抗原抗体反应
抗原抗体的反应原理

抗原抗体的反应原理
抗原抗体的反应原理是生物学中的一个核心概念,它涉及到生物体内复杂的免疫应答机制。
简单来说,抗原抗体反应是免疫系统识别和清除外来入侵者(如细菌、病毒等)或体内异常细胞(如癌细胞)的过程。
抗原是一种能刺激机体产生免疫应答,并能与免疫应答产物(抗体或致敏淋巴细胞)在体内或体外发生特异性结合的物质。
它可以是来自外部的微生物(如细菌、病毒)或其产物,也可以是体内自身产生的异常物质(如癌细胞)。
抗原具有特异性,即只能与相应的抗体或淋巴细胞结合。
抗体是由免疫系统产生的,能够与抗原特异性结合的免疫球蛋白。
当抗原进入人体后,免疫系统会识别并产生相应的抗体。
抗体与抗原的结合是高度特异性的,即一种抗体只能与一种特定的抗原结合。
这种特异性结合是抗原抗体反应的基础。
抗原抗体反应的过程包括两个阶段:首先是抗原与抗体的特异性结合,这是一个快速而可逆的过程;其次是形成的抗原-抗体复合物的进一步处理,如被其他免疫细胞吞噬、降解或进一步激活免疫反应等。
抗原抗体反应的原理在医学上有广泛的应用,如诊断疾病(如免疫检测、抗原检测等)、治疗疾病(如免疫治疗、疫苗接种等)和研究生物学问题(如分子生物学、免疫学等)。
通过深入了解抗原抗体反应的原理,我们可以更好地理解免疫系统的功能和机制,从而为医学研究和应用提供更好的理论基础和实践指导。
临床免疫学抗原抗体反应

第二章抗原抗体反应本章考点1概.述2抗.原抗体反应原理3抗.原抗体反应的特点4抗.原抗体反应的影响因素5抗.原抗体反应的类型第一节抗原抗体反应原理抗原与抗体能够特异性结合是基于抗原决定簇(表位)和抗体超变区分子间的结构互补性与亲和性。
这种特性是由抗原、抗体分子空间构型所决定的。
除两者分子构型高度互补外,抗原表位和抗体超变区必须密切接触,才有足够的结合力。
抗原抗体反应可分为两个阶段:第一阶段为抗原与抗体发生特异性结合的阶段,此阶段反应快,仅需几秒至几分钟,但不出现可见反应;第二阶段为可见反应阶段,这一阶段抗原抗体复合物在适当温度、电解质和补体影响下,出现沉淀、凝集、细胞溶解、补体结合介导的肉眼可见的反应,此阶段反应慢,往往需要数分钟至数小时。
在血清学反应中,以上两阶段往往不能严格分开,往往受反应条件(如温度、电解质、抗原抗体比例等)的影响。
(一)抗原抗体结合力抗原抗体是一种非共价的结合,不形成共价键,需要四种分子间引力参与。
1静.电引力:又称库伦引力。
是因抗原、抗体带有相反电荷的氨基与羧基基团间相互吸引的能力,这种吸引力的大小和两个电荷间的距离平方成反比。
两个电荷距离越近,静电引力越大;2范.德华引力:这是原子与原子、分子与分子相互接近时分子极化作用发生的一种吸引力,是抗原、抗体两个大分子外层轨道上电子相互作用时,两者电子云中的偶极摆动而产生的引力。
这种引力的能量小于静电引力;3氢.键结合力:是供氢体上的氢原子与受氢体上氢原子间的引力。
其结合力较强于范德华引力;4疏.水作用力:水溶液中两个疏水基团相互接触,由于对水分子的排斥而趋向聚集的力。
当抗原表位和抗体超变区靠近时,相互间正负极性消失,周围亲水层也立即失去,从而排斥两者间的水分子,使抗原抗体进一步吸引和结合。
疏水作用力是这些结合力中最强的,因而对维系抗原抗体结合作用最大。
图10抗原与抗体的结合力(二)抗原抗体的亲和性和亲和力亲和性指抗体分子上一个抗原结合点与对应的抗原决定簇之间相适应而存在的引力,它是抗原抗体间固有的结合力。
抗原抗体反应

第二节 抗原抗体反应的特点
1.特异性 2.比例性 3.可逆性 4.阶段性
一、 特异性(specificity)
1、概念:一种抗原分子通常只能与其刺激机体后
产生的抗体结合,这种抗原与抗体结合 反应的专一性称为特异性。
特 异 性 示 意 图
2、决定因素: 由抗原决定簇和抗体分子超变区之间
空间结构的互补性决定的。
Avidity
• The overall strength of binding between an Ag with many determinants and multivalent Abs
Keq =
104
Affinity
106 Avidity
1010 Avidity
二、抗原抗体的结合力
不形成牢固的共价键,通过非共价键结合 这种弱的结合力涉及几种分子间的作用力
3、根据所形成的沉淀物及抗原抗体比例 关系绘制反应曲线。
看书上76表7-1
5、一组概念
最适比(optimal ratio):是指形成沉淀物最多, 上清液清晰,几乎无游离抗原或抗体的抗原抗体 浓度比。 等价带(equivalencezone):形成沉淀物最多的 抗原与抗体分子比例合适的范围。 带现象:在等价带前后,由于抗体和抗原过量, 形成的沉淀物少,上清液中可测出游离的抗体或 抗原的现象。 带现象包括 前带(prozone)抗体过量时称为。
1、概念:是指抗原与相应抗体结合成复合物后,在 一定条件下可解离为游离抗原与抗体的特 性称为抗原抗体结合的可逆性。
2、原因:抗原抗体的结合是分子表面的非共价键 结合,因此形成的复合物不牢固。
3、抗原抗体反应动态平衡式如下:
4、决定抗原抗体解离的因素
抗原抗体反应原理

