振动和波典型例题
(振动、波)习题
机械振动一.选择题:1.将弹簧振子和单摆从地球上移到月球上去,它们振动频率的变化情况是()(A)弹簧振子变化,单摆不变;(B)弹簧振子不变,单摆变化;(C)都不会发生变化;(D)都会发生变化。
2.一弹簧振子的固有周期为T,若将弹簧剪去一半,振子的质量也减半,则新弹簧振子的固有周期为()T;(E)T/4 。
(A)T;(B)2T;(C)T/2 ;(D)23. 两个不同的轻质弹簧分别挂上质量相同的物体1和2,若它们的振幅之比A2/A1=2/1,周期之比T2/T1=2/1,则它们的总振动能量之比E2/E1是:( )(A)1:1 (B)1:4 (C)4:1 (D)2:14.两个小球A、B作同频率、同方向的简谐运动,当A球自正方向回到平衡位置时,B球恰好在正方向的端点,则它们的相位关系为()(A)A比B落后π/2;(B)A比B超前π/2;(C)A比B超前2π/3;(D)A比B落后π/3。
5. 两个同方向同频率的谐振动,其合振幅为20cm,合振动相位与第一个振动的位相差为60。
,第一个振动的振幅为A1=10cm,则第一振动与第二振动的位相差为:( )(A)0 (B)π/2 (C)π/3 (D)π/46.一质点同时参与了两个同方向同频率的简谐运动,其振动方程分别为:21510cos(4/3)y t π-=⨯+ (SI ),22310sin(4/6)y t π-=⨯-(SI )则其合振动方程为 ( )(A )2810cos(4/3)y t π-=⨯+ (SI ) (B )2810cos(4/6)y t π-=⨯- (SI )(C )2210cos(4/3)y t π-=⨯+ (SI ) (D )2210cos(4/6)y t π-=⨯- (SI ) 8. 一质点同时参与了三个简谐振动,它们的振动方程分别为X 1=A cos(ωt +π/3),X 2=A cos(ωt +5π/3),X 3=A cos(ωt +π),其合成运动的运动方程为X=0.二.填空题:1.一质点的简谐运动方程为x = 0.05 cos (100πt -π/6)(SI )。
(八)机械振动和机械波专题
2012高三物理专题复习——机械振动和机械波专题一、知识结构。
三、【典型例题分析】【例1】一弹簧振子做简谐运动,振动图象如图6—3所示。
振子依次振动到图中a 、b 、c 、d 、e 、f 、g 、h 各点对应的时刻时,(1)在哪些时刻,弹簧振子具有:沿x 轴正方向的最大加速度;沿x 轴正方向的最大速度。
(2)弹簧振子由c 点对应x 轴的位置运动到e 点对应x 轴的位置,和由e 点对应x 轴的位置运动到g 点对应x 轴的位置所用时间均为0.4s 。
弹簧振子振动的周期是多少?(3)弹簧振子由e 点对应时刻振动到g 点对应时刻,它在x 轴上通过的路程是6cm ,求弹簧振子振动的振幅。
分析:(1)弹簧振子振动的加速度与位移大小成正比,与位移方向相反。
振子具有沿x 轴正方向最大加速度,必定是振动到沿x 轴具有负向的最大位移处,即图中f 点对应的时刻。
振子振动到平衡位置时,具有最大速度,在h 点时刻,振子速度最大,再稍过一点时间,振子的位移为正值,这就说明在h 点对应的时刻,振子有沿x 轴正方向的最大速度。
(2)图象中c 点和e 点,对应振子沿x 轴从+7cm 处振动到-7cm 处。
e 、f 、g 点对应振子沿x 轴,从-7cm 处振动到负向最大位移处再返回到-7cm 处。
由对称关系可以得出,振子从c 点对应x 轴位置振动到g 点对应x 轴位置,振子振动半周期,时间为0.8s ,弹簧振子振动周期为T =1.6s 。
(3)在e 点、g 点对应时间内,振子从x 轴上-7cm 处振动到负向最大位移处,又返回-7cm 处行程共6cm ,说明在x 轴上负向最大位移处到-7cm 处相距3cm ,弹簧振子的振幅A =10cm 。
解答:(1)f 点;h 点。
(2)T =1.6s 。
(3)A =10cm 。
说明:本题主要考察结合振动图象如何判断在振动过程中描述振动的各物理量及其变化。
讨论振子振动方向时,可以把振子实际振动情况和图象描述放在一起对比,即在x 轴左侧画一质点做与图象描述完全相同的运动形式。
振动波动例题
解:
t =0
x =0 y =0
y0= 0.03 cos(2 ×2.5 t π ) π 2
v0
π j= 2
π 2 x π y = 0.03 cos 2 ×2.5 t 2 π 0.24 π 50 x π 0.03 cos 5 t π =
2 6 0.03 cos 5 (t 10 x ) π π = 2 6
例1. 有一个和轻弹簧相联的小球,沿x 轴作振幅为A的简谐振动,其表达式用余弦 函数表示。若t =0 时,球的运动状态为: (1)x0=-A; (2)过平衡位置向x 正方向运动; (3)过x=A/2处向 x 负方向运动; A (4)过 处向 x 正方向运动; 2 试用矢量图示法确定相应的初相的值,并写 出振动表式。
由波形图得:t =1/3 s时
y/cm
10
x0
v< 0 y0 =-0.05
o
-5
20
x/cm
1 0.05 0.1cos( j ) 3
1 2 j 3 3
j
3
波动方程为:
πx + π y =10cos π t 20 3
O点(x =0)的振动方程为:
cm (1)
π π 解: A =0.24m ω = 2 = 2 = π =1.57s-1 T 2 4 x 0 = A =0.24m φ =0 t =0 v0 = 0
振动方程为: x = 0.24 cosπ t 2 (1) t =0.5s cos (π × 0.5 ) x = 0.24 2 = 0.24 cos 0.25π
= 0.24 ×
2 =0.17m 2
(2)
大学物理振动波动例题习题
振动波动一、例题(一)振动1.证明单摆是简谐振动,给出振动周期及圆频率。
2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3. 已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。
在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。
已知原点的振动曲线如图所示。
求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差。
3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。
S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4.沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为固定端,求反射波的方程。
振动和波典型例题
【例1】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为()A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2 mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为 A=x2-x1= mg /kD物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,由于D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg.点评:一般说来,弹簧振子在振动过程中的振幅的求法均是先找出其平衡位置,然后找出当振子速度为零时的位置,这两个位置间的距离就是振幅.本题侧重在弹簧振子运动的对称性.解答本题还可以通过求D物运动过程中的最大加速度,它在最高点具有向下的最大加速度,说明了这个系统有部分失重,从而确定木箱对地面的压力【例2】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由.②判断m与M的最终运动状态是静止、匀速运动还是相对往复的运动?【解析】①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。
振动和波动要点习题
振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
高考物理总复习专题练习:振动和波
高考物理复习振动和波专题训练及其答案一、单项选择题1.如图所示为一列简谐横波t时刻的图象,已知波速为0.2m/s,以下说法正确的是()A.经过0.5s,质点a、b、c通过的路程均为75cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4Hz2.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P、Q 到平衡位置的距离相等。
关于P、Q两个质点,以下说法正确的是()A.P较Q先回到平衡位置B.再经14周期,两个质点到平衡位置的距离相等C.两个质点在任意时刻的动量相同D.两个质点在任意时刻的加速度相同3.图为一列简谐波在0=t时刻的波形图,此时质点Q正处于加速运动过程中,且质点N在1st=时第一次到达波峰。
则下列判断正确的是()A.此时质点P也处于加速运动过程B.该波沿x轴负方向传播C.从0=t时刻起,质点P比质点Q晚回到平衡位置D.在0=t时刻,质点N的振动速度大小为1m/s4.如图所示为一列机械波在t=0时刻传播的波形图,此刻图中P点速度沿y轴正方向,t=2s 时刻,图中Q点刚好在x轴上。
