成人高考数学知识点大全(高起专)
高起专数学知识点总结
高起专数学知识点总结+答题技巧(一)集合集合的运算:1.交集A∩B“交集”的“交”字中间有个开口向下的“八”,就像我们的交集符号∩,是开口向下的。
交,指交叉,交集就是取两个集合共同部分。
例如:设集合A={1,2,3},集合B={2,3,4},则交集A∩B={2,3}。
2.并集A∪B“并集”的“并”字上面有开口向上的“丷”,就像我们的并集符号∪,是开口向上的。
并,指合并,并集就是两个集合全部合并在一起。
3.补集C就是除(Chú)的含义,即为:“除....以外”,所以补集就是在U中除A以外的部分,U和A只是一个字母代替,U一般就是数字多的大集合,A是数字少的小集合,所以补集可以理解为是大集合中除去小集合的部分。
例如:全部的集合U={1,2,3},A={1},那么除A以外的部分,={2,3}。
应试指导:一道选择题5分,总体考交集的概率最高。
所以大家要把交集、并集的区别记清楚(开口方向、取公共还是全部一起),怎么判断补集记清楚,这5分是最简单的,大家只要仔细一些,都能拿到这5分。
(二)简易逻辑在题目中,“的条件”这个词前面的部分是结论,剩下的一个是条件。
1.条件成立能推导出结论成立,说明是充分条件。
就是说这个条件已经完全能让结论成立,所以叫充分条件。
在“菠萝是水果”这句话中,“是菠萝”,是“是水果”的充分条件。
2.结论成立能推导出条件成立,说明是必要条件。
就是说这个条件不一定能让结论成立,但是如果不满足条件,结论一定不成立,所以叫必要条件。
“是菠萝”,是“是水果”的充分条件。
是水果,却不能推出肯定是菠萝,所以“是菠萝”是“是水果”的不必要条件,是水果也可以是苹果很多其他可能。
所以“是菠萝”是“是水果”的充分不必要条件。
如果条件结论互换,“是水果”是条件,“是菠萝”是结论,那么条件不能推出结论,但是结论可以推出条件,所以“是水果”是“是菠萝”的必要不充分条件3.如果条件结论能够互推,我们就叫充分必要条件,也叫充要条件。
成人高考高数知识点归纳总结
成人高考高数知识点归纳总结一、函数与极限1. 函数的定义与性质- 函数的定义与函数图像的特征- 函数的单调性、奇偶性和周期性- 复合函数与反函数的性质2. 极限的概念与运算- 极限的定义与性质- 极限存在的条件- 无穷大与无穷小的比较- 极限的四则运算3. 函数的连续性- 连续函数的定义与性质- 连续函数的运算性质- 间断点与间断函数二、导数与微分1. 导数的概念与运算- 导数的定义与性质- 常见函数的导数公式- 高阶导数与隐函数求导2. 微分的定义与应用- 微分的定义与微分近似计算- 函数的最值与极值点- 函数的凹凸性与拐点三、不定积分与定积分1. 不定积分的基本性质- 不定积分的定义与性质- 常见函数的不定积分公式- 简单换元法与分部积分法2. 定积分的概念与性质- 定积分的定义与几何意义- 定积分的性质与运算法则- 牛顿-莱布尼茨公式与定积分的应用四、级数与幂级数1. 数列的极限与收敛性- 数列极限的定义与性质- 收敛数列的判定方法- 极限存在的充分条件2. 级数的概念与性质- 级数收敛与发散的判定方法 - 常见级数的性质与特征- 正项级数的收敛性判定3. 幂级数的收敛范围与展开式- 幂级数的收敛半径与收敛区间 - 幂级数的基本性质与运算法则 - 常见函数的幂级数展开五、空间解析几何1. 点、向量与直线- 点的表示与特征- 向量的定义与运算- 直线的方程与性质2. 平面与曲面- 平面的方程与性质- 曲面的方程与性质- 直线与平面的位置关系六、常微分方程1. 基本概念与常见类型- 常微分方程的定义与基本形式- 一阶常微分方程与高阶常微分方程- 常见类型的微分方程2. 解的存在与唯一性- 解的存在与存在区间- 解的唯一性与连续依赖性- 利用初值问题求解微分方程以上是成人高考高数知识点的归纳总结,希望对你的学习有所帮助。
通过系统地学习这些知识点,相信你能够在成人高考中取得优异的成绩!。
成人高考数学知识点归纳总结
成人高考数学知识点归纳总结一、代数部分。
1. 集合。
- 集合的概念:把一些确定的对象看成一个整体就形成一个集合。
集合中的元素具有确定性、互异性和无序性。
- 集合的表示方法:列举法(如A = {1,2,3})、描述法(如B={xx^2 -1=0})。
- 集合间的关系:子集(A⊆ B表示A中的元素都在B中)、真子集(A⊂neqq B表示A是B的子集且A≠ B)、相等(A = B当且仅当A⊆ B且B⊆ A)。
- 集合的运算:交集(A∩ B={xx∈ A且x∈ B})、并集(A∪ B = {xx∈A或x∈ B})、补集(设U为全集,∁_U A={xx∈ U且x∉ A})。
2. 函数。
- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域和对应关系。
- 函数的性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
- 奇偶性:设函数y = f(x)的定义域为D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= -f(x),那么函数y = f(x)是奇函数。
- 一次函数y=kx + b(k≠0):k是斜率,b是截距。
当k>0时,函数单调递增;当k < 0时,函数单调递减。
- 二次函数y=ax^2+bx + c(a≠0):对称轴为x =-(b)/(2a),当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值y=(4ac - b^2)/(4a);当a < 0时,函数开口向下,在x=-(b)/(2a)处取得最大值y=(4ac - b^2)/(4a)。
