生物统计学 几种常见的概率分布律

合集下载

几种常见的概率分布律

几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16

ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为

ϕ
3
(1

ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。

生物统计学 几种常见的概率分布律

生物统计学 几种常见的概率分布律

非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9

几种常见的概率分布率分解课件

几种常见的概率分布率分解课件

均匀分布的定 义
均匀分布是一种概率分布,其特点是随机变量在一定区间内取值的可能性是等可 能的。
在数学表达上,如果一个随机变量X服从某个区间[a, b]上的均匀分布,则其概率 密度函数f(x)可以表示为f(x)=1b−a,当x∈[a,b]时,f(x)=0,当x∉[a,b]时。
均匀分布的特点
均匀分布的期望值E(X)和方差Var(X) 分别为(a+b)/2和(b-a)^2/12。
泊松分布在生活中的应用
02
01
03
在物理学中,泊松分布用于描述放射性衰变过程中粒 子发射的次数。
在统计学中,泊松分布常用于二项分布的近似,当试 验次数很大而事件发生的概率很小时。
在计算机科学中,泊松分布在处理网络流量和计算机 系统中的任务调度等问题时非常有用。
04
二项分布
二项分布的定义
总结词
二项分布是一种离散概率分布,描述了在n次独立重复的伯努利试 验中成功的次数。
指数分布的期望值和方差是有限的,分别为1/λ和1/λ^2,其中λ是概率密度函数的 参数。
指数分布在生活中的应用
指数分布在可靠性工程中广泛应 用,用于描述产品寿命、故障间
隔时间等。
在排队论中,指数分布用于描述 顾客到达和服务时间等随机变量。
在保险精算中,指数分布用于计 算保费和准备金。
06
均匀分布
几种常见的概率分布率分解课 件
CONTENCT

• 概率分布率概述 • 正态分布 • 泊松分布 • 二项分布 • 指数分布 • 均匀分布
01
概率分布率概述
概率分布率的定 义
概率分布率
表示随机变量取值的概率规律。
定义方式
对于离散随机变量,概率分布律为P(X=xi)=pi,i=1,2,3...;对于连续随机变量, 概率分布函数为P(a≤X≤b)=∫[a,b]f(x)dx,其中f(x)为概率密度函数。

统计学中的常用概率分布及其性质

统计学中的常用概率分布及其性质

统计学中的常用概率分布及其性质概率论是数学中的一个分支,它研究的是随机事件的发生概率以及由随机变量带来的影响。

概率分布则是衡量随机变量取值的可能性的一种方法。

概率分布可以用来得出某些随机变量出现的概率,同时可以用来比较多个随机变量之间的差异。

在统计学中,常用的概率分布有正态分布、伯努利分布、泊松分布、指数分布、二项分布、负二项分布以及几何分布。

正态分布正态分布是一种非常常见的概率分布,也叫高斯分布。

正态分布的概率密度函数是一个钟形曲线,其均值、方差以及标准差的值决定了曲线的位置与形态。

伯努利分布伯努利分布是一种离散概率分布,其只有两个可能结果,即成功或失败。

在伯努利分布中,成功的概率为p,失败的概率为1-p。

伯努利分布可以用来估计投掷硬币等随机事件的概率。

泊松分布泊松分布是一种离散概率分布,它用来衡量独立随机事件在一段时间内发生的次数。

泊松分布的概率密度函数为: P(X=k)= e^-λ * λ^k/k!,其中λ为平均发生次数。

指数分布指数分布是一种连续概率分布,其用途非常广泛,例如在可靠性工程学中,指数分布可以用来描述设备故障发生之间的时间间隔。

指数分布的概率密度函数为: f(x) = λ * e^-λx,其中λ为发生比例。

二项分布二项分布是一种离散概率分布,其表示在n次试验中成功的次数。

二项分布的概率函数为:P(X=k)= (n!/(k!*(n-k)!)) * p^k * (1-p)^(n-k),其中p为成功概率,n为试验次数。

负二项分布负二项分布是一种离散概率分布,其表示在成功x次之前,需要进行n次试验中失败的次数。

负二项分布的概率密度函数为:P(X=k)= (k-1)!((r-1)!*(k-r)!)p^r(1-p)^(k-r)几何分布几何分布是二项分布的一个特例,其表示在n次试验中,首次发生成功的次数。