抗原抗体反应原理抗原抗体反应是生物体内一种非常重要的免疫反应过程,它对于机体的免疫防御和疾病诊断具有重要意义。
抗原抗体反应的原理是指在机体内,抗原与抗体之间发生特异性结合的过程。
抗原是一种能够诱导机体免疫系统产生特异性抗体的物质,通常是一种蛋白质、多糖或者脂质。
而抗体则是由机体的B细胞产生的一种特异性免疫球蛋白,能够与特定的抗原结合并发挥免疫作用。
抗原抗体反应的原理主要包括抗原与抗体的结合、抗原抗体复合物的形成和抗原抗体反应的效应等几个方面。
首先,抗原与抗体的结合是抗原抗体反应的起始阶段。
抗原与抗体之间的结合是一种高度特异性的相互作用,通常是由抗原表位和抗体的抗原结合部位之间的非共价相互作用所导致的。
抗原表位是抗原分子上与抗体结合的特定区域,而抗体的抗原结合部位则是由其可变区域组成,能够与抗原表位形成互补的结合。
抗原与抗体的结合是一种钥匙与锁的配对过程,只有当抗原表位与抗体的抗原结合部位能够完全互补时,它们才能发生稳定的结合。
其次,抗原抗体复合物的形成是抗原抗体反应的重要结果之一。
当抗原与抗体结合后,它们会形成一个稳定的抗原抗体复合物。
这种复合物在机体内可以引发一系列的免疫效应,如激活补体系统、介导巨噬细胞的吞噬作用、诱导细胞毒性T细胞的杀伤等。
抗原抗体复合物的形成是机体对抗原的特异性免疫反应的重要标志,也是机体对抗原进行清除和消除的重要手段。
最后,抗原抗体反应的效应是抗原抗体反应的最终结果。
抗原抗体反应可以引发一系列的生物学效应,如中和病毒、沉淀溶解抗原、介导细胞毒性作用等。
这些效应对于机体的免疫防御和疾病诊断具有重要意义。
例如,在病毒感染过程中,抗体能够与病毒颗粒结合形成免疫复合物,阻止病毒侵入宿主细胞,从而起到中和病毒的作用。
在免疫诊断中,通过检测患者血清中特定抗体的水平,可以对某些传染病进行诊断和鉴定。
综上所述,抗原抗体反应是机体免疫防御和疾病诊断中的重要过程。
它的原理包括抗原与抗体的结合、抗原抗体复合物的形成和抗原抗体反应的效应。
医学免疫学实验一抗原抗体反应

抗原制备方法
1 合成抗原
通过化学合成方法合成具有抗原性的化合物。
2 提取抗原
从生物样品中提取具有抗原性的分子。
3 重组技术
利用基因工程技术制备具有抗原性的蛋白质。
抗体制备方法
1 动物免疫法
2 体外免疫法
将抗原注射到动物体内,使其产生抗体。
利用体外细胞培养系统产生抗体。
3 单克隆抗体技术
通过细胞融合技术制备单克隆抗体。
抗原抗体反应对抗原浓度非常敏感,可用 于定量检测。
抗原抗体反应的分类
直接反应
直接检测抗原或抗体的存在, 例如免疫荧光法和酶联免疫 吸附试验(ELISA)。
间接反应
利用辅助物质间接检测抗原 或抗体的存在,例如免疫印 迹法(Western Blotting)。
功能性反应
评价抗体的生物学活性,例 如中和试验和血凝试验。
医学免疫学实验一抗原抗 体反应
本讲座将介绍医学免疫学实验中的抗原抗体反应的基本原理和方法,并探讨 其在疾病诊断和药物应用中的重要性。
什么是抗原
抗原是指能诱导机体免疫反应的物质,可以是细菌、病毒、细胞、蛋白质或多糖等。
什么是抗体
抗体是机体免疫系统产生的一类蛋白质,具有识别和结合抗原的能力。
抗原与抗体的相互作用
抗原检测方法
酶联免疫吸附试验 (ELISA)
利用酶标记的抗体或抗原进 行检测,常用于病毒和细菌 的检测。
免疫电泳法
利用电泳分离技术检测抗原 的存在,常用于蛋白质分析。
免疫层析法
利用成型的免疫层析柱分离 和检测抗原和抗体,常用于 快速筛查。
抗体检测方法
免疫荧光法
利用荧光标记的抗体检测目 标物,常用于细胞和组织的 检测。
第一章抗原抗体反应讲解学习