则下列说法正确的是()A.该机械波沿x轴正方向传播B.该机械波周期不可能是8s3C.无论周期是多少,当Q点在x轴时,P点一定离x轴最远D.P点振幅是10cm5.如图所示是沿x轴传播的一列简谐横波在t=0时刻的波形图,已知波的传播速度为16.0m/s,从此时起,图中的P质点比Q质点先经过平衡位置.那么下列说法中正确的是()A.这列波一定沿x轴正向传播B.这列波的频率是3.2HzC.t=0.25s时Q质点的速度和加速度都沿y轴负向D.t=0.25s时P质点的速度和加速度都沿y轴负向6.如图(a)所示为波源的振动图象(在t=0时刻之前波源就已经开始振动了),图(b)为xy 平面内沿x轴传播的简谐横波在t=0时刻的波形图象,t=0时刻P点向y轴负方向运动,关于图(b)上x=0.4m处的Q点的说法正确的是().A.t=0时,速度最大,其大小为0.1m/s,方向沿y轴正方向B.t=0到t=5s内,通过的路程为20cmC.t=2s时,运动到x=0.2m处D.t=3s时,加速度最大,且方向向下7.一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和c之间的距离是5m,以下说法正确的是()A.此列波的波长为2.5mB.此列波的频率为2HzC.此列波的波速为2.5m/sD.此列波的传播方向为沿x轴正方向传播8.P、Q、M是某弹性绳上的三个质点,沿绳建立x坐标轴。
振动和波例题
• 一升降机在箱底装有若干个弹簧,在某次事故中升降 机吊索在空中断裂.忽略摩擦力,则升降机在从弹簧下端 触地后直到最低点的一段运动过程中[ ] • A 升降机的速度不断减小 • B 升降机的加速度不断变大 • C 先是弹力做的负功小于重力做的正功,然后是弹力 做的负功大于重力做的正功。 • D 到最低点时,升降机加速度的值一定大于重力加速 度的值。
作业6、
• 理想的单摆和弹簧振子,它们的振动应 该属于: [A D ] • A、自由振动 B、受迫振动 C、阻尼振动 D、无阻尼振动
作业7、
• 一质点作简谐运动,则: [ B ] • A、它的速度方向与位移方向一定相同 B、它的加速度方向与位移方向一定相反 • C、它的加速度方向与速度方向一定相反 D、它的速度方向与位移方向一定相反
图中箭头表示质点的振动方向。 由图可知 4S末质点a、c、e的加速度为零 在4S<t<5S这段时间内 质点a、c、e的加速度增大; 质点b、d的速度增大; 质点f尚未开始振动。 本题正确选项为ACD。
例题九
• • • • • 判断下列说法是否正确: 1、波从一种介质进入另一种介质频率肯定不变而波长可能改变。 2、波的频率都是由波源决定的,波的速度都是由介质决定的。 3、电磁波一定是横波,机械波一定是纵波。 4、光波的颜色是由它的频率决定的,声波的音调是由它的频率 决定的。 5、机械波、电磁波和物质波都能发生干涉、衍射等现象。 6、机械波、电磁波和物质波都具有波粒两象性。 7、空气中超声波的速度比次声波大,但遇障碍物时次声波比超 声波更容易出现衍射现象。 8、红外线、紫外线都能出现偏振现象,而空气中的超声波则不 可能出现偏振现象。
例题分析与解答
• 从弹簧下端触地后直到最低点的运动过程中, 弹力做负功重力做正功,升降机的速度先增 大,最后减小为零。 • 所以先是弹力做的负功小于重力做的正功, 后是弹力做的负功大于重力做的正功。选项 C正确; • 这个升降机下端的弹簧着地后可简化为一个 竖直的弹簧振子,到最低点B时振子的速度 为零,位移最大,加速度也最大。 • 在平衡位置的上方有一个与最低点对称的点 D,这个点的速度为零,位移最大,加速度 也是最大,且与最低点的加速度大小相等 • 参见右图 •这个点的位置一定在弹簧触地时振子所在处C的 上方。因为振子加速度的大小与位移成正比,所 以D处的加速度大于C处的加速度,而C处的加速 度等于g,故B处的加速度大于g,选取项D正确。 •本题正确选项是CD。
机械振动机械波试题(附答案全解)
专题十九、机械振动机械波1.如图,t=0时刻,波源在坐标原点从平衡位置沿y轴正方向开始振动,振动周期为0.4s,在同一均匀介质中形成沿x轴正、负两方向传播的简谐横波。
下图中能够正确表示t=0.6时波形的图是答案:C 解析:波源振动在同一均匀介质中形成沿x轴正、负两方向传播的简谐横波。
t=0.6时沿x 轴正、负两方向各传播1.5个波长,能够正确表示t=0.6时波形的图是C。
2.做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是(A)位移(B)速度(C)加速度(D)回复力答案:B 解析:做简谐振动的物体,当它每次经过同一位置时,位移相同,加速度相同,位移相同,可能不同的物理量是速度,选项B正确。
3.一列横波沿水平绳传播,绳的一端在t=0时开始做周期为T的简谐运动,经过时间t(34T<t<T),绳上某点位于平衡位置上方的最大位移处。
则在2t时,该点位于平衡位置的(A)上方,且向上运动(B)上方,且向下运动(C)下方,且向上运动(D)下方,且向下运动答案:B 解析:由于再经过T时间,该点才能位于平衡位置上方的最大位移处,所以在2t时,该点位于平衡位置的上方,且向上运动,选项B正确。
4.在学校运动场上50 m直跑道的两端,分别安装了由同一信号发生器带动的两个相同的扬声器。
两个扬声器连续发出波长为5 m的声波。
一同学从该跑道的中点出发,向某一端点缓慢行进10 m。
在此过程中,他听到扬声器声音由强变弱的次数为()A.2 B.4C.6 D.8答案:B 解析:向某一端点每缓慢行进2.5m,他距离两波源的路程差为5m,听到扬声器声音强,缓慢行进10 m,他听到扬声器声音由强变弱的次数为4次,选项B正确。
5. 如图,a. b, c. d是均匀媒质中x轴上的四个质点.相邻两点的间距依次为2m、4m和6m一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s 时a第一次到达最高点。
振动与波专题(2024高考真题及解析)
振动与波专题1.[2024·安徽卷] 某仪器发射甲、乙两列横波,在同一均匀介质中相向传播,波速v大小相等.某时刻的波形图如图所示,则这两列横波()A.在x=9.0 m处开始相遇B.在x=10.0 m处开始相遇C.波峰在x=10.5 m处相遇D.波峰在x=11.5 m处相遇1.C[解析] 由题意可知两列波的波速相同,所以相同时间内传播的距离相同,故两列横波在x=11.0 m处开始相遇,故A、B错误;甲波峰的坐标为x1=5 m,乙波峰的坐标为x2=16 m,m=10.5 m处相遇,故C正确,D错误.由于两列波的波速相同,所以波峰在x'=5 m+16-522.[2024·北京卷] 图甲为用手机和轻弹簧制作的一个振动装置.手机加速度传感器记录了手机在竖直方向的振动情况,以向上为正方向,得到手机振动过程中加速度a随时间t变化的曲线为正弦曲线,如图乙所示.下列说法正确的是()A.t=0时,弹簧弹力为0B.t=0.2 s时,手机位于平衡位置上方C.从t=0至t=0.2 s,手机的动能增大D.a随t变化的关系式为a=4sin (2.5πt) m/s22.D[解析] 由题图乙知,t=0时,手机加速度为0,由牛顿第二定律得弹簧弹力大小为F=mg,A错误;由题图乙知,t=0.2 s时,手机的加速度为正,则手机位于平衡位置下方,B错误;由题图乙知,从t=0至t=0.2 s,手机的加速度增大,手机从平衡位置向最大位移处运动,速度=2.5π rad/s,则a随t变化的关系减小,动能减小,C错误;由题图乙知T=0.8 s,则圆频率ω=2πT式为a=4sin (2.5πt) m/s2,D正确.3.[2024·福建卷] 某简谐运动的y -t 图像如图所示,则以下说法正确的是( )A .振幅为2 cmB .频率为2.5 HzC .0.1 s 时速度为0D .0.2 s 时加速度方向竖直向下3.B [解析] 根据图像可知,振幅为1 cm,周期为T =0.4 s,则频率为f =1T =10.4 Hz=2.5 Hz,故A 错误,B 正确;根据图像可知,0.1 s 时质点处于平衡位置,此时速度最大,故C 错误;根据图像可知,0.2 s 时质点处于负向最大位置处,此时加速度方向竖直向上,故D 错误.4.[2024·甘肃卷] 如图为某单摆的振动图像,重力加速度g 取10 m/s 2,下列说法正确的是 ( ) A .摆长为1.6 m,起始时刻速度最大 B .摆长为2.5 m,起始时刻速度为零 C .摆长为1.6 m,A 、C 点的速度相同 D .摆长为2.5 m,A 、B 点的速度相同4.C [解析] 由单摆的振动图像可知振动周期为T =0.8π s,由单摆的周期公式T =2π√lg 得摆长为l =gT 24π2=1.6 m,A 、C 点的速度相同,A 、B 点的速度大小相同,方向不同;综上所述,可知C 正确.5.[2024·广东卷] 一列简谐横波沿x 轴正方向传播,波速为1 m/s,t =0时的波形如图所示.t =1 s 时,x =1.5 m 处的质点相对平衡位置的位移为 ( )A .0B .0.1 mC .-0.1 mD .0.2 m5.B [解析] 由图像可知,波长λ=2 m,周期T =λv =2 s,由于1 s-0=T2,故t =1 s 时,x =1.5 m 处的质点运动到波峰,相对平衡位置的位移为0.1 m,B 正确.6.