几何分布的概率密度函数为:P(X=k)=(1-p)^(k-1)* p,其中p为成功概率,k为试验次数。

常用概率分布

常用概率分布
关于 左右对称,正态高峰位于中央 在 处取得该概率密度函数的最大值,在 x处
有拐点,表现为钟形 靠近 x 处曲线下面积较为集中,两边减少,意味
着正态分布变量取值靠近 x处 的概率较大,两 边逐渐减少 正态分布的总体偏度系数和峰度系数均为0
8
正态分布曲线下面积
正态分布变量X的取值为(-∞,∞)
23
四、二项分布的图形
24
图形特点:两个轴意义,对称、偏态、与 正态分布的关系
决定图形的两个参数:n,
25
五、样本率的均数和标准差
样本率的总体均数p:
p
1 n
x
1 n
(n )
样本率的总体标准差p:
p
1 n
x
(1 )
n
样本率的标准差(标准误)Sp:
Sp
p(1 p) n
26
根据中心极限定理,在n较大,n(1- )均大于5时,二项分 布接近于正态分布。当n → ∞ , 二项分布B(n,)的极限分布 是总体均数为X = n、总体方差 X2 = n(1-)的正态分布 N(n, n(1-))。这个时候可以用正态分布N(n, n(1-)) 作近似计算。
16
确定医学参考值范围
例 估计某地健康成年女子的血红蛋白的95% 医学参考值范围
具体步骤如下: 1. 根据研究背景确定研究对象的入选标准和排
除标准。这类研究一般要求参加体检并且要 求除研究指标血红蛋白指标外,其他指标均 正常的对象。 2. 根据研究背景,确定血红蛋白过高或过低均 属于不正常(双侧范围)。
6. 如果受检指标血红蛋白呈偏态分布,则可 以用百分位数P2.5~P97.5确定95%参考值 范围,但样本量要充分大。
7. 样本量充分大是相对与指标的变异程度, 指标变异大,要求样本量大;指标变异程 度小,要求样本量可以相对小一些。

几种常见的概率分布及应用

几种常见的概率分布及应用

几种常见的概率分布及应用常见的概率分布有很多种,在统计学和概率论中,这些分布被广泛应用于各种领域,包括自然科学、工程、经济和社会科学等。

下面是几种常见的概率分布及其应用:1. 均匀分布(Uniform Distribution):均匀分布是最简单的概率分布之一,它的概率密度函数在一个给定的区间内是常数。