三、亲水胶体转化为疏水胶体
抗体和大多数抗原同属蛋白质。在通常的 血清学反应条件下均带有负电荷,使极化 的水分子在其周围形成水化层,成为亲水 胶体,因此蛋白质不会自行凝集出现沉淀。 当Ag与Ab结合后,表面电荷减少,水化层 变薄;而且由于Ag-Ab复合物形成后,与水 接触的表面积减少,由亲水胶体转化为疏 水胶体。此时在电解质(如NaCl)的作用下, 使各疏水胶体之间进一步靠拢、沉淀,形 成可见的Ag-Ab复合物。
抗原抗体结合力示意图
l. 静电引力
➢ 抗原和抗体分子带有相反电荷的氨基和羧 基基团之间相互的引力,称为静电引力, 又称库伦引力。
➢例如,抗体分子上带电荷的碱性氨基酸的 游离氨基(-NH3+)和酸性氨基酸的游离羧基 (-COO-)可与抗原分子上带相反电荷的对应 基团相互吸引。这种引力的大小与两个相 互作用基团间的距离平方成反比。
2.范德华引力
➢ 抗原和抗体相互接近时,由于分子的极 化作用而出现的引力,称范德华引力。
➢结合力的大小与两个相互作用基团的极化 程度的乘积成正比、与它们之间距离的 7 次方成反比,键能约为4.2-12.5kJ/moL。 这种引力的能量小于静电引力。
3.氢键结合力
➢ 供氢体上的氢原子与受氢体原子间的引 力。在抗原抗体反应中,羧基、氨基和 羟基是主要供氢体,而羧基氧、羧基碳 和肽键氧等原子是主要受氢体。
➢氢键结合力与供氢体和受氢体之间距离 的6次方成反比,键能约20.9kJ/mol。
4.疏水作用力
➢ 两个疏水基团在水溶液中相互接触时,由 于对水分子排斥而趋向聚集的力称为疏水 作用力,或称为疏水键。
➢当抗原抗体反应时,抗原决定簇与抗体上 的结合点靠近,互相间正、负极性消失, 由静电作用形成的亲水层立即失去,从而 促进抗原与抗体的相互吸引而结合。疏水 作用力在抗原抗体反应中的结合是很重要 的。提供的作用力最大,约占总结合力的 50%。
常见抗原抗体反应种类

常见抗原抗体反应种类一、免疫沉淀反应免疫沉淀反应是指抗原与相应抗体结合后形成不溶性复合物,沉淀于溶液中的现象。
这种反应常用于免疫学研究中,可以用来检测抗体与抗原之间的特异性反应。
通过免疫沉淀反应,可以分离和纯化抗原-抗体复合物,从而进一步研究其结构和功能。
二、免疫沉淀电泳免疫沉淀电泳是一种结合了免疫沉淀和电泳技术的方法。
通过将抗原与抗体结合形成复合物,并将其沉淀后进行电泳分离,可以实现对特定抗原的检测和定量。
这种方法常用于研究蛋白质相互作用、表达水平以及特定抗原的定位等方面。
三、免疫荧光反应免疫荧光反应是指利用荧光染料标记的抗体与抗原结合后产生荧光信号的现象。
通过观察样品中的荧光信号分布,可以确定抗原的位置和含量,从而用于疾病的诊断和研究。
免疫荧光反应广泛应用于细胞和组织的免疫标记、免疫组织化学以及流式细胞术等领域。
四、免疫酶联免疫吸附试验(ELISA)免疫酶联免疫吸附试验(ELISA)是一种常用的免疫学实验方法。
它利用酶标记的抗体与抗原结合,通过酶的催化作用产生可测量的信号,从而检测抗原的存在和浓度。
ELISA具有灵敏度高、特异性强、操作简便等优点,被广泛应用于医学诊断、药物研发和环境监测等领域。
五、免疫沉淀质谱分析免疫沉淀质谱分析是一种结合了免疫沉淀和质谱技术的方法。
通过将抗原与抗体结合形成复合物,然后将其沉淀并进行质谱分析,可以鉴定和定量复合物中的蛋白质和其他生物分子。
这种方法常用于研究蛋白质组学、信号转导等方面,有助于揭示生物系统的功能和调控机制。
六、中和反应中和反应是指抗体与病原体(如病毒、细菌等)结合后,使其失去侵袭性和致病性的能力,从而保护机体免受感染的现象。
中和反应是人体免疫系统中的重要防御机制之一,通过阻止病原体侵入细胞和繁殖,起到保护机体的作用。
七、凝集反应凝集反应是指抗体与抗原结合后,使其形成可见的凝集现象。
凝集反应常用于血型鉴定、病原体检测和免疫沉淀等实验中。
通过观察样品中的凝集程度和形态,可以确定抗原的存在和特异性反应。
抗原抗体反应的原理及特点应用

