高二数学上公式大全

合集下载

高二数学公式大全

高二数学公式大全

以下是高二数学中常见的公式大全:1. 二次函数相关公式:- 顶点坐标公式:对于二次函数y = ax² + bx + c,顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。

- 根的判别式:对于二次方程ax² + bx + c = 0,判别式D = b² - 4ac。

- 根的公式:对于二次方程ax² + bx + c = 0,它的根可以用公式x = (-b ± √D) / 2a 求得。

2. 三角函数相关公式:- 三角函数的周期性:sin(x + 2π) = sin(x),cos(x + 2π) = cos(x),tan(x + π) = tan(x)。

- 三角函数的和差角公式:- sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)- cos(x ± y) = cos(x)cos(y) ∓sin(x)sin(y)- tan(x ± y) = (tan(x) ± tan(y)) / (1 ∓tan(x)tan(y))- 三角函数的倍角公式:- sin(2x) = 2sin(x)cos(x)- cos(2x) = cos²(x) - sin²(x)- tan(2x) = 2tan(x) / (1 - tan²(x))- 三角函数的半角公式:- sin(x/2) = ±√((1 - cos(x)) / 2)- cos(x/2) = ±√((1 + cos(x)) / 2)- tan(x/2) = ±√((1 - cos(x)) / (1 + cos(x)))3. 指数和对数相关公式:- 对数换底公式:logᵦa = logᵧa / logᵧb- 对数的乘法公式:logᵦ(a * c) = logᵦa + logᵦc- 对数的除法公式:logᵦ(a / c) = logᵦa - logᵦc- 对数的幂公式:logᵦ(aᶜ) = c * logᵦa4. 排列组合相关公式:- 排列计算公式:P(n, r) = n! / (n - r)!- 组合计算公式:C(n, r) = n! / (r!(n - r)!)5. 三角恒等式:- 余弦定理:c² = a² + b² - 2ab cos(C)- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C)- 余正弦定理:sin(A) / a = sin(B) / b = sin(C) / c。

高二数学基本公式和知识点

高二数学基本公式和知识点

高二数学基本公式和知识点1. 平面几何部分的知识点和公式:1.1 直线的斜率公式:设直线过点A(x₁,y₁)和B(x₂,y₂),则直线AB的斜率k为 k = (y₂ - y₁) / (x₂ - x₁)1.2 两点间的距离公式:设两点A(x₁,y₁)和B(x₂,y₂),则AB的距离为d = √((x₂ - x₁)² + (y₂ - y₁)²)1.3 圆的面积公式:设圆的半径为r,则圆的面积为S = πr²1.4 圆的周长公式:设圆的半径为r,则圆的周长为C = 2πr2. 三角函数部分的知识点和公式:2.1 正弦定理:在任意三角形ABC中,设∠A对应的边长为a,∠B对应的边长为b,∠C对应的边长为c,则有 a/sinA = b/sinB =c/sinC2.2 余弦定理:在任意三角形ABC中,设∠A对应的边长为a,∠B对应的边长为b,∠C对应的边长为c,则有 c² = a² + b² -2ab*cosC2.3 三角函数的和差化简公式:sin(A ± B) = sinA*cosB ± cosA*sinBcos(A ± B) = cosA*cosB ∓ sinA*sinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)3. 矩阵和向量部分的知识点和公式:3.1 矩阵的乘法规则:设A为m×n的矩阵,B为n×p的矩阵,则矩阵C = A*B为m×p的矩阵,其中C的元素C(i,j) = ∑(A(i,k) * B(k,j)),k的取值范围是从1到n3.2 向量的点积和叉积:3.2.1 向量的点积:设向量A = (a₁, a₂, a₃)和向量B = (b₁, b₂, b₃),则A·B = a₁*b₁ + a₂*b₂ + a₃*b₃3.2.2 向量的叉积:设向量A = (a₁, a₂, a₃)和向量B = (b₁, b₂, b₃),则A×B = (a₂*b₃ - a₃*b₂, a₃*b₁ - a₁*b₃, a₁*b₂ -a₂*b₁)4. 微积分部分的知识点和公式:4.1 导数的基本公式:4.1.1 常数函数导数公式:(C)' = 0,其中C为常数4.1.2 幂函数导数公式:(xⁿ)' = n*x^(n-1),其中n为常数4.1.3 指数函数和对数函数导数公式:(aˣ)' = ln(a) * aˣ,其中a为常数且a>0,(ln(x))' = 1/x,其中x>04.2 积分的基本公式:4.2.1 常数函数积分公式:∫C dx = Cx + C₁,其中C为常数,C₁为积分常数4.2.2 幂函数积分公式:∫xⁿ dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为积分常数4.2.3 指数函数和对数函数积分公式:∫aˣ dx = (1/ln(a)) * aˣ + C,其中a为常数且a>0,∫1/x dx = ln|x| + C,其中x不等于0,C为积分常数通过掌握以上的基本公式和知识点,可以在高二数学学习中更好地应用和理解各个概念和问题。

高二数学知识点公式总结

高二数学知识点公式总结

高二数学知识点公式总结1. 代数与函数a) 二次函数公式:- 标准型:f(x) = ax² + bx + c,其中a≠0。

- 顶点式: f(x) = a(x - h)² + k,其中(h, k)为顶点坐标。

- 因式分解: f(x) = a(x - x₁)(x - x₂),其中x₁, x₂为根。

b) 判别式:- 二次方程 ax² + bx + c = 0 的判别式:Δ = b² - 4ac。

c) 等差数列公式:- 第n项:an = a₁ + (n - 1)d,其中a₁为首项,d为公差。

- 前n项和:Sn = (a₁ + an)n/2 或 Sn = (2a₁ + (n - 1)d)n/2。

2. 平面几何a) 直角三角形公式:- 勾股定理:c² = a² + b²,其中c为斜边,a、b为直角边。

- 正弦定理:a/sinA = b/sinB = c/sinC。

- 余弦定理:c² = a² + b² - 2ab*cosC。

b) 圆的相关公式:- 圆周长:C = 2πr,其中r为半径。

- 圆面积:S = πr²。

c) 向量公式:- 向量的模:|A| = √(x² + y² + z²),其中(x, y, z)为向量坐标。

- 向量点乘:A·B = ax·bx + ay·by + az·bz,其中(Ax, Ay, Az)为向量A的坐标,(Bx, By, Bz)为向量B的坐标。

- 向量叉乘:A×B = (AyBz - AzBy, AzBx - AxBz, AxBy - AyBx)。

3. 解析几何a) 二次曲线方程:- 椭圆方程:(x²/a²) + (y²/b²) = 1,其中a为x轴半轴长,b为y 轴半轴长。

高中数学必备的289个公式

高中数学必备的289个公式
42.周期性标志:(1)f(x+a)=f(x+b)⇒T=|a-b|;
(2)f(x+a)=-f(x)⇒T=2a;
(3)f(x+a)=±f(x)⇒T=2a
43.对称轴标志:f(x+a)=-f(b-x)⇒对称中心为(a+b,0);
如常见的对称中心有:f(x+a)=-f(a-x)⇒对称中心为(a,0);f(x+1)=-f(1-x)⇒对称 中心为(1,0).
16.不等式相同性:任意x∈D,证明:
f(x)>g(x)⇔h(x)=f(x)-g(x)>0⇔h(x)min>0;
存在x∈D,证明:f(x)≤g(x)⇔h(x)=f(x)-g(x)≤0⇔h(x)min≤0.
17.不等式相异性:任意x1、x2∈D,证明:f(x1)<g(x2)⇔x∈D,f(x)max<g(x)min;存在x1、x2∈D,证明:f(x1)>g(x2)⇔x∈D,f(x)max>g(x)min.
第2章函数
31.几个近似值:2≈1.414,3≈1.732,5≈2.236,
π≈3.142,e≈2.718,e2≈7.389,
ln3≈1.0986,ln2≈0.693.32.指数公式:(1)am=man;(2)nan={|a|,n为偶数.
33.对数公式:
(1)ax=N⇔x=logaN;(2)alogaN=N;
x1+y1x2+y2≥x1x2+y1y2.
(1+x)n≥xn+nx;n≥1(1+x)n≤1+nx;0≤n≤1
86.洛必达法则:limf(x)=limf'(x)(当f(x)→0或∞时使用).
87.恒成立问题:(1)a≥f(x)⇔a≥f(x)max;(2)a<f(x)⇔a<f(x)min.