[2024·河北卷] 如图所示,一电动机带动轻杆在竖直框架平面内匀速转动,轻杆一端固定在电动机的转轴上,另一端悬挂一紫外光笔,转动时紫外光始终竖直投射至水平铺开的感光纸上,沿垂直于框架的方向匀速拖动感光纸,感光纸上就画出了描述光点振动的x -t 图像.已知轻杆在竖直面内长0.1 m,电动机转速为12 r/min .该振动的圆频率和光点在12.5 s 内通过的路程分别为 ( )A .0.2 rad/s,1.0 mB .0.2 rad/s,1.25 mC .1.26 rad/s,1.0 mD .1.26 rad/s,1.25 m6.C [解析] 根据题意可知,紫外光笔的光点在纸面上沿x 轴方向做简谐运动,光点的振动为受迫振动,其振动周期等于电动机转动周期,故该振动的圆频率ω=2πT =2πn =0.4π rad/s≈1.26 rad/s,A 、B 错误;该振动的周期T =1n =5 s,由于轻杆长0.1 m,故振幅A =0.1 m,因12.5 s=(2+12)T ,故12.5 s 内光点通过的路程s =(2+12)×4A =1.0 m,C 正确,D 错误.7.[2024·湖南卷] 如图所示,健身者在公园以每分钟60次的频率上下抖动长绳的一端,长绳自右向左呈现波浪状起伏,可近似为单向传播的简谐横波.长绳上A 、B 两点平衡位置相距6 m,t 0时刻A 点位于波谷,B 点位于波峰,两者之间还有一个波谷.下列说法正确的是 ( )A .波长为3 mB .波速为12 m/sC .t 0+0.25 s 时刻,B 点速度为0D .t 0+0.50 s 时刻,A 点速度为07.D [解析] 由题意知A 、B 的平衡位置之间的距离x =32λ=6 m,解得λ=4 m,A 错误;波源的振动频率为f =6060 Hz=1 Hz,则波速v =λf =4 m/s,B 错误;质点的振动周期T =1f =1 s,由于0.25 s=T 4,故B 点在t 0+0.25 s 时刻即14周期后由波峰运动至平衡位置,速度最大,C 错误;由于0.50 s=T2,故A 点在t 0+0.50 s 时刻即12周期后由波谷运动至波峰,速度为0,D 正确.8.[2024·江西卷] 如图甲所示,利用超声波可以检测飞机机翼内部缺陷.在某次检测实验中,入射波为连续的正弦信号,探头先后探测到机翼表面和缺陷表面的反射信号,分别如图乙、丙所示.已知超声波在机翼材料中的波速为6300 m/s.关于这两个反射信号在探头处的叠加效果和缺陷深度d,下列选项正确的是 ()A.振动减弱;d=4.725 mmB.振动加强;d=4.725 mmC.振动减弱;d=9.45 mmD.振动加强;d=9.45 mm8.A[解析] 根据题图乙可知,超声波的传播周期T=2×10-7 s,又波速v=6300 m/s,则超声波在机翼材料中的波长λ=vT=1.26×10-3 m,结合题图乙和题图丙可知,两个反射信号传播到λ,解探头处的时间差为Δt=1.5×10-6 s,故两个反射信号的路程差为2d=vΔt=9.45×10-3 m=152得d=4.725×10-3 m;由题图乙和题图丙可知,这两个反射信号的起振方向相同,振动周期相同,传播到探头处的路程差为半波长的奇数倍,则这两个反射信号发生干涉且在探头处振动方向相反,故这两个反射信号在探头处振动减弱,A正确.9.(多选)[2024·山东卷] 甲、乙两列简谐横波在同一均匀介质中沿x轴相向传播,波速均为2 m/s.t=0时刻二者在x=2 m处相遇,波形图如图所示.关于平衡位置在x=2 m处的质点P,下列说法正确的是()A.t=0.5 s时,P偏离平衡位置的位移为0B.t=0.5 s时,P偏离平衡位置的位移为-2 cmC.t=1.0 s时,P向y轴正方向运动D.t=1.0 s时,P向y轴负方向运动9.BC [解析] 由于两波的波速均为2 m/s,故t =0.5 s 时,两波均传播了Δx =v Δt =2×0.5 m=1 m,题图所示平衡位置在x =1 m 处和x =3 m 处两质点的振动形式传到P 点处,由波的叠加原理可知,t =0.5 s 时,P 偏离平衡位置的位移为-2 cm,A 错误,B 正确;同理,t =1 s 时,题图所示平衡位置在x =0处和x =4 m 处两质点的振动形式(均向y 轴正方向运动)传到P 点处,根据波的叠加原理可知,t =1 s 时,P 向y 轴正方向运动,C 正确,D 错误.10.(多选)[2024·新课标卷] 位于坐标原点O 的波源在t =0时开始振动,振动图像如图所示,所形成的简谐横波沿x 轴正方向传播.平衡位置在x =3.5 m 处的质点P 开始振动时,波源恰好第2次处于波谷位置,则 ( )A .波的周期是0.1 sB .波的振幅是0.2 mC .波的传播速度是10 m/sD .平衡位置在x =4.5 m 处的质点Q 开始振动时,质点P 处于波峰位置10.BC [解析] 波的周期和振幅与波源振动的周期和振幅一致,可知波的周期为T =0.2 s,振幅为A =0.2 m,故A 错误,B 正确;质点P 开始振动时,波源第2次到达波谷,可知波从波源传到质点P 所用的时间为t =34T +T =0.35 s,则波速为v =x OP t=3.5-00.35 m/s=10 m/s,故C 正确;质点Q 的平衡位置在x =4.5 m 处,波从质点P 传到质点Q 需要的时间为t'=x PQ v=4.5-3.510 s=0.1 s=12T ,所以质点Q 开始振动时,质点P 处于平衡位置,故D 错误.11.[2024·浙江6月选考] 如图所示,不可伸长的光滑细线穿过质量为0.1 kg 的小铁球,两端A 、B 悬挂在倾角为30°的固定斜杆上,间距为 1.5 m .小球平衡时,A 端细线与杆垂直;当小球受到垂直纸面方向的扰动做微小摆动时,等效于悬挂点位于小球重垂线与AB 交点的单摆,重力加速度g 取10 m/s 2,则 ( )A .摆角变小时,周期变大B .小球摆动周期约为2 sC .小球平衡时,A 端拉力为√32 ND.小球平衡时,A端拉力小于B端拉力11.B[解析] 单摆的周期T=2π√Lg,与摆角无关,故A错误.光滑细线穿过小铁球,则小铁球两侧细线上拉力大小相等,所以A端拉力与B端拉力大小相等,平衡时对小球受力分析如图所示,根据数学关系可知F A=F B=mg2cos30°=√33N,故C、D错误.根据几何关系可知,细线与竖直方向夹角为30°,两侧细线夹角为60°,等效摆长为L=d AB cot60°cos30°=1 m,则小球摆动周期T=2π√Lg≈2 s,故B正确.12.[2024·浙江6月选考] 频率相同的简谐波源S1、S2和接收点M位于同一平面内,S1、S2到M的距离之差为6 m.t=0时,S1、S2同时垂直平面开始振动,M点的振动图像如图所示,则()A.两列波的波长为2 mB.两列波的起振方向均沿x正方向C.S1和S2在平面内不能产生干涉现象D.两列波的振幅分别为3 cm和1 cm12.B[解析] 由图像知,t=4 s时一列波传到M点且使M点沿x正方向振动,振幅A1=3 cm,t=7 s时这列波使M点沿x负方向振动且振幅变小为A=1 cm,说明此时另一列波也传到M点且其使M点沿x正方向振动,这列波的振幅A2=A1-A=2 cm,所以两列波刚传到M 时均使M点沿x正方向振动,即两列波的起振方向均沿x正方向,B正确,D错误;S1、S2到M的距离之差为Δx=6 m,由图像可知两列波传到M的时间之差为Δt=7 s-4 s=3 s,则波速v=ΔxΔt=2 m/s,由图像可知振动周期T=2 s,则波长λ=vT=4 m,A错误;S1、S2频率相等,所以在平面内能产生干涉现象,C错误.。
高中物理练习振动与波(习题含答案)
1.下列关于简谐振动和简谐波的说法,正确的是A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的A.频率、振幅都不变B.频率、振幅都改变C.频率不变、振幅改变D.频率改变、振幅不变3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。
对这一现象,下列说法正确的是A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是A.两波源的振动频率一定相同B.虚线一定是波谷与波谷相遇处C.两列波的波长都为2mD.两列波的波长都为1m5.频率一定的声源在空气中向着静止的接收器匀速运动。
以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。
若u增大,则A.v增大,V增大 B. v增大,V不变C. v不变,V增大D. v减少,V不变6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是A.图示时刻质点b的加速度将减小B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4mC.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50HzD.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象7.一列沿x轴正方向传播的简谐横波,周期为0.50s。
振动和波动计算题及答案