抗原抗体反应的原理及特点应用1. 原理抗原抗体反应是免疫系统中关键的免疫识别过程。
抗原是一种能够激发免疫系统产生抗体或细胞免疫应答的物质。
抗体是由免疫细胞(主要是B细胞)产生的蛋白质分子,可以识别和结合特定的抗原。
抗原抗体反应在生物学研究、免疫诊断和免疫治疗等领域都有重要的应用。
1.1 抗原的特点•多样性:抗原可以是多种化学性质的物质,如蛋白质、多糖、脂质和核酸等。
不同抗原之间的结构和性质都有所差异。
•特异性:抗原可以与相应的抗体发生特异性反应,即抗体只能识别并结合特定的抗原。
•免疫原性:抗原具有诱导机体免疫应答的能力。
免疫原性主要与抗原的分子大小、复杂性和非自身特性相关。
1.2 抗体的特点•多样性:抗体由许多不同类型的基因编码,因此可以产生大量多样性的抗体。
•结构复杂:抗体由两个重链和两个轻链组成,形成Y字型的结构。
其中抗原结合位点位于抗体的顶端。
•亲和力:抗体与抗原结合的亲和力通常很高,可以形成稳定的抗原-抗体复合物。
•特异性:抗体可以特异性地识别和结合特定的抗原分子。
2. 应用2.1 免疫诊断抗原抗体反应在临床诊断中有广泛的应用。
通过检测特定抗体与抗原的结合情况,可以获得有关某种疾病或病原体感染的信息。
目前常用的免疫诊断方法包括免疫荧光、酶联免疫吸附试验(ELISA)、放射免疫测定法等。
•免疫荧光:该方法通过检测标记在抗体上的荧光染料来判断是否与特定抗原结合。
常用于检测自身抗体、病原微生物和病毒等。
•ELISA:ELISA是一种基于酶标记物的免疫分析技术。
通过测定酶与底物之间的反应来检测抗原和抗体的结合。
常用于癌症、传染病和药物检测等领域。
•放射免疫测定法:该方法利用放射性同位素标记的抗体来检测抗原和抗体的结合。
常用于检测激素、肿瘤标志物和传染病等。
2.2 免疫治疗抗原抗体反应在免疫治疗中也有重要的应用。
通过向机体内部引入特定抗原或抗体,可以调节免疫系统的功能,以达到治疗疾病的目的。
•疫苗免疫:疫苗是通过免疫接种引入特定抗原,激发机体产生特异性抗体和免疫记忆,以预防或治疗疾病的方法。
抗原抗体反应

是主要供氢体,而羧基氧、羧基碳和肽键氧等
原子是主要受氢体,能的大小取决于方向即氢
键具有高度的方向性,因此范德华力更具有特
异性。氢键结合力与供氢体和受氢体之间距离
的6次方成反比,键能约20·9kJ/mol。
4.疏水作用力
❖
两个疏水基团在水溶液中相互接触时,
由于对水分子排斥而趋向聚集的力称为疏水作
用力,或称为疏水键。当抗原抗体反应时,抗
抗原决定簇与抗体超变区必须紧密接触,才能有
足够的结合力,使抗原抗体分子结合在一起。
一、抗原抗体结合力
❖
抗原和抗体的结合虽然是互补性的特异性
结合,但并不形成牢固的共价键,只是通 过非共价
键结合,结合方式类似蛋白质和细胞受体或酶与底
物之间的结合。抗原与抗体这种弱的结合力涉及下
列几种分子间的作用力。
l. 静电引力
❖ ×游离抗体浓度
❖
K代表抗体结合抗原的亲和力。K值
大的抗体与抗原牢固结合,不易解离,称该抗
体有高亲和力。
三、亲水胶体转化为疏水胶体
❖
抗体和大多数抗原同属蛋白质。在通
常的血清学反应条件下均带有负电荷,使极化
的水分子在其周围形成水化层,成为亲水胶体,
因此蛋白质不会自行凝集出现沉淀。当抗原与
❖
实验证明,在同一抗原抗体反应系统
中,不管抗原和抗体浓度如何变化,其沉淀反
❖ 比例性是指抗原与抗体发生可见反应需遵循一 定的量比关系,只有当二者浓度比例适当时,才出现 可见反应。以沉淀反应为例,在加入固定量抗体的一 排试管中再依次加入一定体积的递增浓度的抗原进行 反应时,发现随着抗原浓度的增加,沉淀很快大量出 现,但超过一定范围之后,沉淀速度和沉淀量随抗原 浓度增加反而迅速降低,甚至到最后不出现沉淀。沉 淀反应的速度反映了参加反应的抗原和抗体浓度的适 合程度,适合程度高反应快,反之则慢。通常把最迅 速出现沉淀时的抗原抗体的浓度比或量比称为抗原抗 体反应的最适比。
抗原抗体反应原理的应用