这种分布广泛应用于统计推断、模拟和随机数生成等领域。

2. 二项分布(Binomial Distribution):二项分布适用于具有两个可能结果的离散试验,如抛硬币、打靶等。

在二项分布中,每个试验都是独立的,并且具有相同的概率。

二项分布在实验研究和贝叶斯统计等领域有广泛的应用。

3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间或空间内稀有事件发生次数的概率分布。

它在复杂事件模型、风险评估和可靠性分析等领域有广泛的应用。

4. 正态分布(Normal Distribution):正态分布是最常见的连续概率分布之一,也被称为高斯分布。

它具有对称的钟形曲线,广泛应用于自然科学、社会科学和工程等领域。

正态分布在统计推断、回归分析、贝叶斯统计等方面发挥着重要作用。

5. 指数分布(Exponential Distribution):指数分布适用于描述事件发生之间的时间间隔的概率分布。

它在可靠性工程、队列论、生存分析等领域有广泛的应用。

6. γ分布(Gamma Distribution):γ分布是一类连续概率分布,用于描述正数随机变量的分布,如等待时间、寿命和利润等。

它在贝叶斯统计、过程控制和金融分析等领域被广泛使用。

7. t分布(T-Distribution):t分布是一种用于小样本情况下的概率分布,它类似于正态分布,但考虑了样本容量较小的情况。

t分布在统计推断和假设检验等方面有广泛的应用。

8. χ²分布(Chi-Square Distribution):χ²分布是一种用于度量变量之间的独立性和相关性的概率分布。

d 几种常见的概率分布律

d  几种常见的概率分布律

三、服从二项分布的随机变量的特征数
平均数: μ=nφ
方差: σ2=nφ(1-φ)
随着样本含量的增加,偏斜度和峭度趋 向于0,二项分布逐渐接近于正态分布。
四、二项分布应用实例
例:3.2 例:3.3 例:3.4
【例3.4】
用 棕 色 正 常 毛 (bbRR) 的 家 兔 和 黑 色 短 毛 (BBrr)兔杂交,杂种F1为黑色正常毛长的 家兔,F1雌、雄兔近亲交配,问最少需要 多少只F2代的家兔,才能以99%的概率至 少得到一只棕色短毛兔?
二、二项分布概率函数表达式:
p( y) Cny y (1)ny , y 0,1,2,, n
n=试验次数(或样本含量) y=在n次试验中事件A出现的次数 φ=事件A发生的概率(每次试验都是恒定的) 1-φ=事件A的对立事件发生的概率 p(y)=Y的概率函数=P(Y=y)
例:3.1
从雌雄各半的100只动物中做一抽样试验。第一次从这100只动 物中随机抽取一只,记下性别后放回,再做第二次抽取。共 做了10次抽样,计算抽中3只和3只以下雄性动物的概率。
(5)曲线和X坐标轴所夹的面积等于1。 (6)正态分布表查出的φ(u)的值表示随机变量
U落入区间(-∞, u)的概率。 (7)累积分布函数图形的特点是围绕点
(0, 0.5)对称。 (8)正态分布的偏斜度γ1=0 ,峭度γ2=0。
5. 一些重要值
68.27%
68.27%
95.00%
95.00%
99.00%
解: n=10 y=3,2,1,0 φ=1/2 p( y) Cny y (1)ny
p(3) 10! ( 1 )3 ( 1 )7 120 (210 ) 0.1171876 3!(10 3)! 2 2

几种常见的概率分布率

几种常见的概率分布率
u
❖对于一般正态分布,要先进行标准化,再查表;
标准化的公式为: u = x -
u
=
x-
=
9.2 10
5
= 0.42
正态分布 σ= 10
标准正态分布 σ=1
μ=5 9.2
x
μ=0 0.42 u
例3.7 查标准正态分布u=-0.82 及u=1.15时的F(u)的值 例3.8 随机变量u服从正态分布N(0,1),问随机变量u的值落
在生物统计学中,正态分布占有极其重要的地位。许多生物学 现象所产生的数据,都服从正态分布。
一、 正态分布(x—N (μ,σ2))的密度函数与分布函数
➢ 正态分布的规律是数据分布集
中在平均数附近,并且在平均
数的两侧成对称分布。正态分
布密度函数的图像,称为正态
曲线。
➢ 密度函数: f (x) =
1
正态曲线
p(x)
=
cnx
px (1-
p)n-x
=
n! x!(n -
x)!
p x (1-
p)n-x
= n(n -1)(n - 2)(n - x 1) px (1- p)n-x
=
1(1-
1
)(1-
x! x -1)
(np) x
(1-
p)n-x
(将系数的分子分母同乘以nx)
n
n
x!
= x (1- p)n-x
=
x!
2
=
1
概率函数内的λ ,不但是它的平均数,而且是
它的方差。
λ很大时, γ1和γ2则接近于0,这时的泊松分布近
似于正态分布。
三、 泊松分布应用实例
例3.5 在麦田中,平均每10m2有一株杂草,问每 100m2麦田中,有0株、1株、2株、…杂草的概率 是多少?

生物统计学答案第三章

生物统计学答案第三章

第三章 几种常见的概率分布律3.1 有4对相互独立的等位基因自由组合,问有3个显性基因和5个隐性基因的组合有多少种?每种的概率是多少?这一类型总的概率是多少?答:代入二项分布概率函数,这里φ=1/2。

()75218.02565621562121!5!3!83835==⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=p结论:共有56种,每种的概率为0.003 906 25(1/256 ),这一类型总的概率为 0.21875。

3.2 5对相互独立的等位基因间自由组合,表型共有多少种?它们的比如何? 答:(1)543223455414143541431041431041435434143⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+表型共有1+5+10+10+5+1 = 32种。