2023成人高考高起专数学知识点
2023成人高考高起专数学知识点数学作为一门基础学科,在成人高考高起专考试中占据着重要的地位。
掌握数学的基本知识点对于考生来说至关重要。
本文将为大家总结2023年成人高考高起专数学知识点,帮助考生更好地备考。
一、代数与函数1.1 整式与分式整式是由常数、变量及它们的乘积与积的和组成的代数式,分式是由整式的和、差、积、商组成的代数式。
在解题过程中,需要掌握整式与分式的基本运算法则,如加减乘除等。
1.2 方程与不等式方程是含有未知数的等式,不等式是含有未知数的不等式。
在解方程和不等式的过程中,需要运用代数运算的方法,如移项、合并同类项、分式的化简等。
1.3 函数与图像函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
在学习函数的过程中,需要了解函数的定义、性质以及函数图像的绘制方法。
二、几何与图形2.1 点、线、面点是几何图形的基本要素,线是由无数个点组成的集合,面是由无数个线组成的集合。
在几何学中,需要掌握点、线、面的基本性质,如点的坐标表示、线的方程表示等。
2.2 相似与全等相似是指两个图形的形状相同但大小不同,全等是指两个图形的形状和大小都相同。
在解题过程中,需要根据相似性质和全等性质进行推理和证明。
2.3 三角形与四边形三角形是由三条线段组成的图形,四边形是由四条线段组成的图形。
在学习三角形和四边形的过程中,需要了解它们的性质、分类以及相关的定理和公式。
三、概率与统计3.1 概率概率是描述随机事件发生可能性的数值。
在学习概率的过程中,需要了解基本概率公式、条件概率、事件的独立性等概念和计算方法。
3.2 统计统计是对数据进行收集、整理、分析和解释的过程。
在学习统计的过程中,需要了解数据的表示方法、频数分布、均值、中位数、众数等统计指标的计算方法。
四、解析几何4.1 坐标系与直线坐标系是用来描述平面上点的位置的系统,直线是由无数个点组成的集合。
在解析几何中,需要了解直线的方程表示、直线的性质以及直线与坐标系的关系。
高起专数学复习资料
成人高考-数学知识提纲数学复习资料1.集合:会用列举法、描述法表示集合,会集合的交、并、补运算,能借助数轴解决集合运算的问题,具体参看课本例2、4、5.2.充分必要条件要分清条件和结论,由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
从集合角度解释,若B A ⊆,则A 是B 的充分条件;若B A ⊆,则A 是B 的必要条件;若A=B ,则A 是B 的充要条件。
例1:对“充分必要条件”的理解.请看两个例子: (1)“29x =”是“3x =”的什么条件?(2)2x >是5x >的什么条件?我们知道,若A B ⇒,则A 是B 的充分条件,若“A B ⇐”,则A 是B 的必要条件,但这种只记住定义的理解还不够,必须有自己的理解语言:“若A B ⇒,即是A 能推出B ”,但这样还不够具体形象,因为“推出”指的是什么还不明确;即使借助数轴、文氏图,也还是“抽象”的;如果用“A 中的所有元素能满足B ”的自然语言去理解,基本能深刻把握“充分必要条件”的内容.本例中,29x =即集合{3,3}-,当中的元素3-不能满足或者说不属于{3},但{3}的元素能满足或者说属于{3,3}-.假设}3|{},9|{2====x x B x x A ,则满足“A B ⇐”,故“29x =”是“3x =”的必要非充分条件,同理2x >是5x >的必要非充分条件.3.直角坐标系 注意某一点关于坐标轴、坐标原点、,y x y x ==-的坐标的写法。
如点(2,3)关于x 轴对称坐标为(2,-3), 点(2,3)关于y 轴对称坐标为(-2,3), 点(2,3)关于原点对称坐标为(-2,-3), 点(2,3)关于y x =轴对称坐标为(3,2), 点(2,3)关于y x =-轴对称坐标为(-3,-2),4.函数的三要素:定义域、值域、对应法则,如果两个函数三要素相同,则是相同函数。
成人高考高升专数学常用知识点及公式(打印版)精编版
成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
成人高考高起专数学知识点归纳总结
成人高考高起专数学知识点归纳总结一、集合论与逻辑1. 集合与元素:集合是指具有相同特性的对象的总体,元素是构成集合的个体。
2. 集合的表示方法:列举法、描述法、特殊集合。
3. 集合的运算:并集、交集、差集、补集。
4. 集合的关系:包含关系、相等关系、互斥关系、无交关系。
5. 命题与命题的逻辑运算:合取、析取、否定、蕴含、等价。
6. 命题的真值表与真值运算:真、假、可满足、不可满足。
二、数与代数1. 数的性质:自然数、整数、有理数、实数、无理数。
2. 数的基本运算:加法、减法、乘法、除法。
3. 数的性质与运算规律:交换律、结合律、分配律、对称律。
4. 代数式与多项式:代数式的定义、多项式的定义、单项式与多项式。
5. 多项式的运算:多项式的加法、减法、乘法。
6. 因式分解与整式的乘法公式:公因式提取法、公式法、分组分解法、特殊公式。
7. 一元一次方程与不等式:方程与方程的解、不等式与不等式的解、绝对值不等式。
8. 二元一次方程组:方程组与方程组的解、二元一次方程组的解法。
三、函数与方程1. 函数的概念与性质:函数的定义、定义域、值域、单调性、奇偶性。
2. 基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数。
3. 函数的运算:函数的加法、减法、乘法、除法、复合运算。