高二数学公式总结

高二数学公式总结

高二数学公式总结高二数学公式总结一、函数与方程1. 一次函数:y = kx + b,其中k为斜率,b为截距。

2. 二次函数:y = ax^2 + bx + c,其中a为二次项系数,b为一次项系数,c为常数项。

3. 反函数:若y = f(x),则x = f^(-1)(y)。

4. 三角函数:正弦函数sin(x),余弦函数cos(x),正切函数tan(x),余切函数cot(x)。

5. 幂函数:y = x^a,其中a为常数。

6. 对数函数:y = loga(x),其中a为底数。

7. 指数函数:y = a^x,其中a为底数。

二、数列与数学归纳法1. 等差数列通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。

2. 等比数列通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。

3. 等差数列前n项和公式:Sn = n/2 * (a1 + an),其中n为项数,a1为首项,an为第n项。

4. 等比数列前n项和公式:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数,a1为首项,q为公比。

5. 数学归纳法:若能证明当n=k时命题成立,且当n=k+1时,命题成立,则对于所有自然数n,命题均成立。

三、几何1. 相似三角形:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。

2. 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。

3. 余弦定理:c^2 = a^2 + b^2 - 2ab*cosC,其中a、b、c为三角形的边长,C为夹角。

4. 钝角余弦定理:c^2 > a^2 + b^2 - 2ab*cosC。

5. 射影定理:在直角三角形中,斜边上的垂直射影等于斜边与直角边的乘积。

6. 平行四边形性质:对角线互相平分,对角线互相交于中点,对角线长度平方和等于边长平方和的两倍。

7. 三角形面积公式:S = 1/2 * a * b * sinC,其中a、b为两边长,C为夹角。

高二数学重要的公式知识点

高二数学重要的公式知识点

高二数学重要的公式知识点数学是一门基础学科,对于高中生来说,掌握数学公式是学习数学的重要基础。

下面将介绍高二数学中的一些重要的公式知识点。

1. 二次函数相关公式(1)一般式:y = ax^2 + bx + c其中,a、b、c是实数且a≠0。

(2)顶点式:y = a(x - h)^2 + k其中,(h, k)是顶点坐标。

(3)轴对称式:x = p其中,p是关于y轴对称的直线的方程。

2. 三角函数相关公式(1)正弦定理:在任意三角形ABC中,边长和角度之间的关系式为:a / sinA =b / sinB =c / sinC(2)余弦定理:在任意三角形ABC中,边长和角度之间的关系式为:c^2 = a^2 + b^2 - 2ab * cosC(3)正弦函数的和差角公式:sin(A ± B) = sinA * cosB ± cosA * sinB3. 幂次函数相关公式(1)幂函数的基本形式:y = x^a其中,a是实数且a≠0。

(2)指数函数的相关公式:a^m * a^n = a^(m + n)(a^m)^n = a^(mn)(a * b)^n = a^n * b^n4. 解析几何相关公式(1)距离公式:两点间的距离用两点的坐标表示为:AB = √((x2 - x1)^2 + (y2 - y1)^2)(2)中点公式:两点的中点坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2)(3)斜率公式:直线的斜率用两点的坐标表示为:k = (y2 - y1) / (x2 - x1)5. 数列相关公式(1)等差数列的通项公式:an = a1 + (n - 1)d其中,an是第n项,a1是首项,d是公差。

(2)等差数列的前n项和公式:Sn = (a1 + an) / 2 * n其中,Sn是前n项和,a1是首项,an是第n项,n是项数。

(3)等比数列的通项公式:an = a1 * r^(n - 1)其中,an是第n项,a1是首项,r是公比。

高二数学公式大全总结

高二数学公式大全总结

高二数学公式大全总结1. 代数公式四则运算公式•加法法则:a+b=b+a•减法法则:a−b eqb−a•乘法法则:$a \\cdot b = b \\cdot a$•除法法则:$\\frac{a}{b} \ eq \\frac{b}{a}$幂运算公式•幂的乘法:$a^m \\cdot a^n = a^{m+n}$•幂的除法:$\\frac{a^m}{a^n} = a^{m-n}$•幂的乘方:(a m)n=a mn•幂的零次方:a0=1•幂的负次方:$a^{-n} = \\frac{1}{a^n}$根式运算公式•平方根运算:$\\sqrt{a \\cdot b} = \\sqrt{a} \\cdot \\sqrt{b}$•乘方根运算:$\\sqrt[n]{a \\cdot b} = \\sqrt[n]{a} \\cdot\\sqrt[n]{b}$•平方根的乘方运算:$\\sqrt[n]{a^m} = a^{\\frac{m}{n}}$等式和恒等式•等式:若a=b,则a和b称为等式,可以进行等式的四则运算。

•恒等式:对于变量的某些取值范围,等式恒成立。

2. 几何公式点、线和面的关系公式•平行线公理:平行线永不相交。

•垂直线公理:垂直线相交,且相交的角度为90度。

三角形公式•三角形内角和公式:三角形内角和为180度,即$\\angle A +\\angle B + \\angle C = 180^\\circ$。

•直角三角形勾股定理:直角三角形斜边的平方等于两个直角边的平方和,即c2=a2+b2。

•正弦定理:在三角形ABC中,$\\frac{a}{\\sin A} = \\frac{b}{\\sin B} = \\frac{c}{\\sin C}$。

•余弦定理:在三角形ABC中,$a^2 = b^2 + c^2 - 2bc \\cos A$。

•正切定理:在三角形ABC中,$\\tan A = \\frac{a}{h}$。

高二数学公式

高二数学公式

高二数学公式1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] 4.积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2cosa*cosb=[cos(a+b)+cos(a-b)]/2sina*sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]向量公式:1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y) 那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方)3.P1(x1,y1) P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b|(x1x2+y1y2)= ————————————————————根号(x1平方+y1平方)*根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a⊥向量b那么向量a*向量b=0如果向量a//向量b那么向量a*向量b=±|向量a|*|向量b|或者x1/x2=y1/y27.|向量a±向量b|平方=|向量a|平方+|向量b|平方±2向量a*向量b =(向量a±向量b)平方三角函数公式:。

高二数学公式总结

高二数学公式总结

高二数学公式总结数学公式是数学知识的精华,是解决各种数学问题的有力工具。

在高二数学学习中,我们学习了众多数学公式,这些公式帮助我们更好地理解和应用数学知识。

下面我将对高二数学中常用的公式进行总结,希望能帮助大家更好地掌握数学知识。

一、代数公式1. 平方差公式:(a+b)(a-b)=a²-b²2. 平方和公式:a²+2ab+b²=(a+b)²3. 二次求和公式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²4. 二次差公式:a²-b²=(a+b)(a-b)5. 三次求和公式:(a+b)³=a³+3a²b+3ab²+b³,(a-b)³=a³-3a²b+3ab²-b³6. 三次差公式:a³-b³=(a-b)(a²+ab+b²)7. 二次立方和公式:(a+b)³=a³+3a²b+3ab²+b³,(a-b)³=a³-3a²b+3ab²-b³8. 二次立方差公式:a³-b³=(a-b)(a²+ab+b²)9. 二次立方和差公式:a³+b³=(a+b)(a²-ab+b²)10. 四次求和公式:(a+b)⁴=a⁴+4a³b+6a²b²+4ab³+b⁴11. 四次差公式:a⁴-b⁴=(a²+b²)(a²-b²)=(a²+b²)(a+b)(a-b)12. 二次求差公式:a²-b²=(a+b)(a-b)二、函数公式1. 一次函数:y=kx+b,其中k为斜率,b为截距2. 二次函数:y=ax²+bx+c,其中a,b,c为常数,a≠03. 二次函数顶点坐标公式:x=-b/2a,y=-Δ/4a,其中Δ=b²-4ac为二次函数的判别式4. 二次函数对称轴公式:x=-b/2a为二次函数的对称轴5. 二次函数焦点公式:(x,y)=(h,k±√p),其中(h,k)为二次函数顶点坐标,p=(1+4a)为焦距的倍数6. 二次函数直角坐标系内接公式:y=a(x-h)²+k,其中(h,k)为顶点坐标7. 二次函数直角坐标系外接公式:y=a(x-h)²+k,其中(h,k)为顶点坐标,a的正负决定了抛物线开口方向8. 已知一次函数两点坐标求解公式:y-y₁=k(x-x₁),其中(x₁,y₁),(x,y)为一次函数的两个点坐标9. 已知一次函数斜率和一点坐标求解公式:y-y₁=k(x-x₁),其中k为一次函数的斜率,(x₁,y₁)为一点坐标三、几何公式1. 数轴上两点间距离公式:d=|x₂-x₁|2. 二维平面两点间距离公式:d=√((x₂-x₁)²+(y₂-y₁)²)3. 点到直线距离公式:d=|ax₀+by₀+c|/√(a²+b²),其中(a,b)为直线的法向量,(x₀,y₀)为点的坐标,c为常数4. 直线的一般式方程:Ax+By+C=0,其中A、B、C为常数,A和B不同时为05. 直线的斜截式方程:y=kx+b,其中k为斜率,b为截距四、三角函数公式1. 正弦定理:a/sinA=b/sinB=c/sinC=2R,其中a、b、c为三角形的边长,A、B、C为对应的角度,R为外接圆半径2. 余弦定理:c²=a²+b²-2abcosC,其中a、b、c为三角形的边长,C为对应的角度3. 正切定理:tanA=(a/b) ,tanB=(b/a)4. 半径公式:R=a/(2sinA),R=b/(2sinB),R=c/(2sinC),其中a、b、c为三角形的边长,A、B、C为对应的角度5. 二倍角公式:sin2A=2sinAcosA,cos2A=cos²A-sin²A=2cos²A-1=1-2sin²A,tan2A=(2tanA)/1-tan²A6. 三倍角公式:sin3A=3sinA-4sin³A,cos3A=4cos³A-3cosA,tan3A=(3tanA-tan³A)/(1-3tan²A)7. 和差化积公式:sin(A±B)=sinAcosB±cosAsinB,cos(A±B)=cosAcosB∓sinAsinB总结:高二数学中的公式众多,覆盖了代数、函数、几何和三角函数等四个部分。