(2)()()()()()()6976000.0024114165014.00241354143589087.002419104143107263.0024127104143105395.00241815414353237.0024124343554322345541322314==⎪⎭⎫⎝⎛==⨯=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛===⎪⎭⎫⎝⎛=隐隐显隐显隐显隐显显P P P P P P 它们的比为:243∶81(×5)∶27(×10)∶9(×10)∶3(×5)∶1 。

3.3 在辐射育种实验中,已知经过处理的单株至少发生一个有利突变的概率是φ,群体中至少出现一株有利突变单株的概率为P a ,问为了至少得到一株有利突变的单株,群体n 应多大?答: 已知φ为单株至少发生一个有利突变的概率,则1―φ为单株不发生一个有利突变的概率为:()()()()()φφφ--=-=--=-1lg 1lg 1lg 1lg 11a a an P n P n P3.4 根据以往的经验,用一般的方法治疗某疾病,其死亡率为40%,治愈率为60%。

常见概率分布特征总结

常见概率分布特征总结

常见概率分布特征总结
1、正态分布:正态分布是最常用的概率分布之一,它出现在许多形
式的研究中,主要是属于连续性概率分布。

正态分布的形状是一个钟形曲线,由一个均值(μ)和标准差(σ)决定。

它两侧各有一个“长”尖,就像
一个钟形。

正态分布的总体平均值μ=样本的均值,正态分布的总体方差
σ2=样本的方差。

正态分布有着特殊的性质:(1)中位数等于均值。

(2)标准差越大,尖峰越低,右腹越宽,左腹越窄。

(3)曲线两侧对称,均值、中位数、众数均相同。

2、贝叶斯分布:贝叶斯分布是一种连续性概率分布,其函数形式为
x^(α-1)*exp(-x^2/2b^2)。

贝叶斯分布具有有限的可变性,因此可以用
来描述连续现象的概率分布,如测量误差、估计参数等现象。

贝叶斯分布
亦称为Α-分布,其中α是分布的形状参数,β则表示尺度参数,可以
衡量其方差的大小。

当α=1和β=1时,贝叶斯分布可以用高斯分布来描述,此时又称为双变量高斯分布。

3、对数正态分布:对数正态分布是一种同密度连续概率分布,它是
一种特殊的正态分布,分布的概率密度函数与正态分布不同之处在于,其
取值范围限制在非负值,而且在正值上变化更为迅速,由均值μ和方差
σ2决定。

生物统计学 第3章 几种常见的概率分布律

生物统计学 第3章  几种常见的概率分布律
2. 二项分布的概率之和等于1,即
n
Cnk p k q nk (q p)n 1
k 0
3. P( x m) Pn (k m)
m
Cnk p k q nk
(3-2)
4. P( x m) Pn (k m)
nk 0
Cnk p k q nk
(3-3)
k m
5. m2
P(m1 x m2 ) pn (m1 k m2 )
• 平均数:
nK
N
• 方差:
2 nK(N K )( N n)
N 2 (N 1)
2. 负二项分布
• 负二项分布所要求的条件与二项分布是一样 的。不同的是负二项分布需要求出在第x次试 验时,发生第k次事件A的概率。或者说,在x 次试验中,共发生k次事件A,而且事件A的第 k次试验恰恰是在第x次试验发生的。
x 中细菌数服从波松分布。以=0.500代替 (3-10)
式中的λ,得
P( x k ) 0.5k e0.5 (k=0, 1, 2, …) k!
计算结果如表3-3所示。
表3-3 细菌数的波松分布
可见细菌数的频率分布与λ=0.5的波松分布是 相当吻合的 , 进一步说明用波松分布描述单位 容积(或面积)中细菌数的分布是适宜的。
P(x
7)
C170 0.7570.253
10! 0.757 7!3!
0.253
0.2503
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗?
二项分布的应用条件有三:
(1)各观察单位只具有互相对立的一种结果,如阳 性或阴性,生存或死亡等,属于二项分类资料;