4. 反函数与二次函数:反函数的性质、二次函数的定义、顶点、对称轴、图像。
5. 一次函数与一次函数方程:一次函数的定义、斜率、截距、图像、一次函数方程的解法。
6. 一元二次方程:二次方程的定义、根与系数的关系、求解二次方程的方法。
7. 二元二次方程组:二元二次方程组的定义、解法。
四、几何与三角1. 几何图形的性质:点、线、面、角、线段、圆。
2. 几何图形的分类与性质:直线与曲线、多边形、圆的性质。
3. 点、线、面的位置关系:相交、平行、垂直、重合。
4. 相似与全等:相似的定义、判定与性质、全等的定义、判定与性质。
5. 三角形的性质与判定:角的性质、三角形的分类、判定三角形的方法。
成人高考数学必背知识点
1.充分条件:若 p q ,则 p 是 q 充分条件. 2.必要条件:若 q p ,则 p 是 q 必要条件. 3.充要条件:若 p q ,且 q p ,则 p 是 q 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
第二章 函数 (重点)
(1)当 a>0 时,若 x
b 2a
p, q,则
f
( x)min
f
( b ), 2a
f
( x) max
max
f
( p),
f
(q) ;
若
x
b 2a
p, q,
f
(x)max
max
f
( p),
f
(q) ,
f
(x)min
min
f
( p),
f
(q) .
(2)当
a<0
时,若
x
b 2a
p, q,则
f
(x)min
第四章 数列
1.数列的通项公式
an
与前
n
项的和
Sn
的关系
an
SS1n,
n 1 Sn1, n
2
.
★
2.等差数列: an an1 d (公差)
3.等差数列的通项公式: an a1 (n 1)d dn a1 d (n N *) ;
其前
n
项和 Sn 公式为: Sn
n(a1 an ) 2
na1
co s( n 2
)
n
(1)2 co s ,
n1
(1) 2 sin ,
n为偶数 n为奇数
3.★和角与差角公式
成人高考数学知识点归纳总结
成人高考数学知识点归纳总结第一部分代数(一)集合和简易逻辑1、解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及其表示方法,了解符号各种跟集合相关的符号含义,并能运用这些符号表示集合与集合、元素与集合的关系。
2、了解充分条件、必要条件、充分必要条件的概念。
(二)函数1、了解函数概念,会求一些常见函数的定义域。
2、了解函数的单调性和奇偶性的概念,会判断一些常见函数的单调性和奇偶性。
3、理解一次函数、反比例函数的概念,掌握它们的图像和性质,会求它们的解析式。
4、理解二次函数的概念,掌握它的图象和性质以及函数y=a_?+b_+c(a≠0)与y=a_?(a≠0)的图象间的关系;会求二次函数的解析式及最大值或最小值,能运用二次函数的知识解决有关问题。
5、理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。
6、理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质。
(三)不等式和不等式组1、了解不等式的性质,会解一元一次不等式、一元一次不等式组各可化为一元一次不等式组的不等式,会解一元二次不等式。
会表示不等式或不等式组的解集。
2、会解形如1a_+b1≥c和1a_+b1≤c的绝对值不等式。
(四)数列1、了解数列及其通项、前n项和的概念。
2、理解等差数列、等差中项的概念,会灵活运用等差数列的通项公式、前n 项和公式解决有关问题。
3、理解等比数列、等比中项的概念,会运用等比数列的通项公式、前n项和公式解决有关问题。
(五)导数1、理解导数的概念及其几何意义。
2、掌握函数y=c(c为常数),y=c(n∈N+)的导数公式,会求多项式函数的导数。
3、了解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值。
4、会求有关曲线的切线议程,会用导数求简单实际问题的最大值与最小值。
第二部分三角函数(一)三角函数及其有关概念1、了解任意角的概念,理解象限角和终边相同的角的概念。
(完整word版)成人高考专科数学复习重点 (1)
第一部分代数(重点 占55%)第一章 集合和简易逻辑一、集合的概念:强调——共同属性、全体 二、元素与集合的关系: x A ∈ 或 x∉A三、集合的运算:1.交集 A ∩B={x︱x A ∈且x B ∈} 注意:“且”2.并集 A ∪B ={x︱x A ∈或x B ∈} 注意:“或”3.补集 c u A ={x︱ U x ∈但A x ∉}四、简易逻辑:充分条件.必要条件:1.充分条件:若p q ⇒,则p 是q 充分条件. 2.必要条件:若q p ⇒,则p 是q 必要条件.3.充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.第二章 函数 (重点)一、函数的定义:1.理解f的含义,掌握求函数解析式的方法-配方法2.求函数值3.求函数定义域:1)分式的分母不等于0; 2)偶次根式的被开方数≥0; 3)对数的真数>0;二、函数的性质 1.单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数2.奇偶性(1)定义:若()()f x f x -=,则函数)(x f y =是偶函数;若()()f x f x -=-,则函数)(x f y =是奇函数. (2)奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数。
高起专《数学》重点公式及考点总结