高二数学必背公式归纳

高二数学必背公式归纳

对于高中生来说,数学是很容易拉开分数的学科,学好数学科目至关重要,下面是小编给大家带来的高二数学公式,希望能帮助到大家!高二数学公式1高中数学常用公式标准方程圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c_h斜棱柱侧面积 S=c'_h正棱锥侧面积S=1/2c_h'正棱台侧面积 S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r锥体体积公式 V=1/3_S_H 圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=pi_r2h高二数学公式2等差数列1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1_q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且任意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N_,则有:ap·aq=am·an,等比中项:aq·ap=2arar则为ap,aq等比中项.记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高二数学函数知识点函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。

高二数学上学期知识点

高二数学上学期知识点

高二数学上学期知识点 第一部分:三角恒等变换 1.两角和与差正弦、余弦、正切公式:=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1 注意正用、逆用、变形用.例如:tanA+tanB=tan<A+B><1-tanAtanB>2.二倍角公式:sin2α=ααcos sin 2⋅,cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-.3.升幂公式是:2cos 2cos 12αα=+2sin2cos 12αα=-.4.降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=.5.万能公式:sin α=2tan 12tan22αα+cos α=2tan 12tan 122αα+-tan α=2tan 12tan22αα-6.三角函数恒等变形的基本策略:〔1〕常值代换:特别是用"1〞的代换,如1=cos2θ+sin2θ〔2〕项的分拆与角的配凑.如分拆项:sin2x+2cos2x=<sin2x+cos2x>+cos2x=1+cos2x ;配凑角:α=〔α+β〕-β,β=2βα+-2βα-等.〔3〕降次与升次.2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,sin α ,cos α可凑倍角公式;22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.〔4〕化弦〔切〕法.将三角函数利用同角三角函数基本关系化成弦〔切〕.注意函数关系,尽量异名化同名、异角化同角.〔5〕引入辅助角.asin θ+bcos θ=22b a +sin<θ+ϕ>,ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=a b确定.7.注意点:三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值. 第二部分:解三角形1.边角关系的转化:〔ⅰ〕正弦定理:A a sin =B b sin =C csin =2R<R 为外接圆的半径>;注:〔1〕a=2RsinA;b=2RsinB;c=2RsinC;〔2〕a:b:c=sinA:sinB:sinC;<3>三角形面积公式S=12absinC=12bcsinA=12acsinB;〔ⅱ〕余弦定理:a 2=b 2+c 2-2bc A cos ,bc a c b A 2cos 222-+=2.应用:〔1〕判断三角形解的个数;〔2〕判断三角形的形状;<3>求三角形中的边或角;〔4〕求三角形面积S ;注:三角形中 ①a>b ⇔A>B ⇔sinA>sinB ;②内角和为180︒;③两边之和大于第三边;④在△ABC 中有-tanC B)+tan(A -cosC B)+cos(A sinC=B)+sin(A ==,2cos 2sinC B A =+,2sin 2cos CB A =+在解三角形中的应用.3.解斜三角形的常规思维方法是:〔1〕已知两角和一边〔如A 、B 、c 〕,由A+B+C = π求C,由正弦定理求a 、b .〔2〕已知两边和夹角〔如a 、b 、C 〕,应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C= π,求另一角.〔3〕已知两边和其中一边的对角〔如a 、b 、A 〕,应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.〔4〕已知三边a 、b 、c,应用余弦定理求A 、B,再由A+B+C = π,求角C .〔5〕术语:坡度、仰角、俯角、方位角〔以特定基准方向为起点〔一般为北方〕,依顺时针方式旋转至指示方向所在位置,其间所夹的角度称之.方位角α的取值X 围是:0°≤α<360. 第三部分:数列 证明数列{}n a 是等差〔比〕数列〔1〕等差数列:①定义法:对于数列{}n a ,若da a nn =-+1<常数>,则数列{}n a 是等差数列. ②等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列.注:后两种方法仅适用于选择、填空:③n a pn q =+〔形如一次函数〕④2n S An Bn=+〔常数项为0的二次〕〔2〕等比数列:①定义法:对于数列{}n a ,若)0(1≠=+q q a a n n ,则数列{}n a 是等比数列.②等比中项法:对于数列{}n a ,若212++=n n n a a a )0(≠n a ,则数列{}n a 是等比数列2.求数列通项公式na 方法 <1>公式法:等差数列中an=a1+<n-1>d 等比数列中an= a1qn-1; (0)q ≠<2>⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 〔 注意 :验证a1是否包含在an 的公式中〕 〔3〕递推式为1n a +=n a +f<n> <采用累加法>;1n a +=n a ×f<n> <采用累积法>;例已知数列{}n a 满足11a =,n n a a n n ++=--111(2)n ≥,则n a =________〔答:1n a =〕〔4〕构造法;形如n n a pa q =+,1nn n a ka b -=+〔,k b p,q 为常数且p ≠q 〕的递推数列,可构造等比数列{}na x +,例 ①已知111,32n n a a a -==+,求na 〔答:1231n n a -=-〕; 〔5〕涉与递推公式的问题,常借助于"迭代法〞解决:an =〔an -an-1〕+<an-1-an-2>+……+〔a2-a1〕+a1 ; an =1122n 1n 1n n a a a a a a a ---⋅〔6〕倒数法形如11n n n a a ka b --=+的递推数列如①已知1111,31n n n a a a a --==+,求n a 〔答:132n a n =-〕;3.求数列前n 项和n S .常见方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构.〔1〕公式法:等差数列中Sn=dn n na 2)1(1-+=2)(1n a a n + ;等比数列中 当q=1,Sn=na1 当q≠1,Sn=q q a n --1)1(1=q q a a n --11〔注:讨论q 是否等于1〕. 〔2〕分组法求数列的和:如an=2n+3n ; 〔3〕错位相减法:nn n c b a ⋅=,{}{}成等比数列成等差数列,n n c b ,如an=<2n-1>2n ;〔注1q ≠〕〔4〕倒序相加法求和:如①在等差数列{}n a 中,前4项的和为40,最后4项的和为80,所有各项的和为720,则这个数列的项数n=______;<答:48>;②已知22()1x f x x =+,则111(1)(2)(3)(4)((()234f f f f f f f ++++++=___〔答:72〕〔5〕裂项法求和:)11(1))((1CAn B An B C C An B An a n +-+-=++=,如求和:1111122334(1)n n ++++⨯⨯⨯+=_________〔答: 1n n +〕〔6〕在求含绝对值的数列前n 项和nS 问题时,注意分类讨论与转化思想的应用,总结时写成分段数列.4.nS 的最值问题方法〔1〕在等差数列{}n a 中,有关Sn 的最值问题——从项的角度求解:①当01>a ,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得取最大值.②当01>a ,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得取最小值.〔2〕转化成二次函数配方求最值〔注:n 是正整数,若n 不是正整数,可观察其两侧的两个整数是否满足要求〕.如①等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值.〔答:前13项和最大,最大值为169〕;②若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是___ 〔答:4006〕5.求数列{an}的最大、最小项的方法〔函数思想〕:①an+1-an=……⎪⎩⎪⎨⎧<=>000如an= -2n2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 n n a a <an>0> ,如an=n n n 10)1(9+③ an=f<n> 研究函数f<n>的增减性 如an=1562+n n6.常用性质:〔1〕等差数列的性质:对于等差数列{}n a ①.dm n a a m n)(-+=〔n m ≤〕②.若q p m n +=+,则q p m n a a a a +=+.③.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列.④.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:<i>奇数项da a a 2,,,531成等差数列,公差为⋯<ii>偶数项da a a 2,,,642成等差数列,公差为⋯⑤.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为21n T -,则2121n n n n a S b T --=.〔应用于选择、填空,要会推导,正用、逆用〕 〔2〕等比数列性质:在等比数列{}n a 中①.mn m n q a a -=〔n m ≤〕;②.若m+n=p+q,则aman=apaq ;如〔1〕在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___〔答:512〕;〔2〕各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++=〔答:10〕.③.若数列{}n a 是等比数列且q≠-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.如:公比为-1时,4S 、8S -4S 、12S -8S、…不成等比数列7.常见结论:〔1〕三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d ;〔2〕三个数成等比的设法:a/q,a,aq ; 〔3〕若{an}、{bn}成等差,则{kan+tbn}成等差;〔4〕若{an}、{bn}成等比,则{kan}<k≠0>、⎭⎬⎫⎩⎨⎧n b 1、{anbn}、⎭⎬⎫⎩⎨⎧n n ba 成等比;〔5〕{an}成等差,则 <{}na c c>0>成等比. 〔6〕{bn}<bn>0>成等比,则{logcbn}<c>0且c ≠1>成等差.第四部分 不等式1.两个实数a 与b 之间的大小关系—作差法或作商法2.不等式的证明方法〔1〕比较法〔2〕综合法.〔3〕分析法注:一般地常用分析法探索证题途径,然后用综合法3. 