振动和波动计算题1..一物体在光滑水平面上作简谐振动,振幅是12 cm ,在距平衡位置6cm 处速度是24cm/s ,求(1)周期T ;(2)当速度是12 cm/s 时的位移.解:设振动方程为,则t A x ωcos =t A ωωsin -=v (1)在x = 6 cm ,v = 24 cm/s 状态下有 t ωcos 126=t ωωsin 1224-=解得 ,∴ s 2分3/4=ω72.2s 2/3/2=π=π=ωT (2) 设对应于v =12 cm/s 的时刻为t 2,则由 t A ωωsin -=v 得 ,2sin )3/4(1212t ω⨯⨯-=解上式得1875.0sin 2-=t ω相应的位移为 cm3分8.10sin 1cos 222±=-±==t A t A x ωω2. 一轻弹簧在60 N 的拉力下伸长30 cm .现把质量为4 kg 的物体悬挂在该弹簧的下端并使之静止 ,再把物体向下拉10 cm ,然 后由静止释放并开始计时.求 (1) 物体的振动方程;(2) 物体在平衡位置上方5 cm 时弹簧对物体的拉力;(3) 物体从第一次越过平衡位置时刻起到它运动到上方5 cm 处所需要的最短时间. 解: k = f/x =200 N/m , rad/s2分07.7/≈=m k ω (1) 选平衡位置为原点,x 轴指向下方(如图所示), t = 0时, x 0 = 10A cos φ ,v 0 = 0 = -A ωsin φ. 解以上二式得 A = 10 cm ,φ = 0. 2分∴ 振动方程x = 0.1 cos(7.07t ) (SI) 1分 (2) 物体在平衡位置上方5 cm 时,弹簧对物体的拉力 f = m (g -a ),而a = -ω2x = 2.5 m/s 2 ∴ f =4 (9.8-3分(3) 设t 1时刻物体在平衡位置,此时x = 0,即 0 = A cos ω t 1或cos ω t 1 = 0. ∵ 此时物体向上运动, v < 0 ∴ ω t 1 = π/2, t 1= π/2ω1分再设t 2时物体在平衡位置上方5 cm 处,此时x = -5,即-5 = A cos ω t 1,cos ω t 1 =-1/23. 一质点作简谐振动,其振动方程为 (SI))4131cos(100.62π-π⨯=-t x(1) 当x 值为多大时,系统的势能为总能量的一半?(2) 质点从平衡位置移动到上述位置所需最短时间为多少?解:(1) 势能 总能量 221kx W P =221kA E =由题意,, m 2分4/2122kA kx =21024.42-⨯±=±=A x (2) 周期 T = 2π/ω = 6 s从平衡位置运动到 的最短时间 ∆t 为 T /8.2A x ±=∴ ∆t = 0.75 s .3分4. 一质点作简谐振动,其振动方程为x = 0.24 (SI),试用旋转矢量法求出)3121cos(π+πt 质点由初始状态(t = 0的状态)运动到x = -0.12 m ,v < 0的状态所需最短时间∆t .解:旋转矢量如图所示. 图3分由振动方程可得, 1分π21=ωπ=∆31φ s1分667.0/=∆=∆ωφt 5. 两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为的位置向平衡位置运动时,第二个物体也2/A 经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.解:依题意画出旋转矢量图.3分由图可知两简谐振动的位相差为. 2分π216. 一简谐振动的振动曲线如图所示.求振动方程.解:(1) 设振动方程为)cos(φω+=t A x 由曲线可知 A = 10 cm , t = 0,,φcos 1050=-=x 0sin 100<-=φωv 解上面两式,可得 φ = 2π/3 2分由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得-(SI))3/22cos(100π+=ω则有,∴ ω = 5 π/122分2/33/22π=π+ω故所求振动方程为 (SI)1分)3/212/5cos(1.0π+π=t x 7. 一质点同时参与两个同方向的简谐振动,其振动方程分别为x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程. 解: x 2 = 3×10-2 sin(4t - π/6) = 3×10-2cos(4t - π/6- π/2) = 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示.图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3.2分合振动方程为 x = 2×10-2cos(4t + π/3) (SI)1分8. 两个同方向的简谐振动的振动方程分别为x 1 = 4×10-2cos2π (SI), x 2 = 3×10-2cos2π (SI) )81(+t 41(+t 求合振动方程.解:由题意 x 1 = 4×10-2cos (SI))42(π+πtx 2 =3×10-2cos (SI))22(π+πt 按合成振动公式代入已知量,可得合振幅及初相为m22210)4/2/cos(2434-⨯π-π++=A = 6.48×10-2 m 2分=1.12 rad2分)2/cos(3)4/cos(4)2/sin(3)4/sin(4arctgπ+ππ+π=φ合振动方程为x = 6.48×10-2 cos(2πt +1.12) (SI) 1分9. 一平面简谐波沿x 轴正向传播,其振幅为A ,频率为ν ,波速为u .设t = t '时刻的波形曲线如图所示.求(1) x = 0处质点振动方程;(2) 该波的表达式. 解:(1) 设x = 0 处质点的振动方程为)2cos(φν+π=t A y 由图可知,t = t '时1分0)2cos(=+'π=φνt A y1分0)2sin(2d /d <+'ππ-=φννt A t y 所以 ,2分2/2π=+'πφνt t 'π-π=νφ221x = 0处的振动方程为1分]21)(2cos[π+'-π=t t A y νxO ωωπ/3-2π/3A1A2A xu Ot =t ′y(2) 该波的表达式为3分]21)/(2cos[π+-'-π=u x t t A y ν10. 一列平面简谐波在媒质中以波速u = 5 m/s 沿x 轴正向传播,原点O 处质元的振动曲线如图所示.(1) 求解并画出x = 25 m 处质元的振动曲线.(2) 求解并画出t = 3 s 时的波形曲线.解:(1) 原点O 处质元的振动方程为, (SI)2分)2121cos(1022π-π⨯=-t y 波的表达式为, (SI)2分)21)5/(21cos(1022π--π⨯=-x t yx = 25 m 处质元的振动方程为, (SI))321cos(1022π-π⨯=-t y 振动曲线见图 (a)2分(2) t = 3 s 时的波形曲线方程, (SI)2分)10/cos(1022x y π-π⨯=-波形曲线见图2分2×11. 已知一平面简谐波的表达式为 (SI) )37.0125cos(25.0x t y -= (1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程; (2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.解:(1) x 1 = 10 m 的振动方程为(SI) 1分)7.3125cos(25.010-==t y xx 2 = 25 m 的振动方程为(SI)1分)25.9125cos(25.025-==t y x (2) x 2与x 1两点间相位差∆φ = φ2 - φ1 = -5.55 rad 1分(3) x 1点在t = 4 s 时的振动位移y = 0.25cos(125×4-3.7) m= 0.249 m2分12. 如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为 (SI).t y π⨯=-4cos 1032(1)以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式.t (s)O -2×10-21y (m)234(a)ABxu解:(1) 坐标为x 点的振动相位为 2分)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π=波的表达式为 (SI) 2分)]20/([4cos 1032x t y +π⨯=-(2) 以B 点为坐标原点,则坐标为x 点的振动相位为(SI) 2分]205[4-+π='+x t t φω波的表达式为(SI)2分])20(4cos[1032π-+π⨯=-xt y 13. 一平面简谐波沿x 轴正向传播,其振幅和角频率分别为A 和ω ,波速为u ,设t = 0时的波形曲线如图所示.(1) 写出此波的表达式.(2) 求距O 点分别为λ / 8和3λ / 8 两处质点的振动方程.(3) 求距O 点分别为λ / 8和3λ / 8 两处质点在t = 0时的振动速度.解:(1) 以O 点为坐标原点.由图可知,该点振动初始条件为,0cos 0==φA y0sin 0<-=φωA v 所以π=21φ波的表达式为4分]21)/(cos[π+-=u x t A y ωω(2) 处振动方程为 8/λ=x1分]21)8/2(cos[π+π-=λλωt A y )4/cos(π+=t A ω 的振动方程为8/3λ=x1分]218/32cos[π+-=λλπωt A y )4/cos(π-=t A ω(3))21/2sin(/d d π+π--=λωωx t A t y t = 0,处质点振动速度8/λ=x1分]21)8/2sin[(/d d π+π--=λλωA t y 2/2ωA -= t = 0,处质点振动速度8/3λ=x1分]21)8/32sin[(/d d π+⨯π--=λλωA t y 2/2ωA =14. 