成人高考高起专《数学》复习资料考试注意要点1)考试采用闭卷笔试形式。
全卷满分为150分,考试时间为120分钟2)考试中可以使用计算器3)考试要求分为三个等级:了解、掌握、灵活运用一、集合和简易逻辑1.集合的概念(灵活运用)子集:对于集合A和集合B,如果A中的所有元素都能在B中找到,则集合A就叫做B的子集,记作:A包含于B,A⊆B并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B交集:由属于A且属于B的相同元素组成的集合,记作A∩B补集:绝对补集。
一般来说,设U是一个集合,A是U的一个子集,则U中所有不属于A的元素称为A在U中的补集2.简易逻辑(灵活运用)判断真假的语句叫命题。
命题真值只能取两个值:真或假。
真对应判断正确,假对应判断错误。
如:真命题:三角形的三角之和为180度如:假命题:人会飞充分条件:如果A能推出B,B不一定能推出A,那么A就是B的充分条件。
如:A为B的子集,即属于A的一定属于B,则有元素x属于A,就一定能推出x属于B必要条件:如果B能推出A,A不一定能推出B,则B为A的必要条件充分必要条件:A能推出B,B也能推出A,则A是B的充分必要条件二、不等式和不等式组1.不等式性质一(灵活运用)1)不等式两边同加或同减一个数,不等号方向不变,若a>b,则a±c>b±c2)不等式两边同乘或同除以一个正数,方向不变3)不等式两边同乘或同除以一个负数,方向改变2.不等式的性质二(掌握)1)如果a>b>0,c>d>0,那么ac>bd2)如果a>b,ab>0,则1/a<1/b3)如果a>b>0,那么a n>b n(n>1)4)|a+b|≤|a|+|b|三、函数1.函数定义域和值域(掌握)Y=f(x)中,x的取值范围即为函数的定义域,y对应x的取值范围为值域2.函数奇偶性(掌握)偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。
成人高考数学必背知识点
成人高考数学必背知识点1.一元一次方程和一元一次不等式:-一元一次方程的解法:平移法、消元法、代入法、图解法等;-一元一次不等式的解法:整式不等式的解集、绝对值不等式的解集、有理不等式的解集等;2.二元一次方程和二元一次不等式:-二元一次方程的解法:代入法、消元法等;-二元一次不等式的解法:图解法、代入法等;3.函数与方程:-一次函数:定义、图像、性质等;-二次函数:定义、图像、性质、解析式等;-指数函数:定义、图像、性质、等比数列等;-对数函数:定义、图像、性质、换底公式等;-三角函数:定义、图像、性质、和差化积等;-幂函数、双曲函数、反三角函数等;4.平面向量:-向量的定义、坐标表示、向量的加减等;-向量的数量积和向量积的定义和运算规则;-向量的模长、方向角、垂直、共线、重合等;5.数列与数学归纳法:-等差数列和等比数列的概念和性质;-通项公式、前n项和、公差、首项等;-数列极限的定义、性质和求解方法;-数学归纳法的原理和应用;6.概率与统计:-随机事件、样本空间、概率的定义和性质;-条件概率、相互独立事件、贝叶斯定理等;-离散型随机变量和连续型随机变量的概念;-随机变量的数学期望、方差、标准差等;-统计图表的绘制和分析、频数和频率等;7.三角函数和立体几何:-三角函数的基本关系、诱导公式、和差化积等;-三角函数图像、周期、对称性、奇偶性等;-向量数量积和向量积在几何中的应用;-立体几何的基本概念和定理,如欧几里德空间中的点、直线、平面、多面体等;以上是成人高考数学的一些必备知识点,重点掌握这些知识可以在考试中取得好的成绩。
当然,这只是一个概述,具体的知识点还要结合教材和教师的要求来进行进一步学习和备考。
2024成人高考高起专、高起本数学(理)-考点知识点汇编复习资料(完整版)
考点1实数1.实数的分类(1)有理数(2)无理数2.实数的相关概念(1)数轴(2)绝对值绝对值的意义:数轴上的点到原点的距离.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.实数a 的绝成考高起专、高起本数学(理)-考点汇编第一部分代数第一章数、式、方程和方程组(预备知识)对值可表示为a ,即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩若a,b 为实数,则(1)a ≥0,当且仅当0a =时取等号.(2)||||00a b a +=⇔=且0b =.(3)||||a a =-.(3)相反数(4)倒数3.实数的运算(1)运算法则数的运算顺序:先乘方、开方,然后乘、除,最后加、减,有括号先算括号(即从内往外的顺序)考点2整式的运算1.整式的加减运算2.整式的乘法运算(1)单项式乘单项式(2)多项式乘单项式(3)多项式乘多项式(4)常用乘法公式平方差公式:22()()a b a b a b +-=-;完全平方公式:222()2a b a ab b ±=±+;立方和、差公式:()()33223322(),()a b a b a ab bab a b a ab b +=+-+-=-++;完全立方公式:33223()33a b a a b ab b ±=±+±.3.多项式的因式分解4.分式的运算分式的加、减运算:a c ad bc ad bcb d bd bd bd ±±=±=.分式的乘法运算:ac ac bd bd⋅=.分式的除法运算:a c a d ad b d b c bc÷=⨯=.分式的乘方运算:nn n a a b b ⎛⎫= ⎪⎝⎭.注意:分式的运算结果一定要化为最简分式(或整式).5.二次根式考点3方程1.一元一次方程2.