抗原抗体反应原理的应用1. 什么是抗原抗体反应抗原抗体反应是指抗原与抗体之间的特异性结合作用。
抗原是能激发机体产生特异性抗体的物质,可以是病原体、细胞表面分子、药物、化学物质等。
抗体是机体针对抗原产生的一类蛋白质,可以识别并结合特定的抗原,从而引发免疫反应。
抗原抗体反应是免疫系统中重要的机制,广泛应用于疾病的诊断、治疗和科研领域。
2. 抗原抗体反应原理抗原与抗体的结合是通过抗原-抗体互相作用的特定结构域来实现的。
在抗原分子上,有一些特定的结构域,称为抗原决定簇(epitope),与抗体分子上的特定结构域,即抗体结合位点相互匹配。
抗体结合抗原的过程涉及多种非共价相互作用,包括离子键、氢键、疏水作用和范德华力等。
3. 抗原抗体反应在疾病诊断中的应用抗原抗体反应在疾病诊断中具有广泛的应用。
以下是几个常见的应用例子:3.1 免疫层析检测法免疫层析检测法是利用抗体和抗原特异结合的原理进行疾病标记物检测的一种方法。
例如,妊娠试纸可以通过检测孕酮和人绒毛膜促性腺激素(hCG)等抗原来确定是否怀孕。
该方法简单、快速、便携,被广泛用于体外诊断。
3.2 免疫荧光检测免疫荧光检测(immunofluorescence)利用抗原与荧光标记的抗体结合来检测抗原的存在和分布。
这种检测方法可以用于病原体的诊断,例如,通过检测细胞表面的特定抗原来确认某种病毒或细菌的感染。
3.3 酶联免疫吸附实验酶联免疫吸附实验(enzyme-linked immunosorbent assay,ELISA)利用酶标记的二抗与特定抗原或抗体相互作用,通过测量酶的催化反应来定量检测抗原或抗体的含量。
ELISA方法在临床实验室中广泛应用于疾病的诊断,如乙肝病毒抗原和抗体的检测。
3.4 免疫组织化学染色免疫组织化学染色是通过特定抗体与抗原结合的原理来检测组织切片中特定抗原的存在和分布。
这种方法常用于肿瘤诊断,可以通过染色来判断是否存在某种肿瘤相关抗原的表达。
图解抗原抗体反应类型和原理

4、决定抗原抗体解离的因素
(1)抗体与相应抗原的亲合力。 亲合力低的抗体与抗原形成的复合物较易解离。
(2)环境因素对复合物的影响。 PH过高或过低、增加离子强度均可破坏
静电引力,使抗原抗体结合力下降,促使其 解离。
注意:解离后的抗原或抗体仍然保持其原有生物活性
精品课件
三、比例性(proportionality)
概念:两种不同的抗原分子具有部分相同或类似结 构的抗原表位,可与彼此相应的抗血清发生反应。
B
抗原抗体交叉反应示意图 精品课件
二、可逆性(reversibility)
1、概念:是指抗原与相应抗体结合成复合物后,在 一定条件下可解离为游离抗原与抗体的特 性称为抗原抗体结合的可逆性。
2、原因:抗原抗体的结合是分子表面的非共价键 结合,因此形成的复合物不牢固。 3、抗原抗体反应动态平衡式如下:
为亲水胶体。
复合物成为疏水胶体
精品课件
可见反应
在电解质作用下,中 和胶体粒子表面的电 荷,使各疏水胶体之 间靠拢,形成可见的 抗原抗体复合物
第二节 抗原抗体反应的特点
1.特异性 2.比例性 3.可逆性 4.阶段性
精品课件
一、 特异性(specificity)
1、概念:一种抗原分子通常只能与其刺激机体后
• 作用力最小
精品课件
三、氢键结合力
• 概念:供氢体上的氢原子与受氢体原子间的引力。 • 供氢体:-COOH、-NH2和-OH • 受氢体:氧、氮
➢ 氢键结合力与供氢体和受氢体之间距离的6次方成反比。
➢ 最具特异性(必须供氢体和受氢体互补才能实现氢键的结
合)
精品课件
四、疏水作用力(疏水键)
• 概念:两个疏水基团在水溶液中相互接触时,由于 对水分子排斥而趋向聚集的力。
抗原抗体反应

(二)Ab
R型Ab :等价带宽, 易出现可见反应。 来源 H型Ab :等价带窄,易出现前带或后带现象
McAb:不宜用于凝集和沉淀反应。
浓度:相对Ag而言,比例要和适,故实验前 需滴定,以求最适Ag与Ab比例。
特异性与亲合力:关键因素,选择特异性 与亲合力高的Ab。
二、环境因素
• 一般:pH6~8为宜,补体参与时pH7.2~7.4。 • 注意:自凝现象------即pH达到或接近颗粒性抗
原的PI时,引起的抗原非特异性自身凝集现象。
(三)温度—影响反应速度
一般:15~40 ℃为宜, 最适温度:37℃, 过高(>56): Ag-Ab解离, Ag、Ab变性,
(一)电解质 作用:中和胶体表面电荷,破坏水化层, 使Ag-Ab聚集。 常用:8.5g/L NaCl溶液,缓冲液、Ca2+、 Mg2+等。 注意:盐析(salting)即电解质浓度过高 引起的非特异性蛋白质沉淀。
(二)酸碱度
• Ag、Ab多为蛋白质,具两性电离特性,有其故有 的PI , pH过高或过低均可影响Ag、Ab反应。
网格学说(图)
抗体的两个Fab段分别 结合两个Ag分子,相互 交叉结合连接成巨大的 网格状立体聚合物, (可见)。
Ab/Ag过剩 过剩方的结合价得不到饱和,大多数游离存在,只 形成小分子复合物(不可见)。
网格学说(图)
切记!!!!
确定 Ag/Ab 的浓度非常重要,即在实验 中需对Ag/Ab进行适当的 稀释 ,调整二 者的比例,产生可见反应。
强度
“all points-------all points”
与抗体的结合 价直接相关。 亲合力高, 与抗原结合 牢固不易解离。
8抗原抗体反应