解不等式〔1〕一元一次不等式)0(≠>a b ax 的解法①⎭⎬⎫⎩⎨⎧>>a b x x a ,0②⎭⎬⎫⎩⎨⎧<<a b x x a ,0〔2〕一元二次不等式)0(,02>>++a c bx ax 的解法〔三个二次关系〕 判别式ac b 42-=∆0>∆0=∆0<∆二次函数c bx ax y ++=2的图象一元二次方程 相异实根相等实根没有实根21x x <a b x x 221-==02=++c bx ax 的根02>++c bx ax 解集{}12x x x x x <>或⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 02<++c bx ax 解集{}21x x x x <<φφ注:)(02≥>++c bx ax 解集为R,〔02>++c bx ax 对R x ∈恒成立〕 则〔Ⅰ〕⎪⎩⎪⎨⎧≤∆<∆>)0(00a 〔Ⅱ〕若二次函数系数含参数且未指明不为零时,需验证0=a若02<++c bx ax 解集为R 呢?如:关于x 的不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值X 围.略解〔Ⅰ〕成立时,042<-=a 〔Ⅱ〕 ⎩⎨⎧<=∆<-002a 〔3〕绝对值不等式 如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔ 〔4〕分式不等式若系数含参数时,须判断或讨论系数00<=>,化负为正,写出解集.主要应用:1.解一元二次不等式;2.解分式不等式;3.解含参的一元二次不等式〔先因式分解,分类讨论,比较两根的大小〕;4恒成立问题〔注:①讨论二次项系数是否为0;②开口方向与判别式〕;5.已知12x y -≤-≤,3235x y ≤-≤,求45x y -的取值X 围;〔①换元法;②线性规划法〕.4.简单的线性规划问题应用:〔1〕会画可行域,求目标函数的最值与取得最值时的最优解〔注:可行域边界的虚实〕;〔2〕求可行域内整数点的个数;〔3〕求可行域的面积;〔4〕根据目标函数取得最值时最优解〔个数〕求参数的值〔参数可在线性约束条件中,也可在目标函数中〕;〔5〕实际问题中注意调整最优解〔反代法〕.原命题若p 则q 逆命题若q 则p互逆互否5.常用的基本不等式和重要的不等式〔1〕ab b a R b a 2,,22≥+∈则〔2〕+∈R b a ,,则ab b a 2≥+;注:几何平均数算术平均数,----+ab ba 2〔3〕),()2(222R b a b a b a ∈+≥+〔4〕),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ;6.均值不等式的应用——求最值〔可能出现在实际应用题〕设,0x y >,则2x y xy +≥〔1〕若积P y x P xy 2(有最小值定值),则和+=〔2〕若和22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大. 注:运用均值定理求最值的三要素:"一正、二定、三相等〞技巧:①凑项,例122y x x =+-〔x>2〕②凑系数 ,例 当时,求的最大值;〔答:8〕③添负号,例12(2)2(2)y x x x =-+>-;④拆项,例 求2710(1)1x x y x x ++=>-+的最小值〔答:9 〕⑤构造法,例 求22()(0)1xf x x x =>+21x x =+的最大值〔答:1〕.⑥"1〞的灵活代换,若0,0x y >>且191x y +=,则x y +的最小值是________<答:16>〔3〕若用均值不等式求最值,等号取不到时,需用定义法先证明单调性,后根据单调性求最值,例 求2211y x x =++.第五部分 简易逻辑逻辑联结词,命题的形式:p 或q<记作"p ∨q 〞 >;p 且q<记作"p ∧q 〞 >;非p<记作"┑q 〞 > . 2、"或〞、 "且〞、 "非〞的真值判断〔1〕"非p 〞形式复合命题的真假与F 的真假相反;〔2〕"p 且q 〞形式复合命题当P 与q 同为真时为真,其他情况时为假;〔3〕"p 或q 〞形式复合命题当p 与q 同为假时为假,其他情况时为真.4常见结论的否定形式原结论 否定词 原结论 否定词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于不大于至少有n 个至多有〔1n -〕个小于不小于至多有n 个至少有〔1n +〕个对所有x ,成立存在某x ,不成立p 或q p ⌝且q ⌝ 对任何x ,不成立 存在某x ,成立p 且qp ⌝或q ⌝5、四种命题:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下关系:<原命题⇔逆否命题> ①、原命题为真,它的逆命题不一定为真.②、原命题为真,它的否命题不一定为真.③、原命题为真,它的逆否命题一定为真.7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件. 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q. 8.命题的否定只否定结论;否命题是条件和结论都否定.9、反证法:从命题结论的反面出发〔假设〕,引出<与已知、公理、定理…>矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.第六部分 圆锥曲线定义、标准方程与性质 〔一〕椭圆 1.定义:若F1,F2是两定点,P 为动点,且21212F F a PF PF >=+ 〔a 为常数〕则P 点的轨迹是椭圆.注:〔1〕若2a 小于|1F 2F |,则这样的点不存在;〔2〕若2a 等于|1F 2F |,则动点的轨迹是线段1F 2F .<3>21F PF ∆中经常利用余弦定理、三角形面积公式将有关线段1PF 、2PF 、2c,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系求出1PF 、2PF 的值.注意题目中椭圆的焦点在x 轴上还是在y 轴上.2.椭圆的标准方程:12222=+b y a x 〔a >b >0〕,12222=+b x a y 〔a >b >0〕<注:222a b c =+>.〔1〕.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.〔2〕.求椭圆的标准方程的方法:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a 、b.3.椭圆的几何性质:线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.4.点与椭圆的位置关系〔1〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. 〔2〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>〔二〕双曲线 1.定义:若F1,F2是两定点,21212F F a PF PF <=-〔a 为非零常数〕,则动点P 的轨迹是双曲线.注:〔1〕若2a=|1F 2F |,则动点的轨迹是两条射线;〔2〕若2a >|1F 2F |,则无轨迹.〔3〕若去掉绝对值号,动点M 的轨迹仅为双曲线的一个分支.2.双曲线的标准方程:12222=-b y a x 和12222=-b x a y 〔a >0,b >0〕注:〔1〕222c a b =+〔与椭圆比较〕〔2〕双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.〔3〕求双曲线的标准方程,应注意两个问题:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a,b.3.双曲线的简单几何性质双曲线12222=-b y a x 为例 实轴长为2a,虚轴长为2b,离心率a c e =>1,离心率e 越大,双曲线的开口越大.双曲线的方程与渐近线方程的关系〔1〕若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a b y ±= 〔2〕若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x 〔0λ≠〕〔3〕若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x 〔0λ≠,若0>λ,焦点在x 轴上,若0<λ,焦点在y轴上〕.特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x 〔0λ≠〕.〔4〕方程221x y m n -=(0,0)m n ≠≠表示双曲线的充要条件是0mn >.〔5〕注意21F PF ∆中结合定义aPF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来.〔三〕抛物线 1.定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.注:〔1〕点F 在直线l 外,〔2〕点F 在直线l 上,其轨迹是过点F 且与l 垂直的直线,而不是抛物线.2.抛物线的标准方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.注:〔1〕方程中的一次项变元决定对称轴和焦点位置;〔2〕一次项前面的正负号决定曲线的开口方向;3.抛物线的几何性质,以标准方程22y px =(0)p >为例:p :焦准距〔焦点到准线的距离〕;焦点: )0,2(p 准线: 2p x -=通径p AB 2= 焦半径:,2px CF += 过焦点弦长p x x p x p x CD ++=+++=212122 y1y2=-p2,x1x2=42p ;注:只适合求过焦点的弦长,对于其它的弦,只能用"弦长公式〞来求.4.直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x 2+bx+c=0,当△≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果直线和抛物线只有一个公共点,除相切外,还有直线是抛物线的对称轴或是和对称轴平行,此时,不能仅考虑△=0. 注意:>抛物线px y 22=上的动点可设为P ),2(2y p y 或或)2,2(2pt pt P P px y y x 2),(2=其中5.求轨迹的常用方法:〔1〕直接法:直接通过建立x 、y 之间的关系,构成F<x,y>=0,是求轨迹的最基本的方法;〔2〕待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;〔3〕代入法〔相关点法或转移法〕:若动点P<x,y>依赖于另一动点Q<x1,y1>的变化而变化,并且Q<x1,y1>又在某已知曲线上,则可先用x 、y 的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;〔4〕定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; 〔5〕点差法,处理圆锥曲线弦中点问题常用代点相减法,主要用于求斜率.〔注意:验证判别式大于零.〕〔6〕参数法:当动点P 〔x,y 〕坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量〔参数〕表示,得参数方程,再消去参数得普通方程.注:①轨迹方程与轨迹的区别,②限制X 围,③根据曲线方程研究曲线类型时注意椭圆与圆的区别,注意次数和符号,④.涉与圆锥曲线的问题勿忘用定义解题. 〔四〕解析几何中的基本公式1.两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB |x2-x1| . y //AB 轴, 则=AB |y2-y1| .2.平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221B A C C d +-=注意点:①x,y 对应项系数应相等,②方程化成一般式.3.点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:22B A CBy Ax d +++=4.直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax 〔务必注意0∆>,k 为直线的斜率.〕.若l 与曲线交于A ),(),,(2211y xB y x 则:2122))(1(x x k AB -+==或AB12||y y =-="设而不求〞的解题思想;〕特殊的直线方程: ①垂直于x 轴且截距为a 的直线方程是x=a,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b,x 轴的方程是y=0.注:判断直线与圆锥曲线的位置关系时,优先讨论二次项系数是否为零,然后再考虑判别式与韦达定理. 第七部分 能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以与应用意识和创新意识. 1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素与其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.。