一元二次方程一元二次方程的解法直接开平方法,形如)(m x +2=ɑ(ɑ≥0)的方程因式分解法,可化为()()0m x a x b ++=的方程公式法,求根公式为=b 2-4ɑc ≥0)配方法,若20ax bx c ++=不易分解因式,考虑配方为2()a x t h +=的形式,再开方求解总结常用方法:首选因式分解法,若不适用则选择公式法.(公式法适用于一切有实数根的一元二次方程)(3)根的判别式:24b ac ∆=-叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,它与根的关系如下:①当0∆>时,方程有两个不相等的实数根.②当0∆=时,方程有两个相等的实数根.③当0∆<时,方程没有实数根.④根与系数的关系:若12,x x 是方程20(0)ax bx c a ++=≠的两个根,则有12x x +=12,b cx x a a-=(韦达定理).如果1212,x x p x x q +==,则20x px q -+=是以1x 和2x 为根的一元二次方程.考点4方程组(1)方程组形如1112220,0a x b y c a x b y c ++=⎧⎨++=⎩的方程组称为二元一次方程组.其中123123123123,,,,,,,,,,,a a a b b b c c c d d d 均为实数.“元”指未知数的个数;“次”指末知数的最高次数.(2)一次方程组的解法:一般采用代人消元法或加减消元法求解.第二章集合与简易逻辑考点1.元素与集合一组对象的全体构成一个集合.(1)集合中元素的三大特征:确定性、互异性、无序性.(2)集合中元素与集合的关系:对于元素a 与集合A ,a ∈A 或a ∉A ,二者必居其一.(3)常见集合的符号表示及其关系图.数集自然数集正整数集整数集有理数集实数集符号NN*ZQR(4)集合的表示法:列举法、描述法、Venn 图法.(5)集合的分类:集合按元素个数的多少分为有限集、无限集,有限集常用列举法表示,无限集常用描述法表示.考点2.集合间的基本关系关系定义表示相等集合A 与集合B 中的所有元素都相同A =B 子集A 中的任意一个元素都是B 中的元素A ⊆B 真子集A 是B 的子集,且B 中至少有一个元素不属于AAB注意:(1)空集用∅表示.(2)若集合A 中含有n 个元素,则其子集个数为2n,真子集个数为2n -1,非空真子集的个数为2n -2.(3)空集是任何集合的子集,是任何非空集合的真子集.(4)若A ⊆B ,B ⊆C ,则A ⊆C.考点3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A 的补集为C U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x ∉A}运算性质A∪A=A,A∪∅=A,A∪B=B∪A.A∩A=A,A∩∅=∅,A∩B=B∩A.A∩(C U A)=∅,A∪(C U A)=U,C U (C U A)=A特别提醒:1.A ⊆B ⇔A∩B=A ⇔A∪B=B ⇔C U A ⊇C U B.2.C U (A∩B)=(C U A)∪(C U B),C U (A∪B)=(C U A)∩(C U B).考点4.简易逻辑1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.充分条件与必要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q pp 是q 的必要不充分条件pq 且q ⇒pp 是q 的充要条件p ⇔qp 是q 的既不充分又不必要条件p q 且q p3.重要结论1.若A ={x |p (x )},B ={x |q (x )},则(1)若A ⊆B ,则p 是q 的充分条件;(2)若A ⊇B ,则p 是q 的必要条件;(3)若A =B ,则p 是q 的充要条件;(4)若A B ,则p 是q 的充分不必要条件;(5)若B A ,则p 是q 的必要不充分条件;(6)若AB 且BA ,则p 是q 的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p 是q 的充分条件,则q 是p 的必要条件,即“p ⇒q ”⇔“q ⇐p ”.(2)传递性:若p 是q 的充分(必要)条件,q 是r 的充分(必要)条件,则p 是r 的充分(必要)条件,即“p ⇒q 且q ⇒r ”⇒“p ⇒r ”(“p ⇐q 且q ⇐r ”⇒“p ⇐r ”).注意:不能将“若p ,则q ”与“p ⇒q ”混为一谈,只有“若p ,则q ”为真命题时,才有“p ⇒q ”,即“p ⇒q ”⇔“若p ,则q ”为真命题.第三章函数考点1.函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.考点2.函数的奇偶性偶函数奇函数定义如果对于函数f (x )的定义域内任意一个x都有f (-x )=f (x ),那么函数f (x )是偶函数都有f (-x )=-f (x ),那么函数f (x )是奇函数图象特征关于y 轴对称关于原点对称考点3.二次函数(1)解析式:一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -h )2+k (a ≠0).两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0).(2)图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域(-∞,+∞)(-∞,+∞)值域[4ac -b 24a,+∞)(-∞,4ac -b24a]单调性在x ∈(-∞,-b2a )上是减函数,在x ∈[-b2a ,+∞)上是增函数在x ∈(-∞,-b2a)上是增函数,在x ∈[-b2a,+∞)上是减函数最值当x =-b 2a 时,y 有最小值4ac -b24a当x =-b 2a 时,y 有最大值4ac -b24a奇偶性当b =0时为偶函数顶点(-b 2a ,4ac -b 24a)对称性图象关于直线x=-b2a成轴对称图形考点4.