介绍统计学中的概率分布

介绍统计学中的概率分布

介绍统计学中的概率分布统计学中的概率分布概率分布是统计学中非常重要的概念之一,它描述了随机变量可能取到每个可能值的概率。

在统计学中,我们常常使用概率分布来分析和解释随机事件的发生概率,从而进行概率推断和统计推断。

本文将介绍统计学中常见的概率分布,并探讨它们的特点和应用。

一、离散型概率分布1. 伯努利分布伯努利分布是最简单的离散型概率分布之一,它描述了只有两个可能结果的随机试验。

比如掷一次硬币,结果只有正面和反面两种可能性,每个结果的概率分别为p和1-p。

伯努利分布的概率质量函数可以表示为:P(X=x) = p^x * (1-p)^(1-x),其中x为0或1。

2. 二项分布二项分布是由多次伯努利试验组成的概率分布。

当进行n次伯努利试验时,每次试验成功的概率为p,失败的概率为1-p,那么成功次数的概率分布服从二项分布。

二项分布的概率质量函数可以表示为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中C(n, k)为组合数,表示从n次试验中取k次成功的组合数。

3. 泊松分布泊松分布是描述单位时间或单位空间中某事件发生次数的概率分布。

它适用于事件稀有且独立发生的情况。

泊松分布的概率质量函数可以表示为:P(X=k) = (e^(-λ) * λ^k) / k!,其中λ为单位时间或单位空间中平均事件发生次数。

二、连续型概率分布1. 均匀分布均匀分布是最简单的连续型概率分布之一,它用来描述在一个区间内任何数值的可能性相等的情况。

均匀分布的概率密度函数可以表示为:f(x) = 1 / (b - a),其中a为区间的起始值,b为区间的终止值。

2. 正态分布正态分布是统计学中最重要且最常用的概率分布之一。

在许多实际应用中,许多随机变量都可以近似地服从正态分布。

正态分布的概率密度函数可以表示为:f(x) = (1 / (σ * sqrt(2π))) * e^(-(x-μ)^2 / (2σ^2)),其中μ为平均值,σ为标准差。

生物统计学中的概率统计和参数估计方法

生物统计学中的概率统计和参数估计方法

生物统计学中的概率统计和参数估计方法生物统计学是一门统计学和生物学的交叉学科,主要研究如何利用概率统计和参数估计等方法,对生物学和医学中的相关数据进行分析和研究。

以下将对生物统计学中的概率统计和参数估计方法进行探讨。

一、概率统计概率统计是生物统计学中非常重要的一个分支,其方法主要用来描述和分析生物学和医学数据中的随机变量和随机过程,包括概率分布、概率密度函数、概率质量函数、期望值、方差等。

1.1 概率分布概率分布是随机变量取某些值时的可能性分布,如正态分布、泊松分布、二项分布、均匀分布等。

其中,正态分布是最为常见的一种概率分布,其符合“大数定律”,即大量同类数据的平均值趋近于正态分布。

1.2 概率密度函数和概率质量函数概率密度函数和概率质量函数是描述一种概率分布的函数形式。

概率密度函数主要针对连续随机变量,而概率质量函数则主要针对离散随机变量。

以正态分布为例,其概率密度函数为:$$f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}$$其中,$\mu$代表均值,$\sigma$代表标准差。