高二数学知识点及公式整理3篇

高二数学知识点及公式整理3篇

高二数学知识点及公式整理【高二数学知识点及公式整理(一)】1.一次函数:y=kx+b2.二次函数:y=ax²+bx+c3.直线的解析式:Ax+By+C=04.平面直角坐标系中两点间距离公式:d=sqrt((x2-x1)²+(y2-y1)²)5.斜率公式:k=(y2-y1)/(x2-x1)6.三角函数:sin、cos、tan7.勾股定理:c²=a²+b²8.反三角函数:arcsin、arccos、arctan9.数列:an=a1+(n-1)d10.等差数列:an=a1+(n-1)d11.等比数列:an=a1*q^(n-1)12.数学归纳法13.排列组合:P(n,m)=n!/(n-m)!,C(n,m)=n!/(m!(n-m)!)14.复数:a+bi15.平方根:sqrt(x)16.立方根:cbrt(x)17.对数:log18.指数:a^x19.求根公式20.导数21.微积分基本定理22.定积分23.面积公式24.体积公式25.三平方和公式:a²+b²+c²=2(ab+ac+bc)26.圆的方程:(x-a)²+(y-b)²=r²27.圆锥曲线:椭圆、双曲线、抛物线28.变量代换法29.微分方程30.三维几何:点、直线、平面、向量、平面的法向量、平面的点法式方程、三棱锥、三棱锥的正体积公式【高二数学知识点及公式整理(二)】1.扇形面积公式:S=1/2r²θ2.圆锥的侧面积公式:A=πrl3.三角形的海伦公式:S=sqrt(p(p-a)(p-b)(p-c))4.利用平移和旋转变换求图形的面积、体积等问题5.用微积分计算曲边梯形、曲边三角形、旋转体的体积6.大数定律与中心极限定理7.离散型的随机变量及其概率分布律8.连续型随机变量及其概率密度9.独立同分布的随机变量的和的概率分布律10.一维随机变量的数学期望和方差11.二维随机变量的数学期望和方差12.重心和质心13.柯西-施瓦茨不等式14.傅里叶级数15.矩阵基本概念16.矩阵的运算:加、减、乘17.行列式基本概念18.行列式的性质和计算方法19.矩阵解线性方程组20.特征值和特征向量21.相似矩阵和对角化22.正交矩阵和正交对角化23.向量内积和模长24.向量的正交与投影25.线性变换基本概念26.线性变换的基矩阵及其计算27.线性变换的相似化、分类、压缩、伸缩、旋转28.行列式求导法、乘积求导法29.约束极值问题:拉格朗日乘数法和外推法30.最小二乘法【高二数学知识点及公式整理(三)】1.微分方程初值问题2.分离变量法求解微分方程3.可化为分离变量形式的微分方程4.一阶线性微分方程5.一阶 Bernoulli 方程6.二阶线性齐次微分方程7.二阶非齐次微分方程8.二阶线性方程传播波动方程、热方程9.定比例问题:连连看、几何解法10.余弦定理:a²=b²+c²-2bc*cosA11.正弦定理:a/sinA=b/sinB=c/sinC12.对数特征:y=kx+b13.函数奇偶性14.函数单调性15.函数极值16.函数图像描绘17.图像平移、压缩、旋转等变换18.函数复合19.反函数20.常见函数图像:幂函数、指数函数、对数函数、三角函数21.曲线斜率22.极限的定义23.极限的性质24.极限的计算25.无穷小量26.数列极限27.级数28.发散级数的判别法29.幂级数30.傅里叶级数。

高二数学上公式大全

高二数学上公式大全

高二数学(上)公式大全一. 不等式部分。

1.不等式的性质:a>b ⇔a-b=0 ; a=b ⇔a-b=0 ; a<b ⇔a-b<0 ; a>b 且b>c ⇒a>c c<b 且b<a ⇒c<a ; a>b ⇔a ±c>b ±c ; a>b 且c>d ⇒a+c>b+d a>b 且c>0⇒ac>bc ; a>b 且c<0⇒ac<bc ; a>b>0且c>d>0⇒ac>bd a>b 且ab>0⇒1a <1ba>b>0⇒n na b >(,n N ∈且n>1)a>b>0⇒>(,n N ∈且n>1)2.几个重要的不等式 。

若a. 、b ∈R,则有:①222a b ab +≥②222a b ab +≤③22a b ab +⎛⎫≤ ⎪⎝⎭④22222a b a b ++⎛⎫≤⎪⎝⎭⑤2a b +≤222a b c ab bc ca ++≥++ ⑦当a 、b 均大于0时,3322a b a b ab +≥+ ( 以上各式均当且仅当 a=b=c 时取“=”) 3。

均值不等式①若a 、b 大于0,则2a b +≥ 若a 、b 、c 均>0,则3a b c ++≥拓展:若有n 个正数a 1a 2……a n (n ≥2),则有12...n a a a n+++≥均值不等式的推论: ①ab>02b a a b ⇒+≥②ab<02b aa b⇒+≤- ③ab 22,112ab a b R a b a b++∈⇒=≤≤≤++(以上各式均当且仅当a=b 时取=) 4.均值不等式的应用若x 、y 是正数,①如果积xy 是定值P ,那么当x=y 时,和x+y有最小值 ②如果和x+y 是定值S, 那么当x=y 时,积xy 有最大值214S (注意:使用条件:“一正、二定、三相等”) 5。