如图,一平面简谐波沿Ox 轴传播,波动表达式为 (SI),])/(2cos[φλν+-π=x t A y 求(1) P 处质点的振动方程;(2) 该质点的速度表达式与加速度表达式.xuO yOP解:(1) 振动方程}]/)([2cos{φλν+--π=L t A y P2分])/(2cos[φλν++π=L t A (2) 速度表达式 2分])/(2sin[2φλνπν++π-=L t A P v 加速度表达式1分])/(2cos[422φλνν++ππ-=L t A a P 15. 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3) 该波的波长.解:(1) 振动方程(SI) 3分)22cos(06.00π+π=ty )cos(06.0π+π=t (2) 波动表达式3分])/(cos[06.0π+-π=u x t y(SI) ])21(cos[06.0π+-π=x t (3) 波长 m2分4==uT λ16. 如图所示,一平面简谐波沿Ox 轴的负方向传播,波速大小为u ,若P 处介质质点的振动方程为 ,求 )cos(φω+=t A y P(1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些点的位置.解:(1) O 处质点的振动方程为2分](cos[0φω++=uLt A y (2) 波动表达式为 2分])(cos[φω+++=uLx t A y (3)x = -L ± k( k = 1,2,3,…) 1分ωuπ217.如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为 ,求 )cos(φω+=t A y P (1) O 处质点的振动方程;(2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.解:(1) O 处质点振动方程2分])(cos[0φω++=uLt A y (2) 波动表达式 2分])(cos[φω+--=uLx t A y (3) (k = 0,1,2,3,…) 1分ωuk L x L x π±=±=218. 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.已知波速为u ,求 (1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式.解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点,φcos 0A =,φωsin 00A -=<v 故2分π-=21φ又t = 2 s ,O 处质点位移为)214cos(2/π-π=νA A 所以, ν = 1/16 Hz 2分振动方π-π=π-21441ν程为(SI) 1分)218/cos(0π-π=t A y(2) 波速 u = 20 /2 m/s = 10 m/s波长 λ = u /ν = 160 m 2分波动表达式(SI) 3分]2116016(2cos[π-+π=x t A y 19. 如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差]2[]2[1112λφλφx x d π---π-π+=)12(K 即①2分π+=-π--)12(22)(112K x d λφφ在x 2点两波引起的振动相位差]2[]2[2122λφλφx x d π---π-π+=)32(K 即②3分π+=-π--)32(22)(212K x d λφφ②-①得π=-π2/)(412λx x m2分6)(212=-=x x λ由①2分π+=-π+π+=-)52(22)12(112K x d K λφφ当K = -2、-3时相位差最小1分π±=-12φφ20. 两波在一很长的弦线上传播,其表达式分别为:(SI))244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=-求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 对比可得:)/(2cos λνx t A y -π= ν = 4 Hz , λ = 1.50 m , 各1分波速 u = λν = 6.00 m/s 1分(2) 节点位置)21(3/4π+π±=πn x m , n = 0,1,2,3, … 3分)21(3+±=n x (3) 波腹位置π±=πn x 3/4 m , n = 0,1,2,3, …2分 4/3n x ±=21. 设入射波的表达式为 ,在x = 0处发生反射,反射点为一固定)(2cos 1Ttx A y +π=λ端.设反射时无能量损失,求 (1) 反射波的表达式; (2) 合成的驻波的表达式;(3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反射波的表达式为 3分])//(2cos[2π+-π=T t x A y λ(2) 驻波的表达式是 21y y y +=3分)21/2cos()21/2cos(2π-ππ+π=T t x A λ (3) 波腹位置:, 2分π=π+πn x 21/2λ, n = 1, 2, 3, 4,… λ)21(21-=n x波节位置:2分π+π=π+π2121/2n x λ, n = 1, 2, 3, 4,…λn x 21=22. 如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,= 3λ /4, = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运OP DP 动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为2分])/(2cos[1φλν+-π=x t A y 则反射波的表达式是2分](2cos[2π++-+-π=φλνxDP OP t A y 合成波表达式(驻波)为2分)2cos()/2cos(2φνλ+ππ=t x A y 在t = 0时,x = 0处的质点y 0 = 0, ,0)/(0<∂∂t y 故得2分π=21φ因此,D 点处的合成振动方程是2分22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 323. 如图,一角频率为ω ,振幅为A 的平面简谐波沿x 轴正方向传播,设在t = 0时该波在原点O 处引起的振动使媒质元由平衡位置向y 轴的负方向运动.M 是垂直于x 轴的波密媒质反射面.已知OO '= 7 λ /4,PO '= λ /4(λ为该波波长);设反射波不衰减,求: (1) 入射波与反射波的表达式;; (2) P 点的振动方程.解:设O 处振动方程为)cos(0φω+=t A y 当t = 0时,y 0 = 0,v 0 < 0,∴π=21φ∴)21cos(0π+=t A y ω2分故入射波表达式为2分)22cos(x t A y λωπ-π+=在O ′处入射波引起的振动方程为)4722cos(1λλω⋅π-π+=t A y )cos(π-=t A ω由于M 是波密媒质反射面,所以O ′处反射波振动有一个相位的突变π.∴ 2分)cos(1π+π-='t A y ωt A ωcos =反射波表达式 )](2cos[x O O t A y -'π-='λω)]47(2cos[x t A -π-=λλω2分]22cos[π+π+=x t A λω合成波为 y y y '+=22cos[π+π-=x t A λω22cos[π+π++x t A λω 2分)2cos(2cos 2π+π=t x A ωλ将P 点坐标 代入上述方程得P 点的振动方程λλλ234147=-=x2分2cos(2π+-=t A y ω。
振动、波动练习题及答案
振动、波动练习题一.选择题1.一质点在X 轴上作简谐振动,振幅A=4cm 。
周期T=2s 。
其平衡位置取作坐标原点。
若t=0时刻质点第一次通过x= -2cm 处,且向X 轴负方向运动,则质点第二次通过x= -2cm 处的时刻为( )。
A 1sB 32s C 34s D 2s2.一圆频率为ω的简谐波沿X 轴的正方向传播,t=0时刻的波形如图所示,则t=0时刻,X 轴上各点的振动速度υ与X 轴上坐标的关系图应( )。
3.图示一简谐波在t=0时刻的波形图,波速υ=200m/s ,则图中O 点的振动加速度的表达式为( )。
)22cos(4.0)2cos(4.0)23cos(4.0)2cos(4.02222ππππππππππππ+-=--=-=-=t a D t a C t a B t a A4.频率为100Hz点振动的相位差为3π,则这两点相距( )。
A 2mB 2.19mC 0.5mD 28.6m5.一平面简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最大位置处的过程中,( )。
A 它的动能转换成势能B 它的势能转换成动能C 它从相邻的一段质元获得能量其能量逐渐增大D 它把自己的能量传给相邻的一段质元,其能量逐渐减小6.在下面几种说法中,正确的说法是:( )。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播方向上的任一质点振动位相总是比波源的位相滞后D 在波传播方向上的任一质点振动位相总是比波源的位相超前7.一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( )。