1.3 期望和方差期望是随机变量在大量试验中出现的平均值,其描述了概率分布的中心位置。

而方差则描述了随机变量离平均值的距离,即数据的分散程度。

以正态分布为例,其期望为均值$\mu$,方差为标准差的平方$\sigma^{2}$。

二、参数估计参数估计是生物统计学中另一个非常重要的分支,其方法主要用于从已知的样本数据中,估计未知的总体参数值。

其中两种常见的方法是极大似然估计和贝叶斯估计。

2.1 极大似然估计极大似然估计是从样本数据出发,估计总体参数的一种方法。

其基本思想是找到最能反映样本数据特征,同时符合总体分布的参数值。

其计算过程主要包含两步:第一步,定义似然函数。

似然函数是描述数据在不同参数下的可能性,即已知某参数下的样本数据,求该参数下数据出现的概率密度函数。

常用的概率分布类型及其特征

常用的概率分布类型及其特征

常用的概率分布类型及其特征概率分布是用来描述随机变量的取值的概率的函数。

不同的概率分布具有不同的特征和应用范围。

以下是常用的概率分布类型及其特征。

1. 伯努利分布(Bernoulli Distribution):伯努利分布是最简单的概率分布之一,它描述了只有两个可能结果的离散随机变量的概率分布。

例如,抛一枚硬币的结果可以是正面或反面。

伯努利分布的特征是它的均值和方差分别等于成功的概率(p)和失败的概率(1-p)。

2. 二项分布(Binomial Distribution):二项分布是一种描述离散随机变量成功次数的概率分布。

它描述了在n次独立试验中成功的次数。

例如,投掷一枚硬币n次,成功的次数即为正面出现的次数。

二项分布的特征是它的均值等于试验次数乘以成功概率,方差等于试验次数乘以成功概率乘以失败概率。

3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间内独立事件发生的次数的概率分布。

例如,在一小时内到达一些公共汽车站的乘客数。

泊松分布的特征是它的均值和方差相等,并且与单位时间内事件发生的频率(λ)相关。

4. 正态分布(Normal Distribution):正态分布是最常见的概率分布之一,它以钟形曲线表示。

正态分布适用于连续变量,例如身高、体重等。

正态分布的特征是它的均值和方差决定了曲线的位置和形状。

均值决定了曲线的中心,而方差决定了曲线的宽窄。

5. 卡方分布(Chi-Square Distribution):卡方分布适用于描述随机变量和它的平方之和的概率分布。

它在统计推断中经常用于检验统计模型的拟合优度。

卡方分布的特征是它的自由度决定了分布的形状。

6. t分布(Student's t-Distribution):t分布适用于样本容量较小,总体标准差未知的情况。

t分布的特征是它的形状比正态分布更扁平,更厚尾。

7. F分布(F-Distribution):F分布适用于进行方差分析等统计推断问题。

生物统计学:几种常见的概率分布律

生物统计学:几种常见的概率分布律

头仔猪中白色的为x头,则x为服从二项分布B(10,0.75)
的随机变量。于是窝产10头仔猪中有7头是白色的概率
为:
10! P ( x 7) C 0.75 0.25 0.75 7 0.253 0.2503 7!3!
7 10 7 3
【例3.2】 设在家畜中感染某种疾病的概率为20%,现有两 种疫苗,用疫苗A 注射了15头家畜后无一感染,用疫苗B 注射 15头家畜后有1头感染。设各头家畜没有相互传染疾病的可能, 问:应该如何评价这两种疫苗? 假设疫苗A完全无效,那么注射后的家畜感染的概率仍为20 %,则15 头家畜中染病头数x=0的概率为
1-p=q,则称这一串重复的独立试验为n重贝努利试验,
简称贝努利试验(Bernoulli trials)。
在生物学研究中,我们经常碰到的一类离 散型随机变量,如孵n枚种蛋的出雏数、n头病 畜治疗后的治愈数、n 尾鱼苗的成活数等,可用 贝努利试验来概括。 在n重贝努利试验中,事件 A 可能发生0,1, 2,…,n次,现在我们来求事件A恰好发生 k(0≤k≤n)次的概率Pn(k)。
四、二项分布的平均数与标准差 统计学证明,服从二项分布B(n,p)的随机变 量之平均数μ、标准差σ与参数n、p有如下关系: 当试验结果以事件A发生次数k表示时
μ=np
(3-5)
(3-6)
npq
【例3.4】求【例3.3】平均死亡猪数及死 亡数的标准差。
以p=0.2,n=5代入 (3-5)和(3-6) 式得: 平均死亡猪数 μ=5×0.20=1.0(头) 标准差
一、波松分布的意义
若随机变量x(x=k)只取零和正整数值0,1, 2,…,且其概率分布为
k , k=0,1,…… (3-10) P( x k ) e k!