免疫荧光技术 (Immunofluorescence Technique)
是用荧光素(常用的有异硫氰酸荧光素, FITC) 与抗体连接成荧光抗体,再与待测 标本的抗原反应,置荧光显微镜下观察, 抗原抗体复合物散发出荧光,借此对标本 中的抗原作鉴定和定位。
RIA法原理及标准曲线
/
结 合 75
未
结 合 50
的
放 射
30
活
性 10
(
0
)
1
10
100
未标记抗原浓度(ng/ml)
1000
%
▼间接凝集抑制试验:将可溶性抗原与相应抗体预 先混合并充分作用后,再加入致敏载体,此时因抗 体已被可溶性抗原结合,阻断了抗体再与致敏载体 上抗原的结合,不再出现凝集现象。临床常用的免 疫妊娠试验即属此类。
(二)沉淀反应(Precipitation)
血清蛋白质、细胞裂解液或组织浸液等 可溶性抗原与相应抗体结合后出现的沉淀物 现象称为沉淀反应。
加样
Ab+琼脂
Ag
Ag
Ag
NS
观察
(含量)
Ab固定于 琼脂
单向免疫扩散
Ag扩散 沉淀环
双向免疫扩散
(Double Immunodiffusion)
是将抗原与抗体分别加入 琼脂凝胶的小孔中,二者 自由向周围扩散并相遇, 在比例合适处形成沉淀线。 如果反应体系中含两种以 上的抗原抗体系统,则小 孔间可出现两条以上的沉 淀线。本法常用于抗原或 抗体的定性 、组成和两种 抗原相关性分析的检测。
敏感性和特异性均较高,但该试验影响因素较多,现在已 有被其它新方法取代的趋势。
抗原抗体反应的原理

抗原抗体反应的原理抗原抗体反应是生物体内一种重要的免疫应答过程,它在维护机体内稳态、抵御外界病原微生物侵袭等方面发挥着至关重要的作用。
抗原抗体反应的原理主要包括抗原的识别、抗体的生成和抗原抗体结合等几个方面。
首先,抗原抗体反应的原理之一是抗原的识别。
抗原是一种能够诱导机体产生免疫应答的物质,它可以是蛋白质、多糖、脂质等。
当抗原进入机体后,免疫系统会通过特异性受体识别抗原的结构特征,从而启动免疫应答。
这种特异性受体包括B细胞上的B细胞受体(BCR)和T细胞上的T细胞受体(TCR),它们能够高度特异地识别抗原的结构特征。
其次,抗原抗体反应的原理还包括抗体的生成。
当机体内部存在外源性抗原或内源性抗原(如自身抗原)时,B细胞会受到激活,开始合成和分泌抗体。
抗体是一种由B细胞分泌的免疫球蛋白,它能够特异性地结合抗原,并进而中和、沉淀、凝集或激活补体等,从而发挥免疫效应。
抗体的生成是免疫系统对抗原的特异性应答,也是机体对抗原抗体反应的重要组成部分。
最后,抗原抗体反应的原理还包括抗原抗体结合。
当抗体与抗原结合时,它们之间会形成特异性的抗原抗体复合物。
这种复合物能够引起多种生物学效应,如中和病原微生物、激活补体、介导细胞毒性等。
抗原抗体结合是免疫系统对抗原的特异性应答的最终表现,也是机体抵御病原微生物侵袭的重要手段。
综上所述,抗原抗体反应的原理包括抗原的识别、抗体的生成和抗原抗体结合等几个方面。
它是机体对抗原的特异性应答,是免疫系统发挥免疫效应的重要机制。
对抗原抗体反应的原理有深入的理解,有助于我们更好地认识免疫系统的功能和机制,也有助于指导临床免疫诊断和治疗的实践工作。
因此,深入研究抗原抗体反应的原理具有重要的理论意义和实践价值。
抗原抗体反应的原理

抗原抗体反应的原理抗原抗体反应是机体对外来抗原的特异性免疫反应,是免疫系统对抗原的一种保护性反应。
在这一过程中,抗原与抗体结合,从而触发一系列免疫反应,保护机体免受外来病原体的侵害。
抗原抗体反应的原理涉及到抗原和抗体的结构、相互作用以及免疫反应的调节等方面。
首先,抗原是一种能够诱导机体产生抗体的物质,可以是蛋白质、多糖、脂质等。
抗原通常具有一定的分子特异性,能够被机体的免疫系统所识别。
抗原通常被抗体所识别并结合,从而引发免疫反应。
抗体是机体对抗原产生的一种特异性蛋白质,由B细胞产生。
抗体的结构包括两条重链和两条轻链,通过二硫键连接成Y形结构。
抗体的结构决定了其与抗原的特异性结合,这种结合是通过抗原与抗体的互补决定区域相互作用而实现的。
抗原抗体反应的原理在于抗原与抗体的特异性结合。
当抗原与抗体结合时,会发生一系列的生物化学反应,包括激活补体系统、调节炎症反应、促进巨噬细胞的吞噬等。
这些反应共同作用,最终达到清除抗原的目的。
此外,抗原抗体反应还包括免疫记忆和免疫调节等过程。
一旦机体接触到抗原,免疫系统会产生特异性的记忆细胞,使得再次接触同一抗原时,机体能够更快速、更有效地产生抗体,从而加强免疫应答。
免疫调节则是指机体对免疫应答的调控,保持免疫系统的平衡状态,避免过度的免疫反应对机体造成伤害。
总的来说,抗原抗体反应的原理涉及到抗原与抗体的特异性结合,以及免疫反应的调节和记忆等过程。
这一反应是机体对外来抗原的一种保护性反应,对维持机体的免疫平衡具有重要意义。
对抗原抗体反应的深入研究,有助于更好地理解免疫系统的功能,为免疫相关疾病的治疗和预防提供理论基础。
抗原抗体反应