指数与指数运算1.根式(1)根式的概念根式的概念符号表示备注如果x n=a ,那么x 叫做a 的n 次方根n >1且n ∈N *当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数n a零的n 次方根是零当n 为偶数时,正数的n 次方根有两个,它们互为相反数±n a负数没有偶次方根(2)两个重要公式①na ≥0),a <0),n 为偶数.②(na )n=a (注意a 必须使n a 有意义).2.分数指数幂(1)正数的正分数指数幂是a mn =na (a >0,m ,n ∈N *,n >1).(2)正数的负分数指数幂是a -m n =1n a m(a >0,m ,n ∈N *,n >1).(3)0的正分数指数幂是0,0的负分数指数幂无意义.3.实数指数幂的运算性质(1)a r ·a s =a r +s (a >0,r 、s ∈R );(2)(a r )s =a rs (a >0,r 、s ∈R );(3)(ab )r=a r b r(a >0,b >0,r ∈R ).考点5.幂函数函数y =x y =x 2y =x 3y =x12y =x -1图象定义域R R R {x |x ≥0}{x |x ≠0}值域R {y |y ≥0}R {y |y ≥0}{y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上单调递增在(-∞,0)上单调递减,在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减考点6.指数函数图象与性质指数函数的概念、图象和性质定义函数f (x )=a x (a >0且a ≠1)叫指数函数底数a >10<a <1图象性质函数的定义域为R ,值域为(0,+∞)考点7.对数函数的图象和性质图象a >10<a <1性质定义域:(0,+∞)值域:(-∞,+∞)当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数第四章不等式与不等式组考点1.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)同向可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)同向同正可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方性:a>b>0⇒a n_>b n(n∈N,n≥2);(6)可开方性:a>b>0⇒na>nb(n∈N,n≥2).考点2.一元一次不等式组的解法:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
成人高考高升专数学常用知识点及公式(打印版) (2)
成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2A B 况第2章 知识点13. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
知识点3:一元一次不等式组4. 定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组5. 解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。
①⎨⎧>5x 解为{x|x>5 } 同大取大 ②⎨⎧<5x 解为{x|x <3 } 同小取小知识点41. 2. 3. 知识点5:一元二次不等式1. 定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。
如:02>++c bx ax与02<++c bx ax(a>0))2. 解法:求02>++c bx ax (a>0为例)3. 步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)推荐求根公式法:aacb b x 242-±-=(2)求出x 之后,大于取两边,大于大的小于小的;小于取中间,即可求出答案。
成人高考高升专数学常用知识点及公式
学习必备欢迎下载成人高考高升专数学常用知识点及公式温馨提示:数学公式不能死记硬背,而是理解掌握后灵活运用,上课第一章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第二章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
2023年成考高起点数学重要知识点