生物统计机率值换算表

生物统计机率值换算表

生物统计机率值换算表
生物统计中常用的概率值换算表主要包括正态分布、t分布、卡方分布和F分布。

下面我将从多个角度对这些概率分布进行全面的解释。

1. 正态分布,正态分布是自然界中广泛存在的一种连续概率分布。

它的概率密度函数呈钟形曲线,均值为μ,标准差为σ。

正态分布的重要性在于许多自然现象和统计推断都可以近似地使用正态分布进行描述。

在生物统计中,我们经常使用正态分布来进行假设检验、置信区间估计等统计推断。

2. t分布,t分布是用于小样本情况下的概率分布。

当总体标准差未知且样本量较小时,我们通常使用t分布来进行统计推断。

与正态分布相比,t分布的曲线形状更加扁平,尾部更厚,这是由于样本量较小所导致的。

在生物统计中,t分布常用于比较两个样本均值是否显著不同。

3. 卡方分布,卡方分布是一种非负的连续概率分布,常用于描述随机变量的分布情况。

在生物统计中,卡方分布常用于拟合度检验和方差分析等。

例如,我们可以使用卡方分布来判断观察到的数
据是否与理论期望值一致。

4. F分布,F分布是一种比率分布,常用于比较两个或多个总体方差是否相等。

在生物统计中,F分布常用于方差分析和回归分析等。

例如,在进行药物治疗实验时,我们可以使用F分布来比较不同治疗组之间的方差差异。

需要注意的是,生物统计中的概率值换算表并不是一个固定的表格,而是根据具体的问题和使用的统计方法而定。

因此,在实际应用中,我们通常使用统计软件或者查找相应的统计参考书来获取具体的概率值。

希望以上解释能够对你有所帮助。

如果你还有其他问题,欢迎继续提问。

概率统计——讲透最经典的三种概率分布

概率统计——讲透最经典的三种概率分布

概率统计——讲透最经典的三种概率分布这一讲当中我们来探讨三种经典的概率分布,分别是伯努利分布、二项分布以及多项分布。

在我们正式开始之前,我们先来明确一个概念,我们这里说的分布究竟是什么?无论是在理论还是实际的实验当中,一个事件都有可能有若干个结果。

每一个结果可能出现也可能不出现,对于每个事件而言出现的可能性就是概率。

而分布,就是衡量一个概率有多大。

伯努利分布明确了分布的概念之后,我们先从最简单的伯努利分布开始。

伯努利分布非常简单,就是假设一个事件只有发生或者不发生两种可能,并且这两种可能是固定不变的。

那么,显然,如果假设它发生的概率是p,那么它不发生的概率就是1-p。

这就是伯努利分布。

生活中所有只可能出现两种结果并且概率保持不变的事件都可以认为服从伯努利分布,比如抛硬币,比如生孩子是男孩还是女孩。

伯努利实验就是做一次服从伯努利概率分布的事件,它发生的可能性是p,不发生的可能性是1-p。

二项分布我们明确了伯努利分布之后再来看二项分布就简单了。

说白了二项分布其实就是多次伯努利分布实验的概率分布。

以抛硬币举例,在抛硬币事件当中,每一次抛硬币的结果是独立的,并且每次抛硬币正面朝上的概率是恒定的,所以单次抛硬币符合伯努利分布。

我们假设硬币正面朝上的概率是p,忽略中间朝上的情况,那么反面朝上的概率是q=(1-p)。

我们重复抛n次硬币,其中有k项正面朝上的事件,就是二项分布。

我们来试着推导一下二项分布的公式:假设我们抛了4次硬币,每一次都有两种可能,既可能正面朝上,也可能反面朝上。

所以一共存在种情况,假设我们想知道4次当中有两次正面朝上的概率。

我们写成P(X=2),它应该是多少呢?我们先来看一种情况,假设某一次抛掷当中,我们的结果是正正反反,记作:OOXX。

那么,它的概率应该是但是这只是一种正面朝上两次的情况,与它相同的情况还有:以上的这5种都是两次正面朝上的情况,都满足要求,所以我们在计算概率的时候,需要乘上可能会导致两个正面朝上的种数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