A 4T B 12T C 6T D 8T8.在波长为λ的驻波中两个相邻波节之间的距离为( )。
A λ B 3λ/4 C λ/2 D λ/49.在同一媒质中两列相干的平面简谐波的强度之比421=I I 是,则两列波的振幅之比是:( ) A=21A A 4 B =21A A 2 C =21A A 16 D =21A A 4110.有二个弹簧振子系统,都在作振幅相同的简谐振动,二个轻质弹簧的劲度系数K 相同,但振子的质量不同。
振动和波题目及答案
1一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为(A) E 1/4. (B) E 1/2.(C) 2E 1. (D) 4 E 1 . [ ] D 2一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为(A)π/6. (B) 5π/6. (C) -5π/6. (D) -π/6. (E) -2π/3. [ ]C 3在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计)[ ]C4一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16.(C) 11/16. (D) 15/16 [ ]D5一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1 (C) T 12/(D) T 1 /2 (E) T 1 /4 [ ] D 6已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动的振动方程为:(A))3232cos(2π+π=t x .(B) )3232cos(2π-π=t x .(C) )3234cos(2π+π=t x .v 21(D) )3234cos(2π-π=t x .(E) )4134cos(2π-π=t x . [ ]C 7如图所示,质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧连接,在水平光滑导轨上作微小振动,则系统的振动频率为(A)m k k 212+π=ν . (B) mk k 2121+π=ν . (C) 212121k mk k k +π=ν . (D) )(212121k k m k k +π=ν . [ ]B8如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12.(B) π=-k 212φφ.(C)π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.[ ]D 9两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是:(A) 0. (B)π21. (C) π. (D) π23. [ ] C10机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31. (C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ] B11如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω.(D) }]/)([cos{0φω+-+=u l x t A y . [ ]A12一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零. [ ] C 1在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(b) ______________________________;(c) ______________________________. )212cos(π-=T t A x π 2分 )212cos(π+=T t A x π 2分)2cos(π+=TtA x π 1分2一平面简谐波沿Ox 轴正方向传播,波长为λ.若如图P 1点处质点的振动方程为)2cos(1φν+π=t A y ,则P 2点处质点的振动方程为_________________________________;与P 1点处质点振动状态相同的那些点的位置是___________________________.])(2cos[212φλν++-π=L L t A y 3分λk L x +-=1 ( k = ± 1,± 2,…) 2分3(c)O P 1P 2两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.2A 3分4图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为 =+=21x x x ________________(SI) )21cos(04.0π-πt (其中振幅1分,角频率1分,初相1分) 3分5有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________.k m /22π 2分k m 2/2π 2分 6一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________;φ =_______________. 10 cm 1分(π/6) rad/s 1分 π/3 1分 7两个简谐振动曲线如图所示,则两个简谐振动-的频率之比ν1∶ν2=__________________,加速度最大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.2∶1 1分 4∶1 1分 2∶1 1分 8一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A _____________;B _____________ ;C ______________ . 向下 ; 向上 ;向上9两个弹簧振子的周期都是0.4 s , 设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为____________.π3分 10一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为)612cos(10421π+⨯=-t x , )652cos(10322π-⨯=-t x (SI)则其合成振动的振幅为___________,初相为_______________.1×10-2 m 2分 π/6 2分一如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J .2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分 A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分二如图,一平面波在介质中以波速u = 20 m/s 沿x 轴负方向传播,已知A 点的振动方程为t y π⨯=-4cos 1032 (SI).(1) 以A 点为坐标原点写出波的表达式;(2) 以距A 点5 m 处的B 点为坐标原点,写出波的表达式. 解:(1) 坐标为x 点的振动相位为)]/([4u x t t +π=+φω)]/([4u x t +π=)]20/([4x t +π= 2分波的表达式为 )]20/([4cos 1032x t y +π⨯=- (SI) 2分 (2) 以B 点为坐标原点,则坐标为x 点的振动相位为]205[4-+π='+x t t φω (SI) 2分 波的表达式为 ])20(4cos[1032π-+π⨯=-xt y (SI) 2分三如图所示,两相干波源在x 轴上的位置为S 1和S 2,其间距离为d = 30 m ,S 1位于坐标原点O .设波只沿x 轴正负方向传播,单独传播时强度保持不变.x 1 = 9 m 和x 2 = 12 m 处的两点是相邻的两个因干涉而静止的点.求两波的波长和两波源间最小相位差.解:设S 1和S 2的振动相位分别为φ 1和φ 2.在x 1点两波引起的振动相位差 ]2[]2[1112λφλφx x d π---π-π+=)12(K即 π+=-π--)12(22)(112K x d λφφ ① 2分在x 2点两波引起的振动相位差 ]2[]2[2122λφλφx x d π---π-π+=)32(K 即 π+=-π--)32(22)(212K x d λφφ ② 3分②-①得 π=-π2/)(412λx x6)(212=-=x x λ m 2分由①π+=-π+π+=-)52(22)12(112K x d K λφφ 2分当K = -2、-3时相位差最小π±=-12φφ 1分四ABxu沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分 ∴ )2121cos(5.0π+π=t y (SI) 3分x (m)y (m)0u 0.512t = 0-1。
振动与波动常见题型
o