免疫学检测抗原抗体反应(antigen-antibody reaction)是指抗原与相应抗体所发生的特异性结合反应。
抗原抗体反应的特点(一)特异性抗原抗体的结合本质是抗原决定簇与抗体超变区的结合。
抗原决定簇与抗体超变区在一级结构和空间构型上呈互补关系,所以它们的结合具有高度特异性。
抗原抗体结合力的大小,常用亲和力(affinity)或亲合力(avidity)来表示,前者指抗体分子上一个抗原结合部位与相应的抗原决定基之间的结合强度,后者指一个抗体分子与整个抗原之间的结合强度。
抗原与抗体的结合为非共价的可逆结合,它们空间构象的互补程度不同,结合力强弱也不同,互补程度越高,亲和力越高。
(二)可逆性抗原抗体结合反应不是化学反应,而是非共价键的结合。
4种分子间引力参与了抗原抗体间的结合,分别是静电引力、范德华力、氢键结合力和疏水作用。
抗体和抗原之间的亲和力源自抗体超变区和抗原决定簇在空间构型上的互补性。
抗原和抗体分子均是极性分子,反应温度、酸碱度和离子浓度对它们的极性有重要影响,从而影响着两者的空间构型和亲和力。
抗原抗体结合反应是可逆反应。
正向反应产物是抗原抗体复合物,复合物解离则是逆向反应。
(三)抗原和抗体的浓度及合适比例抗原和抗体的浓度及合适比例是可见现象能否出现的关键。
当比例不合适时,少量的小分子抗原抗体复合物停留在反应的第一阶段,不能进一步交联和聚集,故不出现肉眼可见的现象。
一般用电解质溶液来调整抗原和抗体的浓度,使两者的比例合适。
(四)抗原抗体反应的阶段性抗原抗体反应的过程可分为两个阶段。
第一阶段是抗原抗体发生特异性结合,此阶段的抗原抗体复合物量很少,分子小,肉眼看不见。
当抗原抗体比例合适并且具备一定的环境因素(如电解质、pH、温度、补体)时,抗原抗体复合物进一步交联和聚集,反应也进入第二阶段,即可见反应阶段。
第二阶段的抗原抗体复合物可以出现凝集、沉淀等肉眼可见的现象,还可激活补体,引发溶菌、溶血等现象。
抗原抗体反应的基本原理包括