高二上册数学知识点公式

高二上册数学知识点公式

高二上册数学知识点公式在高二上册的数学学习中,我们经常会接触到各种各样的知识点和公式。

这些知识点和公式在解题过程中扮演着重要的角色,帮助我们理解和解决各类数学问题。

下面我将介绍一些高二上册数学知识点和公式,希望对你的学习有所帮助。

一、函数与方程1. 一次函数:y = kx + b- 斜率 k 的性质:斜率为正表示函数递增,斜率为负表示函数递减,斜率为零表示函数为常数函数。

- 截距 b 的性质:截距表示函数与 y 轴的交点,当 x = 0 时,函数的值为 b。

2. 二次函数:y = ax^2 + bx + c(a ≠ 0)- 顶点坐标:x = -b/2a,y = -(b^2-4ac)/4a- 对称轴:过顶点且与抛物线垂直的直线,方程为 x = -b/2a3. 指数函数:y = a^x (a > 0 且a ≠1 )- 指数函数的性质:当 a > 1 时,函数递增;当 0 < a < 1 时,函数递减- 指数函数的图像特点:从左到右是增长的指数曲线;过原点且与 x 轴交于点 (0,1)4. 对数函数:y = logₐx (a > 0 且a ≠ 1 ,x > 0)- 对数函数的性质:当 0 < a < 1 时,函数递增;当 a > 1 时,函数递减- 对数函数的图像特点:从左到右是减少的曲线;过点 (1,0) 且与 y 轴交于点 (0,1)二、三角函数1. 正弦函数:y = Asin(Bx+C) + D- A 表示振幅,控制波峰和波谷的最大值- B 表示周期,控制波形的变化速度- C 表示相移,控制波形的左右平移- D 表示纵向平移,将整个波形上下平移2. 余弦函数:y = Acos(Bx+C) + D- A、B、C 和 D 的含义与正弦函数类似,只是对应的图像形状是余弦曲线3. 正切函数:y = Atan(Bx+C) + D- A、B、C 和 D 的含义与正弦函数类似,只是对应的图像形状是正切曲线三、解析几何1. 直线的一般方程:Ax + By + C = 0 (A、B 不同时为 0)- 直线的斜率:k = -A/B- 直线的截距:b = -C/B- 直线与坐标轴的交点:当 x = 0 时,y = -C/B;当 y = 0 时,x = -C/A2. 圆的方程:(x-a)² + (y-b)² = r²(r > 0)- 圆的圆心:(a,b)- 圆的半径:r四、概率与统计1. 事件发生的概率:P(A) = n(A)/n(S) (n(A) 表示事件 A 中有利结果出现的次数,n(S) 表示样本空间中可能的结果数) - 互斥事件的加法公式:P(A∪B) = P(A) + P(B)- 非互斥事件的加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)2. 排列组合- 排列:从 n 个不同元素中取出 m 个元素进行排列,有序排列,记作 A(n,m)- 组合:从 n 个不同元素中取出 m 个元素进行组合,无序排列,记作 C(n,m)以上是高二上册数学中常见的一些知识点和公式,它们在解题中起到了重要的作用。

高二上公式数学知识点

高二上公式数学知识点

高二上公式数学知识点一、一次函数的公式一次函数的一般形式为y=ax+b,其中a和b都是常数。

二、二次函数的公式二次函数的一般形式为y=ax^2+bx+c,其中a、b和c都是常数。

三、指数函数的公式指数函数的一般形式为y=a^x,其中a是一个实数且a≠0。

四、对数函数的公式对数函数的一般形式为y=loga(x),其中a是一个正实数且a≠1。

五、三角函数的公式1. 正弦函数的公式:正弦函数的一般形式为y=sin(x)。

2. 余弦函数的公式:余弦函数的一般形式为y=cos(x)。

3. 正切函数的公式:正切函数的一般形式为y=tan(x)。

六、三角恒等式的公式1. 余弦定理:在一个任意三角形ABC中,设边长分别为a、b和c,角ABC 的对边长度为c,那么余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcos(C)2. 正弦定理:在一个任意三角形ABC中,设边长分别为a、b和c,角ABC 的对边长度为c,那么正弦定理可以表示为:a/sin(A) = b/sin(B) = c/sin(C)七、解析几何的公式1. 直线的一般式方程:直线的一般式方程为Ax + By + C = 0,其中A、B和C为常数。

2. 点到直线的距离公式:点P(x0, y0)到直线Ax + By + C = 0的距离公式为:d = |Ax0 + By0 + C| / sqrt(A^2 + B^2)八、概率论的公式1. 排列组合公式:排列的总数为An,组合的总数为Cn。

排列和组合的计算公式如下:An = n!Cn = n! / (r!(n-r)!)2. 事件的概率计算公式:事件A的概率表示为P(A),概率的计算公式为:P(A) = n(A) / n(S),其中n(A)表示事件A发生的次数,n(S)表示样本空间中的总事件数。

以上是高二上公式数学知识点的介绍。

通过掌握这些公式,可以更好地理解和解决与数学相关的问题。

高二上册数学知识点及公式

高二上册数学知识点及公式

高二上册数学知识点及公式在高二上学期的数学学习中,我们将接触到许多重要的知识点和公式。

这些知识点和公式将会在解题和理解数学问题的过程中起到重要的作用。

以下是一些高二上册数学知识点及公式的总结。

1. 三角函数- 正弦函数:sin(x) = 对边/斜边- 余弦函数:cos(x) = 邻边/斜边- 正切函数:tan(x) = 对边/邻边- 三角函数的基本关系:sin²(x) + cos²(x) = 1- 三角函数的性质和常用公式2. 二次函数- 一般式:y = ax² + bx + c- 抛物线的开口方向和顶点坐标的计算- 二次函数的零点、对称轴和值域的计算- 一次函数与二次函数的关系- 二次函数的图像和性质3. 三角恒等变换- 和差化积:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)- 积化和差:cos(x)cos(y) = (cos(x + y) + cos(x - y))/2- 幂化积:cos²(x) = (1 + cos(2x))/2, sin²(x) = (1 - cos(2x))/2 - 三角函数的倍角、半角、诱导公式4. 向量- 向量的概念和性质- 向量的数量积和向量积- 向量的共线和垂直关系判定- 向量的投影和单位向量5. 平面几何- 直线和平面的方程- 切线和法线的斜率和方程- 平面和直线的位置关系- 圆和直线的位置关系6. 概率与统计- 随机事件和概率的基本概念- 事件的和、积、差的概率计算- 事件的相互独立和互斥的性质- 随机变量和概率分布这些是高二上册数学学习中的一些重要知识点和公式。

通过深入理解和熟练运用这些知识,我们可以更好地解决各种数学问题,提高数学水平。

希望同学们能够认真学习和掌握这些数学知识,取得优异的成绩。

高二上期数学公式和知识点

高二上期数学公式和知识点

高二上期数学公式和知识点在高二上学期的数学学习中,我们学习了许多重要的公式和知识点,它们在解决问题和解题过程中起着重要的作用。

本文将对其中一些重要的数学公式和知识点进行总结和说明。

一、代数与函数1. 二次函数:二次函数的一般式:y = ax^2 + bx + c二次函数的顶点坐标:(-b/2a, -△/4a),其中△为判别式,△ = b^2 - 4ac二次函数图像的性质和变化:- a的正负决定了二次函数开口的方向;- a的绝对值大小决定了二次函数的开口程度;- 顶点坐标的y值决定了二次函数的最值;2. 幂函数:幂函数的一般式:y = ax^b,其中a为常数,b为指数;幂函数的图像特点:当b为奇数时,图像关于原点对称;当b为偶数时,图像最小值为0且图像右侧为上升趋势,左侧为下降趋势;3. 对数函数:对数函数的定义:b^logb(x) = x,其中b为底数,x为对数函数的自变量;常用的对数函数:以10为底的常用对数函数(logx),以e 为底的自然对数函数(lnx);对数函数的性质和计算方法:二、三角函数1. 基本三角函数:正弦函数(sin)、余弦函数(cos)、正切函数(tan);基本三角函数的定义及计算方法;三角函数的周期性和奇偶性;三角函数的图像和变化规律;2. 三角函数的恒等变换:倍角公式、半角公式、和差化积公式等;利用恒等变换简化计算和证明;3. 三角函数的应用:三角函数在几何问题中的应用,如解三角形的边长和角度;三角函数在物理问题中的应用,如抛物线运动的模型等;三、几何与立体几何1. 相似三角形:相似三角形的定义和性质;相似三角形的判定方法,如AAA、AA、SAS等;相似三角形的应用,如解决直角三角形的问题等;2. 圆的相关知识:圆的定义和性质,如切线与圆的判定条件;弧长和扇形面积的计算公式;圆锥曲线--椭圆、双曲线和抛物线的特点和性质;3. 空间几何与立体几何:简单立体图形的体积和表面积计算公式;空间几何图形的相交关系和投影问题;空间几何中的集合问题和解题方法;四、概率与统计1. 概率的基本概念和方法:随机事件、样本空间、事件的概率等;概率计算的基本定理,如加法定理和乘法定理;利用概率计算解决实际问题;2. 统计与抽样:数据收集和整理的方法;统计图表的制作和分析;抽样调查的设计和统计方法;以上仅为高二上学期数学中的一部分公式和知识点,这些公式和知识点是数学学习的基础,对于提高数学解题和问题求解能力非常重要。

