 2 (t)dt
T2 T1
f (t) fi (t)dt Ki
第十九页,编辑于星期六:十六点 十二分。
如果 F 中的函数为复函数
则有:
ai
T2
T1 T2
T1
f (t) fi*(t)dt fi (t) fi*(t)dt
ai
fi
(t)]2
dt
2 1 T2 T1
T2 T1
{
f
2
(t)
[
n i1
ai
fi
(t)]2
2
f
(t)
n i1
ai
fi
(t)}dt
2
1 { T2 T2 T1 T1
f 2(t)dt
T2 T1
[
n i1
ai
fi
(t)]2
dt
T2 T1
2
f
(t)
n i1
ai
fi (t)dt}

信号与系统第3章(1)周期信号的傅里叶级数和频谱(3.1,3.2)

信号与系统第3章(1)周期信号的傅里叶级数和频谱(3.1,3.2)

变换域分析的基本思想为:将信号分解为 基本信号之和或积分的形式,再求系统对基本 信号的响应,从而求出系统对给定信号的响应 (零状态响应)。 在第二章中我们以 t 为基本信号将任意信号
进行分解
f t f t t

f t d
a0 an cos(nt ) bn sin(nt ) 2 n1 n 1 2 其中 an , bn 称为傅里叶系数, 。 T
那么,傅里叶系数如何求得呢?
a0 1 2 T

T 2 T 2
f ( t )dt
T 2 2 an T f ( t ) cos(nt )dt T 2 T b 2 2 f ( t ) sin( t )dt n n T T 2
f (t )
1 Fn T
n
T 2 T 2
F e
n

jnt

f ( t )e
jnt
e e cos x 2
jx
jx
将上式第三项中的 n 用 n 代换,并考虑到 An 是 n的 偶函数,即 An An ; n 是 n 的奇函数, n n 则上式可写为 :
A0 1 1 j n jnt j n jnt f (t ) Ane e An e e 2 2 n 1 2 n 1 A0 1 1 Ane j n e jnt A ne j n e jnt 2 2 n1 2 n 1
2 T2 (1) si nnt dt T
0

T 2 0
si nnt dt
T 2
, 0 2 1 cosn 4 , n n

信号与系统第三章

信号与系统第三章
T

内,对于有限带宽信号类来说是一个完备的正交 函数集。这里
sin x S a ( x) x
称为抽样函数。
15
诸燕平
2015年春
X
信号与系统—signals and systems
3.2 周期信号的傅里叶级数分析

三角函数的傅里叶级数 指数形式的傅里叶级数 函数的对称性与傅里叶系数的关系
设f1(t)和f2(t)是定义在(t1, t2)区间上的两个实变函数
(信号),若在(t1, t2)区间上有

t2
t1
f1 (t ) f 2 (t )dt 0
则称 f1(t)和f2(t) 在(t1, t2)内正交。
8
诸燕平
2015年春
X
信号与系统—signals and systems
若f1(t),f2(t), …, fn(t)定义在(t1, t2)区间上,并且在 (t1, t2) 内有

这两组条件并不完全等价。它们都是傅里叶级 数收敛的充分条件。相当广泛的信号都能满足这 两组条件中的一组,因而用傅里叶级数表示周期 信号具有相当的普遍适用性。
Signals that violate the Dirichlet conditions
(b) the periodic signal of eq. x(t)=sin(2π/t) which violates the second Dirichlet condition



(1)在一周期内,如果有间断点存在,则间 断点的数目应该是有限个; (2)在一周期内,极大值和极小值的数目应 是有限个; (3)在一周期内,信号是绝对可积的,即 t T t f (t ) dt 等于有限值(T1为周期)

《信号与系统》第3章

《信号与系统》第3章

信号与系统讲稿
• 这部经典著作将欧拉、伯努利等人在一 些特殊情形下应用的三角级数方法发展 成内容丰富的一般理论,三角级数后来 就以傅里叶的名字命名。 • 《热的解析理论》影响了整个19世纪分 析严格化的进程。
信号与系统讲稿
3.1
周期性信号的频域分析
教学目标:掌握周期性信号频谱的概念, 会用傅里叶级数表示周期信号。
或 E 2 E f (t ) T1 T1 n1 Sa 2 n 1

Cos( n1t )
若将展开指数形式的傅里叶级数,由式(8)可得:
1 Fn T1

T1 2 T 1 2
Ee
ห้องสมุดไป่ตู้
jn1t
E n1 dt Sa T1 2
幅度谱cn和相位谱 见书P104页。
特别注意:书P103 1. 2. 3. P105 “对称方波信号有两个特点: (1)它是正负交替的信号,其直流分量(a0 等于零。 (2) 它的脉宽等于周期的一半,即 ”
信号与系统讲稿 第三章

信号与系统讲稿
二. 三. 四. 五.
周期锯齿脉冲信号(书P106,自学) 周期三角脉冲信号(书P106,自学) 周期半波余弦信号(书P108,自学) 周期全波余弦信号(书P108,自学)
n 1

a0 d0 2 dn
2 2 an bn 1
n tg
an bn
n次谐波的初相角
信号与系统讲稿
三. 频谱的概念
f ( t )为时间函数,而c0、cn、n为频率函数, 所以,信号从用时间函数来表达过渡到用频率函 数来表达。 1. 幅度频谱:cn 随频率变化的情况用图 来表示就叫幅度频谱。 2. 相位频谱:n随频率变化的情况用图 来表示就叫相位频谱。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档