【实数的分类】【自然数】表达物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,假如除了它自身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,假如除了它自身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它自身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表达这个数的点离开原点距离。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】假如一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】假如一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表达数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】【有理式】只具有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下具有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式直线(不定义)直线向两方无限延伸,它无端点。
射线在直线上某一点旁的部分。
射线只有一个端点。
线段直线上两点间的部分。
它有两个端点。
垂线假如两条直线相交成直角,那么称这两条直线互相垂直。
其中一条叫另一条的垂线,它们的交点叫垂足。
斜线假如两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
1、知识范围(1)不定积分、原函数与不定积分的定义、原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法、第一换元法(凑微分法)、第二换元法(4)分部积分法(5)一些简朴有理函数的积分2、规定(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年成人高考高起专数学知识点汇编集合和简易逻辑:考点:交集、并集、补集概念:1、由所有既属于集合A又属于集合B的元素所组成的集合,叫做集合A和集合B的交集,记作A∩B,读作“A交B”(求公共元素)A∩B={x|x∈A,且x∈B}2、由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A和集合B的并集,记作A∪B,读作“A并B”(求全部元素)A∪B={x|x∈A,或x∈B}3、如果已知全集为U,且集合A包含于U,则由U中所有不属于A的元素组成的集合,叫做集合A的补集,记作ACu,读作“A补”ACu={ x|x∈U,且x A }解析:集合的交集或并集主要以例举法或不等式的形式出现考点:简易逻辑概念:在一个数学命题中,往往由条件A和结论B两部分构成,写成“如果A成立,那么B 成立”。
充分条件:如果A成立,那么B成立,记作“A→B”“A推出B,B不能推出A”。
必要条件:如果B成立,那么A成立,记作“A←B”“B推出A,A不能推出B”。
充要条件:如果A→B,又有A←B,记作“A←B”“A推出B ,B推出A”。
解析:分析A和B的关系,是A推出B还是B推出A,然后进行判断不等式和不等式组考点:不等式的性质如果a>b,那么b<a;反之,如果b>a,那么a<b成立如果a>b,且b>c,那么a>c如果a>b,存在一个c(c可以为正数、负数或一个整式),那么a+c>b+c,a-c>b-c如果a>b,c>0,那么ac>bc(两边同乘、除一个正数,不等号不变)如果a>b,c<0,那么ac<bc(两边同乘、除一个负数,不等号变号)如果a>b>0,那么a2>b2如果解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面考点:一元一次不等式定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
如:6x+8>9x-4,求x 把x的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
考点:一元一次不等式组定义:由几个一元一次不等式所组成的不等式组,叫做一元一次不等式组解法:求出每个一元一次不等式的值,最后求这几个一元一次不等式的交集(公共部分)。
考点:含有绝对值的不等式定义:含有绝对值符号的不等式,如:|x|<a ,|x|>a 型不等式及其解法。
简单绝对值不等式的解法:|x|<a 的解集是{x|-a<x<a},取中间,在数轴上表示所有与原点的距离小于a 的点的集合;|x|>a 的解集是{x|x>a 或x<-a},取两边,在数轴上表示所有与原点的距离大于a 的点的集合。
复杂绝对值不等式的解法:|ax+b|<c ,相当于解不等式-c<ax+b<c,不等式三边同时减去b ,再同时除以a (注意,当a<0的时候,不等号要改变方向);|ax+|>c 相当于解不等式ax+b>c 或ax+b<-c ,解法同一元一次不等式一样。
解析:主要搞清楚取中间还是取两边,取中间是连起来的,取两边有“或”考点:一元二次不等式定义:含有一个未知数并且未知数的最高次数是二次的不等式,叫做一元二次不等式。
如:02>++c bx ax 与02<++c bx ax (a>0))解法:求02>++c bx ax (a>0为例)步骤:(1)先令02=++c bx ax ,求出x (三种方法:求根公式、十字相乘法、配方法)求根公式:a ac b b x 242-±-=十字相乘法:如:62x -7x-5=0求x2 1 ×3 -5交叉相乘后 3 + -10 = -7解析:左边两个相乘等于2x 前的系数,右边两个相乘等于常数项,交叉相乘后相加等于x前的系数,如满足条件即可分解成:(2x+1)×(3x-5)=0,两个数相乘等于0,只有当2x+1=0或3x-5=0的时候满足条件,所以x=21-或x=35。
配方法(省略)(2)求出x 之后,“>”取两边,“<”取中间,即可求出答案。
注意:当a<0时必须要不等式两边同乘-1,使得a>0,然后用上面的步骤来解。