2 y 0 . 04 cos t 2 5
②.波函数
y 0 . 04 m a o
b
u
P
t
x 2 y 0 . 04 cos t 5 0 . 08 2
0 .2 m
③. P 点的振动方程
x P 0 .4 m
例5:已知波函数 y 2 10 求:A、、、u。
解:由 y A cos 2
3
3
cos( 400 t 20 x ) m
x t u m
x y 2 10 cos 400 t 20 3 A 2 10 m u 20 m/s
x 10
)
m
求: (1)波传播方向;
(2)波的频率,周期,波长,波速;
(3)介质元振动的最大速度,最大加速度;
(4)波线上相距1米远的两点的位相差。
解: ①:x 前“+”表示该波沿x 轴负方向传播。 ②:
4
u 1 0 m /s
2
2H z
T
1
0 .5 s
u T 5m
x
设运动方程为:
x A cos( t )( SI )
A F S 0 .5 J 1 2 kA
2
x
o
k m
2 ( rad / s )
A 0 . 204 ( m )
依题意,有:x 0 A , v 0 0
x 0 . 204 cos( 2 t )( SI )
T /u
0 . 04 m
高中物理:振动和波练习及详解
高中物理振动和波练习及详解一、单项选择题1.一个单摆从甲地到乙地,发现振动变快了,为了调整到原来的快慢,下述说法正确的是( ) A. 因 g 甲>g 乙,故应缩短摆长 B. 因为g 甲>g 乙,故应加长摆长 C. 因为g 甲<g 乙,故应缩短摆长 D. 因为g 甲<g 乙,故应加长摆长 【答案】D【详解】一单摆因从甲地移到乙地,振动变快了,即周期减小了,根据2T =,得到g增大,T 才会减小,所以甲地的重力加速度小于乙地的重力加速度,即g 甲<g 乙;要使T 还要恢复,只要增大T ,故只能将摆长适当增长,故D 正确,ABC 错误.2.如图所示,弹簧左端固定,右端系一物块,物块可以在粗糙水平桌面上滑动,物块与水平面各处动摩擦因数相同,弹簧原长时物块位于O 点.当先后分别把物块拉到P1和P2点由静止释放后,物块都能运动到O 点左方,设两次运动过程中物块速度最大时的位置分别为Q1和Q2点,则这两点( )A. 都在O 点右方,且Q1离O 点较近B. 都在O 点右方,且Q2离O 点较近C. 都在O 点右方,且Q1、Q2为同一位置D. 都正好与O 点重合 【答案】C【详解】先后分别把物块拉到P1和P2点由静止释放,开始弹簧的弹力大于摩擦力的大小,物体做加速运动,加速度逐渐减小,当加速度减小到零时,即F=kx=f 时,速度最大,此时弹簧的形变量f x k=,知Q1和Q2点都在O 点右方,且Q1、Q2在同一位置,故C 正确,ABD错误.3.在相同的时间内单摆甲作了10次全振动,单摆乙作了6次全振动,两个单摆的摆长相差16cm ,则甲摆的摆长为( ) A. 25cm B. 9cm C. 18cm D. 12cm 【答案】B【详解】在相同时间内单摆甲做了n1=10次全振动,单摆乙做了n2=6次全振动,知甲乙单摆的周期比为3:5,根据2T =224gT L π=,则有:211222925L T L T ==,又L2-L1=16cm .所以L1=9cm ,L2=25cm ,故B 正确,ACD 错误.4.一个质量分布均匀的空心小球,用一根长线把它悬挂起来,球中充满水,然后让球小角度摆动起来,摆动过程中水在小孔中缓慢均匀漏出,那么,它的摆动周期将( ) A. 变大 B. 变小C. 先变大后变小D. 先变小后变大 【答案】C【详解】单摆在摆角小于5°时的振动是简谐运动,其周期是2T =球,重心在球心,当水从底部的小孔流出,直到流完的过程,金属球(包括水)的重心先下降,水流完后,重心升高,回到球心,则摆长先增大,后减小,最后恢复到原来的长度,所以单摆的周期先变大后变小,最终恢复到原来的大小,故C 正确,ABD 错误. 5.一弹簧振子做简谐运动,周期为T( )A. 若t 时刻和(t+△t)时刻振子位移相同,则△t 一定等于T 的整数倍B. 若t 时刻和(t+△t)时刻振子运动速度大小相等、方向相反,则△t 一定等于T/2的整数倍C. 若△t=T/2,则在t 时刻和(t+△t)时刻弹簧的长度一定相等D. 若△t=T/2,则在t 时刻和(t+△t)时刻振子运动的加速度大小一定相等 【答案】D【详解】在t 时刻和(t+△t )时刻振子的位移相同,所以这两时刻振子通过同一个位置,而每一个周期内,振子两次出现在同一个位置上.所以当速度方向相同时,则△t 可以等于T 的整数;当速度方向相反时,则△t 不等于T 的整数,故A 错误;若t 时刻和(t+△t )时刻振子运动速度大小相等,方向相反,则△t可能等于2T的整数倍,也可能大于2T的整数倍,也可能小于 的整数倍,故B 错误;若△t=2T ,则在t 时刻和(t+△t )时刻振子的位置关于平衡位置对称或经过平衡位置,所以这两时刻位移的大小一定相等,由kxa m =-知加速度大小一定相等.但弹簧的状态不一定相同,则长度不一定相等,故D 正确,C 错误.所以D 正确,ABC 错误.6.关于机械振动和机械波,下列说法中正确的是( )A. 物体作机械振动时,一定产生机械波B. 没有机械振动,也可能形成机械波C. 有机械波,一定有质点作机械振动D. 机械振动和机械波的产生无关 【答案】C【详解】机械振动在介质中的传播称为机械波,所以有机械波必有机械振动,而有机械振动若没介质不会形成机械波,故C 正确,ABD 错误. 7.关于波长,下列说法中正确的是( )A. 横波的两个波峰之间的距离等于一个波长B. 一个周期内介质质点通过的路程是一个波长C. 横波上相邻的波峰和波谷间的距离等于一个波长D. 波源开始振动后,在振动的一个周期里波传播的距离等于一个波长 【答案】D 【详解】横波的两个波峰之间的距离等于若干个波长,只有相邻两个波峰之间的距离等于一个波长,故A 错误;质点只在自由的平衡位置附近做简谐运动,通过一个周期内介质质点通过的路程是四个振幅,与波长没有关系,故B 错误;横波上相邻的波峰和波谷间的距离等于半个波长,故C 错误;波源开始振动后,在振动的一个周期里波传播的距离等于一个波长,故D 正确.所以D 正确,ABC 错误.8.关于波的叠加和干涉,下列说法中正确的是( )A. 两列频率不相同的波相遇时,因为没有稳定的干涉图样,所以波没有叠加B. 两列频率相同的波相遇时,振动加强的点只是波峰与波峰相遇的点C. 两列频率相同的波相遇时,如果介质中的某点振动是加强的,某时刻该质点的位移可能是零D. 两列频率相同的波相遇时,振动加强点的位移总是比振动减弱点的位移大 【答案】C【解析】根据波的叠加原理,只要两列波相遇就会叠加,所以选项A 错误.两列频率相同的波相遇时,振动加强的点是波峰与波峰、波谷与波谷相遇,所以B 选项错.振动加强的点仅是振幅加大,但仍在平衡位置附近振动,也一定有位移为零的时刻,所以选项C 正确,D 错误.故选C.二、多项选择题9.关于简谐运动的位移、速度、加速度的关系,下列说法正确的是( ) A. 加速度增大时,速度必减小 B. 速度、加速度方向始终相反C. 通过平衡位置时,v 、a 均改变方向D. 远离平衡位置时,v 、a 方向相反 【答案】AD 【详解】加速度满足kx a m =-,所以加速度增大时,位移也增大,所以速度必减小,故A 正确;向平衡位置运动时,速度、加速度方向相同,故B 错误;通过平衡位置时,速度方向不改变,故C 错误;远离平衡位置时,加速度方向指向平衡位置,速度方向背离平衡位置,即v 、a 方向相反,故D 正确.所以D 正确,BC 错误.10.如图所示,在O 点悬一根细长直杆,杆上串有一个小球A,用长为l 的细线系着另一个小球B,上端也固定在O 点,将B 拉开,使细线偏离竖直方向一个小角度,将A 停在距O 点L/2处,同时释放,若B 第一次回到平衡位置时与A 正好相碰(g 取10m/s2,π2取10),则( ) A. A 球与细杆之间不应有摩擦力 B. A 球的加速度必须等于4m/s2C. A 球受到的摩擦力等于其重力的0.6倍D. 只有知道细线偏离竖直方向的角度大小才能求出A 球受到的摩擦力【答案】BC【详解】球B 是单摆,根据单摆的周期公式2T =B 第一次回到平衡位置过程的时间:4T t =,球A匀加速下降,根据位移时间关系公式,有2122L at=,解得:2244/ga m s π=≈ ,故B 正确;球A 匀加速下降,根据牛顿第二定律,有:mg-f=ma ,解得:f=m (g-a )=0.6mg ,A 球受到的摩擦力等于其重力的0.6倍,故AD 错误,C 正确.所以BC 正确,AD 错误. 11.一弹簧振子做简谐振动,t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻一定相同的物理量有( ) A. 速度 B. 加速度 C. 位移 D. 机械能 【答案】AD【详解】t 时刻刚好经过平衡位置,则振子在t+△t 和t-△t 时刻质点位置关于平衡位置对称,此时速度和机械能相同,加速度和位移方向相反,故AD 正确,BC 错误.12.细长轻绳下端拴一小球构成单摆,在悬挂点正下方1/2摆长处有一个能挡住摆线的钉子A ,如图所示.现将单摆向左拉开一个小角度,无初速度释放.对于以后的运动,下列说法正确的是( )A. 摆球往返一次的时间比无钉子时短B. 摆球往左右两侧上升的最大高度相同C. 摆球往在平衡位置左右两侧走过的最大弧长相等D. 摆球往在平衡位置右侧的最大摆角是左侧最大摆角的两倍. 【答案】AB【详解】无钉子时,单摆的周期2T =,有钉子后,在半个周期内绕悬挂点摆动,半个周期内绕钉子摆动,周期T '=A 正确;根据机械能守恒定律,左右两侧上升的高度相同.有钉子子时走过的弧长小于无钉子走过的弧长.摆角不是2倍关系,故B 正确,CD 错误.所以AB 正确,CD 错误.13.关于机械波,下列说法不正确的是( ) A. 在传播过程中能传递能量 B. 频率由波源决定C. 能产生干涉、衍射现象D. 能在真空中传播 【答案】D【详解】A .波传播振动这种运动形式的同时传递能量,故A 正确,不符合题意; B .波的频率是由波源决定的,故B 正确,不符合题意; C .干涉、衍射是波的特有现象,机械波在一定条件下也能发生干涉和衍射现象,故C 正确,不符合题意;D .机械波传播要借助于介质,真空中不能传播,故D 错误,符合题意。