高二上数学知识点公式大全

高二上数学知识点公式大全

高二上数学知识点公式大全一、代数部分1. 二次根式- 平方根公式:设 a、b、c 为实数且a ≠ 0,若二次方程 ax^2 + bx + c = 0 的判别式 D = b^2 - 4ac ≥ 0,则方程的根公式为:x = (-b ± √D) / 2a- 解一元二次方程:设二次方程 ax^2 + bx + c = 0,若已知其根为 x1 和 x2,则可以恢复出方程的系数与根的关系:a = 1,b = -(x1 + x2),c = x1 * x22. 二次函数- 顶点坐标:二次函数 f(x) = ax^2 + bx + c 的顶点坐标为 (-b / (2a), f(-b / (2a)))- 对称轴方程:二次函数的对称轴方程为 x = -b / (2a)- 平移、伸缩变换:二次函数 f(x) = ax^2 + bx + c 的平移、伸缩变换公式为:f(x) = a(x - h)^2 + k,其中 (h, k) 为顶点坐标3. 分式函数- 分式函数的定义域:分式函数的定义域为除去使分母为零的 x 值的全体实数集合- 分式函数的性质:包括奇偶性、增减性、图像与渐近线等性质4. 幂函数- 幂函数的性质:包括奇偶性、增减性、零点等性质- 对数函数与指数函数的关系:y = a^x 中的 a 被称为底数,x 被称为指数。

对数函数与指数函数是互逆的关系,即 y = loga(x) 与 x = a^y 互为反函数5. 等比数列- 通项公式:等比数列的通项公式为 an = a1 * q^(n-1),其中 a1 为首项,q 为公比- 求和公式:等比数列的前 n 项和为 Sn = a1 (1 - q^n) / (1 - q),其中 a1 为首项,q 为公比,n 为项数二、几何部分1. 三角形- 三角形内角和:三角形内角和等于 180 度- 面积公式:三角形的面积公式有海伦公式、正弦公式、余弦公式等。

以海伦公式为例,设三角形的三边长为 a、b、c,则三角形的面积S = √[s(s-a)(s-b)(s-c)],其中 s = (a + b + c) / 2- 重心坐标:设三角形的三个顶点坐标为 (x1, y1),(x2, y2),(x3, y3),则三角形的重心坐标为 (x, y),其中 x = (x1 + x2 + x3) / 3,y = (y1 + y2 + y3) / 32. 平面几何- 圆的面积公式:圆的面积公式为S = πr^2,其中 r 为圆的半径- 圆的弧长公式:圆的弧长公式为L = 2πr,其中 r 为圆的半径- 直角坐标系中的直线方程:直线的方程可以用斜截式、截距式、点斜式等表示3. 空间几何- 空间中两点的距离公式:设空间中两点 A(x1, y1, z1) 和 B(x2,y2, z2),则两点之间的距离为AB = √[(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2]- 空间中点到平面的距离公式:设空间中点 P(x0, y0, z0) 和平面Ax + By + Cz + D = 0,则点 P 到平面的距离为 d = |Ax0 + By0 + Cz0 + D| / √(A^2 + B^2 + C^2)- 空间中两直线的位置关系:包括平行、垂直、交于一点等不同的位置关系三、概率部分1. 排列组合- 排列:从 n 个元素中取出 m 个元素按照一定的顺序排列的方法数为 A(n, m) = n! / (n-m)!- 组合:从 n 个元素中取出 m 个元素不考虑顺序的方法数为C(n, m) = n! / (m!(n-m)!)2. 概率- 随机事件:指在一次试验中可能出现也可能不出现的事件- 概率:一个随机事件 A 发生的概率 P(A) = n(A) / n(S),其中n(A) 表示事件 A 的样本点数,n(S) 表示样本空间 S 的样本点数以上是高二上数学知识点的公式大全,仅供参考。

高二上知识点公式

高二上知识点公式

高二上知识点公式以下是高二上学期的主要知识点及相关公式的总结:1. 二次函数及其图像:二次函数的标准形式:y = ax^2 + bx + c顶点坐标:(-b/2a, f(-b/2a))对称轴方程:x = -b/2a判别式:Δ = b^2 - 4ac2. 三角函数及其性质:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2abcosC正切、余切、正割、余割的定义及关系3. 指数与对数:指数运算:a^m * a^n = a^(m+n)对数定义:logaM = N,则a^N = M对数运算:loga(M*N) = logaM + logaNloga(M/N) = logaM - logaNloga(M^p) = p*logaM对数换底:logaM = logbM / logba4. 三角恒等式:余弦的二倍角公式:cos(2A) = cos^2A - sin^2A正弦的二倍角公式:sin(2A) = 2sinAcosA任意角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB - sinAsinB5. 平面解析几何:两点间距离公式:d = √((x2 - x1)^2 + (y2 - y1)^2)中点坐标公式:M(xm, ym) = ((x1 + x2)/2, (y1 + y2)/2)直线方程:一般式:Ax + By + C = 0斜截式:y = kx + b截距式:x/a + y/b = 1圆方程:标准式:(x - a)^2 + (y - b)^2 = r^2一般式:x^2 + y^2 + Dx + Ey + F = 06. 排列组合:排列数公式:A(n, m) = n! / (n-m)!组合数公式:C(n, m) = n! / (m!(n-m)!)7. 概率与统计:事件发生的概率:P(A) = n(A) / n(S)加法定理:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)乘法定理:P(A ∩ B) = P(A) * P(B|A)期望值计算:E(X) = x1p1 + x2p2 + ... + xnpn8. 导数与微分:导数定义:f'(x) = lim(h→0)(f(x+h) - f(x))/h基本导数公式:(常数函数)' = 0(x^n)' = nx^(n-1)(sinx)' = cosx(cosx)' = -sinx(e^x)' = e^x(lnx)' = 1/x链式法则:(f(g(x)))' = f'(g(x)) * g'(x)9. 积分:积分的定义:∫[a,b] f(x)dx = lim(n→∞) Σf(xi)Δx基本积分公式:∫(k*dx) = kx + C∫(x^n*dx) = x^(n+1)/(n+1) + C (n ≠ -1)∫(sinx*dx) = -cosx + C∫(cosx*dx) = sinx + C∫(e^x*dx) = e^x + C∫(1/x*dx) = ln|x| + C这些是高二上学期中常见的知识点及相关公式总结,希望对你的学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学(上)公式大全一. 不等式部分。

1.不等式的性质:a>b ⇔a-b=0 ; a=b ⇔a-b=0 ; a<b ⇔a-b<0 ; a>b 且b>c ⇒a>c c<b 且b<a ⇒c<a ; a>b ⇔a ±c>b ±c ; a>b 且c>d ⇒a+c>b+d a>b 且c>0⇒ac>bc ; a>b 且c<0⇒ac<bc ; a>b>0且c>d>0⇒ac>bd a>b 且ab>0⇒1a <1ba>b>0⇒n na b >(,n N ∈且n>1)a>b>0⇒>(,n N ∈且n>1 )2.几个重要的不等式 。

若a. 、b ∈R,则有:①222a b ab +≥ ② 222a b ab +≤ ③22a b ab +⎛⎫≤ ⎪⎝⎭④22222a b a b ++⎛⎫≤⎪⎝⎭⑤2a b +≤ ⑥222a b c ab bc ca ++≥++ ⑦当a 、b 均大于0时,3322a b a b ab +≥+ ( 以上各式均当且仅当 a=b=c 时取“=”) 3。