了解
标准正态分布
/fai/
学习小组任务
1、请分析讲解例题3.2和3.4。 2、请讲解负二项分布的统计学意义。 3、自学标准正态分布的9个特性。 4、请分析讲解例题3.10。 5、请讲解各习题的答题思路。 6、如果从班级里随机抽取10名同学,分析其中正好男 女生各占一半概率的问题应用什么概率分布率?为 什么? 7、如果从班级里随机抽取1名同学,分析其体重在5070kg范围内的概率应用什么概率分布率?为什么?
μ=20,泊松分布很接近正态分布; μ=50,两者无区别。 当φ<0.1且n φ<5时,可用泊松分布作为 二项分布的近似。
泊松分布应用实例
泊松分布是描述在一定空间 (长度、面积和体积)或一 定时间间隔内点子散布状况 的理想化模型。
利用科学计算 器进行计算
§3.3 另外几种离散型概率分布
超几何分布
生物统计学
Biostatistics
第三章 几种常见的概率分布律
Several Common Probability Distributions
2016.3
生物统计学主要教学内容
统计数据的收集与整理 概率与概率分布 抽样分布 统计推断 拟合优度检验与列联表卡方检验 方差分析 回归与简单相关分析 实验设计 EXCEL和SPSS的一般应用
§3.4 正态分布
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
除了σ,还可以用什么统计量描 请问,这是概率分布曲线还 述这3个曲线的差异? 是频率分布曲线?
请翻译以下术语/Try
to translate these terms
please: 二项分布、泊松分布、标准正态分布
学习小组任务
1、请分析讲解例题3.2和3.4。 2、请讲解负二项分布的统计学意义。 3、自学标准正态分布的9个特性。 4、请分析讲解例题3.10。 5、请讲解各习题的答题思路。 6、如果从班级里随机抽取10名同学,分析其中正好男 女生各占一半概率的问题应用什么概率分布率?为 什么? 7、如果从班级里随机抽取1名同学,分析其体重在5070kg范围内的概率应用什么概率分布率?为什么?
技巧:先 划清界限
学习小组任务
1、请分析讲解例题3.2和3.4。 2、请讲解负二项分布的统计学意义。 3、自学标准正态分布的9个特性。 4、请分析讲解例题3.10。 5、请讲解各习题的答题思路。
B_R_, B_rr, bbR_
§3.2 泊松分布
泊松分布的概率函数
了解
服从泊松分布的随机变量的特征数
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
了解
了解
负二项分布
直接通过公式来理解。 这个是一个二项分布公式。
多了一个φ,就变成了负二项 分布公式。
学习小组任务
1、请分析讲解例题3.2和3.4。 2、请讲解负二项分布的统计学意义。 3、自学标准正态分布的9个特性。 4、请分析讲解例题3.10。 5、请讲解各习题的答题思路。 6、如果从班级里随机抽取10名同学,分析其中正好男 女生各占一半概率的问题应用什么概率分布率?为 什么? 7、如果从班级里随机抽取1名同学,分析其体重在5070kg范围内的概率应用什么概率分布率?为什么?
标准正态分布的特性
正态分布表的使用方法

正态分布标准化(standardization)
学习小组任务
1、请分析讲解例题3.2和3.4。 2、请讲解负二项分布的统计学意义。 3、自学标准正态分布的9个特性。 4、请分析讲解例题3.10。 5、请讲解各习题的答题思路。 6、如果从班级里随机抽取10名同学,分析其中正好男 女生各占一半概率的问题应用什么概率分布率?为 什么? 7、如果从班级里随机抽取1名同学,分析其体重在5070kg范围内的概率应用什么概率分布率?为什么?

怎样学习概率分布率
概率分布率的前提条件
概率分布率的概率函数/概率密度函数
(包括公式里的符号) 概率分布率的主要参数 概率分布率的特性 概率分布率的查表方法与运用
§3.1 二项分布
二项分布的概率函数 二项分布(binomial distribution) 离散型概率分布律
非此即彼
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P63
3.2 现有5对相互独立等位基因自由组 合,请计算每一种表现型的概率 3.12,3.14,3.18
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
中间多,两边少,两侧对称。
二项分布实用实例
如何计算得来? 理论频数
×N=
意义?
学习小组任务
1、请分析讲解例题3.2和3.4。 2、请讲解负二项分布的统计学意义。 3、自学标准正态分布的9个特性。 4、请分析讲解例题3.10。 5、请讲解各习题的答题思路。 6、如果从班级里随机抽取10名同学,分析其中正好男 女生各占一半概率的问题应用什么概率分布率?为 什么? 7、如果从班级里随机抽取1名同学,分析其体重在5070kg范围内的概率应用什么概率分布率?为什么?
相关文档
最新文档