抗原抗体反应的基本原理包括抗原抗体反应是生物学中一种重要的免疫反应,它在维持机体免疫稳态、抵抗病原微生物侵袭和诊断疾病等方面起着重要的作用。
本文将从抗原和抗体的基本概念入手,详细解析抗原抗体反应的基本原理。
一、抗原的概念抗原是指能够诱导机体免疫系统产生免疫应答的物质,可以是蛋白质、多糖、脂质或核酸等大分子物质,也可以是一些小分子化合物。
抗原通常具有两个重要特征:免疫原性和抗原决定簇。
1. 免疫原性:免疫原性是指抗原能够激发机体产生免疫应答的能力。
通常情况下,抗原必须具备一定的分子复杂性和分子量,较小的分子往往不具备免疫原性。
抗原的免疫原性与其化学结构、分子量以及与机体免疫系统的相互作用有关。
2. 抗原决定簇:抗原决定簇,也称为抗原表位,是指抗原分子表面上能够与抗体结合的特定区域。
抗原通常具有多个抗原决定簇,每个抗原决定簇都能与特定的抗体结合,从而激发免疫反应。
二、抗体的概念抗体是机体免疫系统产生的一类特殊蛋白质,也被称为免疫球蛋白。
抗体分子由两个重链和两个轻链组成,其结构可以分为四个区域:两个可变区域(variable region,V)和两个恒定区域(constant region,C)。
抗体的可变区域决定了其与抗原结合的特异性。
抗体的主要功能是识别和结合抗原,从而参与免疫反应的各个环节。
抗体可以通过多种机制发挥免疫效应,如中和病原微生物、促进巨噬细胞吞噬、激活补体系统等。
三、抗原抗体反应的基本原理抗原抗体反应是指抗原与特异性抗体结合的过程。
抗原抗体反应具有高度的特异性和亲合性,其基本原理可以归结为以下几个步骤:1. 识别和结合:抗体的可变区域与抗原的抗原决定簇之间形成互补的键合,使抗原与抗体结合。
这种互补的结合方式决定了抗体对抗原的特异性。
一个抗体可以与多个抗原决定簇结合,形成多价结合。
2. 激活免疫效应:抗原抗体结合后,抗体可以激活机体免疫系统的各种效应分子,如补体系统、免疫细胞等。
这些效应分子的激活进一步增强了免疫反应的强度和效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面效应:
蛋白质分子在吸附(包被)过程,为了克 服与固相载体之间的排斥力,需要重新分 布其表面的功能性基团,使疏水性基团充 分暴露,然后,局部接触区域的偶极分子 脱氢,再通过范德瓦尔引力将其固相于载 体表面。整个过程谓coating。 影响:抗原抗体的构象和功能;抗原-抗体 结合反应的动力学过程。
ELISA:
ELISA— 是以酶作为 标记指示物、以抗原 抗体反应为基础的固 相吸附测定。
— 抗原/抗体的固相化 (coating,包被) (immunosorbent) (蛋白分子表面效应)
操作:(例)Ag/Ab in pH 9.6 carbonate buffer Incubated at 4℃ for overnight
区别:
(1)非共价吸附 抗体或蛋白通过疏水性相互作用而附着 (2)共价吸附 借助固相上的活性基团,通过化学交联剂 与抗原/抗体分子上相应活性基团反应形成 共价键,固着~
固相载体
材料要求: 1、结合容量 2、结合能力 3、结合性质 4、性价比
种类: 1、聚苯乙烯 2、聚氯乙烯 3、硝酸纤维素膜 4、尼龙膜 5、磁性微粒
孔间差异 (<10%)
对策
一、 用一定浓度的人IgG(10ng/ml) 适当稀释度的酶标抗人IgG 控制反应各条件 计算各孔读值的平均值并要求每孔的读值与其平均值间的 差异小于10%。 二、 选择已知阳性与阴性标本,作系列稀释 在不同固相载体上按预定的ELISA法进行操作测定 评判的标准:阳性结果与阴性结果差别最大的好
Precipitation
Reaction
Immunodifusion(免疫扩散) Immunoturbidimetry(免疫浊度) Immunoeletrophoresis(免疫电泳) Et al(环状~) (絮状~)
沉淀反应的类型归纳
环状沉淀反应 液相(液体){絮状沉淀反应 免疫浊度测定 沉淀反应{ 免疫扩散 固相(凝胶){ 免疫电泳
补体介导的抗原抗体反应(complement)
例: CH50(complement hemolysis 50%)(测补体) 脂质体免疫法检测补体(测补体) 微量细胞毒试验(complement dependent cytotoxicity;CDC)(交叉配型) 特定蛋白检测仪及配套试剂(补体单成分)
二、Immunolabeling Technique
Immunolabeling Technique
原理:于抗原或抗体上标记可以微量检测 的标记物(荧光素、酶或同位素等),待 特异性抗原抗体反应后,所测的不必是抗 原-抗体复合物本身,而测定复合物中的标 记物,并可通过标记物的放大作用,进一 步提高其检测的敏感度。
酶免疫技术/ELISA
酶免疫技术— 是以酶标记抗原或抗体作为 主要试剂的免疫测定方法。 ELISA— 是以酶作为标记指示物、以抗原 抗体反应为基础的固相吸附测定。
酶免疫技术分类
(一)酶免疫组织化学测定技术 (二)酶免疫测定技术 Ab *+Ag → Ab*Ag +Ab* Ab +Ag * → AbAg * +Ag* (1)Homogenous (均相测定) (2)Hetergenous(异相测定) —— Solid phase (固相)
Immunolabeling Technique
Enzyme linked immunosorbent assay (ELISA) Fluorescence immunoassay(FIA) Radioimmunoassay(RIA) Luminescence immune-technique Solid phase membrane-based immunoassay Biotin-avidin system(BAS)
免疫浊度(turbidimetry)测定:
含义:是将光学测量仪与自动分析检测系 统结合,应用于沉淀反应试验。 原理:抗原抗体在检测反应液中会形成抗 原抗体复合物,使得反应液出现浊度。当 反应液中保持抗体过剩,形成的复合物随 样本中抗原的量增加而增多,反应液的浊 度亦随之增高。与系列标准品对照(标准曲 线),可计算样本中被测抗原的浓度。
特异性(specific) 最适比(optimal ratio) 可逆性(reversible) 亲和性(afinity)和亲和力(avidity)
抗原/抗体反应分两阶段
(一)抗原/抗体发生特异性结合
1、亲水胶体转变为疏水胶体(水化层) 2、抗原抗体的结合力(静电引力、范登华引力、氢键 结合力、疏水结合力等)
一、Classical antigen and antibody reaction
Antigen and Antibody reaction
Ag + Ab → Ag-Ab + Ag/Ab
In vivo (不同免疫应答的效应作用) In vitro (抗原抗体结合反应,多样性)
抗原/抗体反应的特点:
透射免疫比浊(turbidimetry) 免疫比浊测定仪 散射免疫比浊(nephelometry) 包括— 终点~ 速率~
Agglutination
Reaction
例: 人类ABO血型检测(玻片) 肥达(Widal)反应 {direct~ 类风湿因子测定(乳胶) {indirect~ 包括-正向 反向 抗红细胞不完全抗体(Coobs)
(二)抗原/抗体结合的可见反应
1、凝集~ 2、沉淀~ 3、溶细胞~ 4、等等
In vitro(classical~)
Precipitation Reaction (沉淀反应) Agglutination Reaction (凝集反应) Antigen and Antibody Reaction Involved by Complement (补体介导的抗原抗体反应) Et al
临munologic technique/appliance
Classical antigen and antibody reaction (抗原抗体反应) Immunoassay (IA){ (免疫测定) Immunolabeling technique (标记免疫技术)