均值不等式①若a 、b 大于0,则2a b +≥ ② 若a 、b 、c 均>0,则3a b c ++≥拓展:若有n 个正数a 1a 2……a n (n ≥2),则有12...n a a a n+++≥均值不等式的推论: ①ab>02b a a b ⇒+≥ ②ab<02b aa b⇒+≤- ③ab 22,112ab a b R a b a b++∈⇒=≤≤≤++(以上各式均当且仅当a=b 时取=) 4.均值不等式的应用若x 、y 是正数,①如果积xy 是定值P ,那么当x=y 时,和x+y有最小值 ②如果和x+y 是定值S, 那么当x=y 时,积xy 有最大值214S (注意:使用条件:“一正、二定、三相等”) 5。

含绝对值的不等式①a b a b a b -≤+≤+ ②1212......n n a a a a a a +++≤+++ ③a b a b a b -≤-≤+上式不等式取得“=”的条件:①0a b a b ab +=+⇔≥ ②0a b a b ab -=+⇔≤ ③0a b a b ab +=-⇔≤且()0a b a b b ≥⇔+•≤ ④0a b a b ab -=-⇔≥且()0a b a b b ≥⇔-•≥二。

直线部分1。

斜率: tan (90)k αα=≠ 或 ()212121y y k x x x x -=≠- (当90α=或21x x =时,斜率不存在)2。

直线P 1P 2 的方向向量 12PP 的坐标是(x 2-x 1,y 2-y 1),若21x x ≠,可化为(1,k ) 3.直线的方程:①点斜式:y-y 1=k(x-x 1) ②斜截式:y=kx +b ③两点式:112121y y x x y y x x --=-- ④截距式:1x ya b+=⑤一般式:Ax+By+C=0(220A B +≠) 4.两条直线的位置关系<1>.若已知直线L 1:y=k 1x+b ; L 2: y=k 2x+b①1212//l l k k ⇔=且12b b ≠ ②12121l l k k ⊥⇔•=- <2>若已知直线L 1:A 1x+B 1y+C 1=0 ; L 2: A 2x+B 2y+C 2=0 ①12//l l ⇔1221122100{A B A B AC A C -=-≠ 或 1221122100{A B A B B C B C -=-≠ ②1212120l l A A B B ⊥⇔+=5.若直线L 1、、L 2的斜率分别为k 1、k 2, <1> 当121k k •≠-时,①到角公式:2112tan 1k k k k θ-=+ ,0,,22ππθπ⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭②夹角公式:2112tan 1k k k k α-=+ ,0,2πα⎛⎫∈ ⎪⎝⎭<2>当121k k •=-时,到角2πθ=, 夹角2πα=所以,两直线倾斜角范围 [)0,π ; 夹角范围 0,2π⎛⎤⎥⎝⎦6.点到直线的距离公式:d =7.两条平行线间的距离公式:d =8.几个常见的直线系方程:①已知直线斜率的直线系方程:y=kx+b (k 为常数,b 为参数)②与已知直线L :Ax+By+C=0平行的直线系方程:Ax+By+m=0(m 为参数,m ≠C) ③与已知直线L :Ax+By+C=0垂直的直线系方程:Bx-Ay+n=0(n 为参数)④经过两直线交点的直线系方程:A 1x+B 1y+C 1+λ(A 2x+B 2y+C 2)=0 (λ为参数) 9.若已知直线L :Ax+By+C=0,常见的对称结论有: ①L 关于x 轴对称的直线是:Ax+B (-y )+C=0 ②L 关于y 轴对称的直线是:A (-x )+By+C=0③L 关于原点对称的直线是:A (-x )+B (-y )+C=0 ④L 关于y=x 对称的直线是:Bx+Ay+C=0⑤L 关于y=-x 对称的直线是:B(-x)+A(-y)+C=010.点P (x 0,y 0)关于直线L :Ax+By+C=0的对称点Q(x,y)0000()1022{y y Ax x Bx x y y A B C -•-=--++•+•+= 11. 点P (x 0,y 0)关于直线x+y+c=0的对称点'A 的坐标为(-y 0-c,-x 0-c );点P (x 0,y 0)关于直线x-y+c=0的对称点''A 的坐标为(y 0-c,x 0+c ) 12.同一直线上两点(x 1,y 1)、(x 2,y 2)距离公式:21d x =-21y y =- 三.圆的方程部分1.标准方程:222()()x a y b r---=2. 一般方程:x 2+y 2+Dx+Ey+F=0 (D 2+E 2-4F>0) 3.参数方程:cos sin {x a r y b r θθ=+=+ (θ为参数)4.若直线与圆心的距离为d, 圆半径为r,①若d>r, 则直线与圆相离 ②若d=r, 则直线与圆相切 ③若d<r, 则直线与圆相交 5.若直线与圆相交时,l 为弦长,d 为弦心距,r 为半径,则有:222()2l d r += 6.若两圆圆心距为d ,两圆半径分别为R,r (R r ≥)①d >R+r ⇔两圆外离 ②d =R+r ⇔两圆外切 ③R-r<d <R+r ⇔两圆相交 ④d =R-r ⇔两圆内切 ⑤d <R-r ⇔两圆内含7.已知圆C 1: x 2+y 2+D 1x+E 1y+F 1=0 ① , 圆C 2:x 2+y 2+D 2x+E 2y+F 2=0 ② , 两圆公共弦方程为:(D 1-D 2)x +(E 1- E 2)y+( F 1-F 2)=0 (由 ①—②得) 8.几个常用的圆系方程:①过直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0的公共点的圆系方程: x 2+y 2+Dx+Ey+F +λ(Ax+By+C )=0②过两圆x 2+y 2+D 1x+E 1y+F 1=0与x 2+y 2+D 2x+E 2y+F 2=0的公共点的圆系方程:x 2+y 2+D 1x+E 1y+F 1 +λ(x 2+y 2+D 2x+E 2y+F 2)=0 (λ≠-1且不含圆x 2+y 2+D 2x+E 2y+F 2=0)。

9.圆x 2+y 2=r 2上一点P (x 0,y 0)处的切线方程为l :x 0x+y 0y= r 2(方法提示:已知切点(x 0,y 0)只需将原方程中x 2、y 2换成x 0x 、y 0y ,将x 、y 换成2x x +、02y y +,即可得切线方程 。

此方法对圆、椭圆、双曲线、抛物线均适用)。

四.椭圆部分。

1.标准方程: 焦点在x 轴上 :22221x y a b +=; 焦点在y 轴上,22221y x a b+= (a>b>0)2.参数方程:cos sin {x a y b θθ== (θ为参数)3.标准方程统一形式:mx 2+ny 2=1 (m>0, n>o,m ≠n) 4. 第一定义表达式: 12122,(20)PF PF a a F F +=>> 5. 椭圆方程式中满足:a 2=b 2+c 2 6. 椭圆坐标的范围:,x a y b ≤≤7.长轴长 = 2a , a 为长半轴长 ; 短轴长 = 2b ,b 为短半轴长8.离心率:1c a == (0<<1)9. 椭圆第二定义:点P 到焦点F 的距离PF 与P 到与F 相对应的准线的距离d 之间满足:PF d=10.准线方程:2a x c =± (焦点在x 轴上) ; 或2a y c=± (焦点在y 轴上)11. 焦半径公式:①22221x y a b+=上一点P (x 0,y 0)到左焦点F 1(-c,0)的焦半径:10PF a x =+ ;到右焦点F 2(c,0)的焦半径公式:20PF a x =- (左加右减) ;②22221y x a b+=上一点P (x 0,y 0)到F 1下焦点(0,-c )的焦半径:10PF a y =+; 到上焦点F 2(0,c )的焦半径公式: 20PF a y =- (下加上减)12.通径公式:过椭圆焦点且垂直于长轴的弦= 22b a13.焦准距:焦点到相应准线的距离=2b c ; 椭圆两准线间的距离=22a c14.一斜率为k 的直线被椭圆截得的弦的中点坐标为(x 0,y 0),则满足:2020y b k x a•=-15.椭圆22221x y a b+=上点P 与两焦点间的夹角12F PF θ∠=,则Δ12F PF 的面积为:2tan 2S b θ=•五.双曲线部分1.标准方程: 22221x y a b -= (焦点在x 轴上) 或 22221y x a b-= (焦点在y 轴上), (a>b>0)。

2.标准方程统一形式: mx 2+ny 2=1 ,( mn <0 ) 3. 定义表达式:122PF PF a -= (2a 为定长) 4.双曲线方程满足:c 2=a 2+b 25. 与椭圆22221x y a b+=(a>b>0)有公共焦点的双曲线可设为:2222221()x y b a a b λλλ+=<<-- 。

相关文档
最新文档