考点:其他不等式不等式(ax+b )(cx+d )>0(或<0)的解法这种不等式可依一元二次方程(ax+b )(cx+d )=0的两根情况及2x 系数的正、负来确定其解集。
不等式0>++d cx b ax (或<0)的解法它与(ax+b )(cx+d )>0(或<0)是同解不等式,从而前者也可化为一元二次不等式求解。
此处看不明白者问我,课堂上讲。
指数与对数考点:有理指数幂正整数指数幂:a a a a a n⨯⨯= 表示n 个a 相乘,(n +∈N 且n>1) 零的指数幂:10=a (0≠a ) 负整数指数幂:p p a a 1=-(0≠a ,p +∈N ) 分数指数幂: 正分数指数幂:n m n ma a =(a ≥0,;m ,n +∈N 且n>1) 负分数指数幂:n mn mn m a a a11==-(a>0,;m ,n +∈N 且n>1)解析:重点掌握负整数指数幂和分数指数幂考点:幂的运算法则y x y x a a a +=⨯(同底数指数幂相乘,指数相加)yx y xa b a -=(同底数指数幂相除,指数相减)xy y x a a =)((可以乘进去)x x x b a ab =)((可以分别x 次)解析:重点掌握同底数指数幂相乘和相除考点:对数定义:如果N a b =(a>0且1≠a ),那么b 叫做以a 为底的N 的对数,记作b N a =log (N>0),这里a 叫做底数,N 叫做真数。
特别底,以10为底的对数叫做常用对数,通常记N 10log 为lgN ;以e 为底的对数叫做自然对数,e ≈,通常记作N ln 。
两个恒等式:b a N a b a N a ==log log , 几个性质:bN a =log ,N>0,零和负数没有对数 1log =a a ,当底数和真数相同时等于1 01log =a ,当真数等于1的对数等于0n n =10lg ,(n Z ∈)考点:对数的运算法则NM MN a a a log log )(log +=(真数相乘,等于两个对数相加;两个对数相加,底相同,可以变成真数相乘) N M N M a a a log log log -=(真数相除,等于两个对数相减;两个对数相减,底相同,可以变成真数相除)M n M a n a log log =(真数的次数n 可以移到前面来)M n M a n a log 1log =(n n M M 1=,真数的次数n 1可以移到前面来) M a b M N b N a log log =函数 考点:函数的定义域和值域定义:x 的取值范围叫做函数的定义域;y 的值的集合叫做函数的值域求定义域:c bx ax y bkx y ++=+=2一般形式的定义域:x ∈Rx ky = 分式形式的定义域:x ≠0x y = 根式的形式定义域:x ≥0xy a log = 对数形式的定义域:x >0 解析:考试时一般会求结合两种形式的定义域,分开最后求交集(公共部分)即可 考点:函数的单调性在)(x f y =定义在某区间上任取1x ,2x ,且1x <2x ,相应得出)(1x f ,)(2x f 如果: 1、)(1x f <)(2x f ,则函数)(x f y =在此区间上是单调增加函数,或增函数,此区间叫做函数的单调递增区间。
随着x 的增加,y 值增加,为增函数。
2、)(1x f >)(2x f ,则函数)(x f y =在此区间上是单调减少函数,或减函数,此区间叫做函数的单调递减区间。
随着x的增加,y值减少,为减函数。
解析:分别在其定义区间上任取两个值,代入,如果得到的y值增加了,为增函数;相反为减函数。
考点:函数的奇偶性定义:设函数)(xfy=的定义域为D,如果对任意的x∈D,有-x∈D且:1、)()(xfxf-=-,则称)(xf为奇函数,奇函数的图像关于原点对称2、)()(xfxf=-,则称)(xf为偶函数,偶函数的图像关于y轴对称解析:判断时先令xx-=,如果得出的y值是原函数,则是偶函数;如果得出的y值是原函数的相反数,则是奇函数;否则就是非奇非偶函数。
考点:一次函数定义:函数bkxy+=叫做一次函数,其中k,b为常数,且0≠k。
当b=0是,kxy=为正比例函数,图像经过原点。
当k>0时,图像主要经过一三象限;当k<0时,图像主要经过二四象限考点:二次函数定义:cbxaxy++=2为二次函数,其中a,b,c为常数,且0≠a,当a>0时,其性质如下:定义域:二次函数的定义域为R图像:顶点坐标为(a b ac a b 44,22--),对称轴a b x 2-=,图像为开口向上的抛物线,如果a<0,为开口向下的抛物线单调性:(-∞,a b 2-]单调递减,[a b 2-,+∞)单调递增;当a<0时相反. 最大值、最小值:a b ac y 442-=为最小值;当a<0时a b ac y 442-=取最大值 韦达定理:a c x x ab x x =⋅-=+2121, 考点:反比例函数定义: x k y =叫做反比例函数定义域:0≠x是奇函数当k>0时,函数在区间(-∞,0)与区间(0,+∞)内是减函数当k<0时,函数在区间(-∞,0)与区间(0,+∞)内是增函数考点:指数函数定义:函数)10(≠>=a a a y x 且叫做指数函数 定义域:指数函数的定义域为R性质:a a a ==10,10>x a图像:经过点(0,1),当a>1时,函数单调递增,曲线左方与x 轴无限靠近;当0<a<1时,函数单调递减,曲线右方可与x 轴无限靠近。
(详细见教材12页图)考点:对数函数定义:函数)10(log ≠>=a a x y a 且叫做对数函数定义域:对数函数的定义域为(0,+∞)性质:1log ,01log ==a a a零和负数没有对数 图像:经过点(1,0),当a>1时,函数单调递增,曲线下方与y 轴无限靠近;当0<a<1时,函数单调递减,曲线上方与y 轴无限靠近。