振动和波——精选推荐
振动和波振动和波(⼀)专项训练【例题精选】例1⼀弹簧振⼦作简谐振动,周期为T,则:A.若t时刻和()t t+?时刻振⼦运动位移的⼤⼩相等,⽅向相同,则?t⼀定等于T 的整数倍B.若t时刻和()+?时刻振⼦运动位移的⼤⼩相等,⽅向相反,则?t⼀定等于T/2t t的整数倍C.若??=+,则时刻和()时刻振⼦运动的加速度⼀定相等t T t t tD.若??/()2,则在时刻和时刻弹簧的长度⼀定相等=+t T t t t分析:弹簧振⼦作简谐振动图象如图所⽰,图线上A点与B、E、F、I等点所对应的时刻振⼦位移⼤⼩相等,⽅向相同,由横轴看可知,A点与E、I等点对应的时刻差为T或T 的整数倍,⽽A点与B、F等点对应的时刻差不是T或T的整数倍,因此A选项不正确。
A点与C、D、G、H等点所对应时刻振⼦位移⼤⼩相等,⽅向相反,由横轴看可知,A 点与C、G等点所对应时刻差为T/2或T/2的奇数倍,A点与D、H等点所对应时刻差不是T/2或T/2的奇数倍,选项B不正确。
如果t t t+?时刻差为⼀个周期,则这两个时刻振动情况完全相同,加速度⼀时刻与()定相等,选项C是正确的。
如果t t t T+?2,这两个时刻振动的位移⼤⼩相等,⽅向相反,振⼦分时刻与相差()/别位于平衡位置两侧,弹簧的长度显然不相等,选项D是错误的。
答案:C。
例2作简谐振动的弹簧振⼦振动图象如图所⽰,下列说法中正确的是A.t=0时,质点位移为零,速度为零,加速度为零B.t=1s时,质点位移最⼤,速度为零,加速度最⼤C.t1和t2时刻振⼦具有相同的动能和动量D.t3和t4时刻振⼦具有相同的加速度E.5秒内振⼦通过的路程是25cm,⽽位移是5cm。
分析:弹簧振⼦以O为平衡位置在AB间作简谐振动,定向右为正⽅向,振动图象即题⽬的图象t=0时刻,振⼦位于平衡位置O,位移为零,回复⼒为零,加速度为零,但速度为最⼤值,动能最⼤,势能为零,选项A错误。
t=1s时,振⼦位于正向最⼤位移处,位移最⼤,回复⼒最⼤,加速度最⼤,⽽速度为零,动能为零,势能最⼤。
振动与波习题
k (弹簧振子: ) m
2
3、能量特征
1 E k mv 2 2 1 m 2 A2 sin 2 ( t 0 ) 2 1 2 2 kA sin ( t 0 ) 2
1 2 E p kx 2
1 2 kA cos 2 ( t 0 ) 2
1 2 E E k E p kA 2
振动 一、谐振子 1、运动学特征: 2 x(t ) A cos( t ) A cos( t ) (1) T 2
A:振幅 T: 周期
T
:圆频率
( t ) : 相位,它是反映质点在t时刻振动
状态的物理量。
: 初相, t=0 时刻的位相。
A、φ由初始条件决定。
5
t
O
t=5
4. 一质点作简谐振动,其振动方程为 出质点由初始状态运动到 x=-0.12m, v<0的状
态所经过的最短时间。 t 解: t=0
1 1 x 0.24cos( t (SI)试用旋转矢量法求 ) 2 3
1 3
3 t 2 t ( s) 3
y A o
传播方向
P
X
例题2. 一平面简谐波以波速u=0.5m/s沿x轴负 方向传播, t=2s时刻的波形如图所示, 求波动 方程.
y(m) 0.5 o 1
u 2 x(m)
2x 解: ) 设波动方程为: y A cos( t l
由图可得:l=2m, A=0.5m
=2= 2u/ l= /2
2
1 1 1 2 x 2 3 10 sin(4t ) 3 10 cos(4t ) 6 6 2 2 2 3 10 cos(4t ) 3 1 x x x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为()A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2 mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为 A=x2-x1= mg /kD物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,因为D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg.出当振子速度为零时的位置,这两个位置间的距离就是振幅.本题侧重在弹簧振子运动的对称性.解答本题还能够通过求D物运动过程中的最大加速度,它在最高点具有向下的最大加速度,说明了这个系统有部分失重,从而确定木箱对地面的压力【例2】在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧断后,m、M开始运动.求:①当m位于O点左侧还是右侧且跟O点多远时,小车的速度最大?并简要说明速度为最大的理由.②判断m与M的最终运动状态是静止、匀速运动还是相对往复的运动?【解析】①在细线烧断时,小球受水平向左的弹力F与水平向右的摩擦力f作用,开始时F必大于f.m相对小车右移过程中,弹簧弹力减小,而小车所受摩擦力却不变,故小车做加速度减小的加速运动.当F=f时车速达到最大值,此时m必在O点左侧。
设此时物体在O点左侧x处,则kx=μmg。
所以,当x=μmg/k时,小车达最大速度.②小车向左运动达最大速度的时刻,物体向右运动也达最大速度,这时物体还会继续向右运动,但它的运动速度将减小,即小车和物体都在做振动.因为摩擦力的存有,小车和物体的振动幅度必定持续减小,设两物体最终有一共同速度v,因两物体组成的系统动量守恒,且初始状态的总动量为零,故v=0,即m与M的最终运动状态是静止的【例3】如图所示,在光滑导轨上有一个滚轮A ,质量为2m ,轴上系一根长为L 的线,下端悬挂一个摆球B ,质量为m ,设B 摆小球作小幅度振动,求振动周期。
【分析】将2m 的A 球和m 的B 球组成系统为研究对象,系统的重心O 点可视为单摆的悬点,利用水平方向动量守恒可求出等效摆长。
【解析】A 和B 两物体组成的系统因为内力的作用,在水平方向上动量守恒,所以A 和B 速度之比跟质量成反比,即v A /v B =m B /m A =1/2.所以A 和B 运动过程中平均速度A v /B v =1/2,亦即位移 S A /S B =1/2。
,因为ΔOAA /∽ΔOBB /,则OB/OA =2/1。
对B 球来说,其摆长应为2/3 L ,所以B 球的周期T =2g L 3/2 。
【例4】一弹簧振子沿x 轴振动,振幅为4 cm. 振子的平衡位置位于x 袖上的0点.图甲中的a ,b,c,d 为四个不同的振动状态:黑点表示振子的位置,黑点上箭头表示运动的方向.图乙给出的①②③④四条振动图线, 可用于表示振子的振动图象是( AD )A.若规定状态a 时t =0,则图象为①B.若规定状态b 时t =0,则图象为②C.若规定状态c 时t =0,则图象为③D.若规定状态d 时t =0,则图象为④解析:若t =0,质点处于a 状态,则此时x =+3 cm 运动方向为正方向,只有图①对;若t =0时质点处于b 状态,此时x =+2 cm ,运动方向为负方向,②图不对;若取处于C 状态时t=0,此时x=-2 cm ,运动方向为负方向,故图③不准确;取状态d 为t=0时,图④刚好符合,故A,D 准确.点评: 对振动图象的理解和掌握要密切联系实际,既能根据实际振动画出振动图象;又能根据振动图象还原成一个具体的振动,达到此种境界,就可熟练地用图象分析解决振动【例5】如图所示,a 、b 是一列横波上的两个质点,它们在X 轴上的距离s=30m ,波沿x 轴正方向传播,当a 振动到最高点时b 恰好经过平衡位置,经过3s ,波传播了30m ,并且a 经过平衡位置,b 恰好到达最高点,那么.A .这列波的速度一定是10 m /sB .这列波的周期可能是0.8sC .这列波的周期可能是3sD .这列波的波长可能是 24 m解析:因波向外传播是匀速推动的,故v =ΔS /Δt=10m/s ,设这列波的振动周期为T ,由题意知经3s ,a 质点由波峰回到平衡位置,可得T/4十nT/2=3(n=1,2……)另由v=λ/T 得波长λ=12120+n ,(n =0,1,2……)在n =2时,对应的波长λ=24 m ;在n =7时,T =0.8s .故选项A 、B 、D 准确.答案:ABD【例6】一列简谐横波在传播方向上相距为3米的两个质点P 和Q 的振动图象分别用图中的实线和虚线表示,若P 点离振源较Q 点近,则该波的波长值可能为多少?若Q 点离振源较P 点近,则该波的波长值又可能为多少?分析:由图可知,T= 4s ,P 近,波由P 向Q 传,P 先振动,Q 后振 动,∆t=Kt+3T/4,所以,S PQ =k λ+3λ/4,则3k 4123k 434+=+⨯=λ k=0,1,2若Q 近,波由Q 向P 传,Q 先振动,P 后振动,∆t=Kt+T/4,所以,S PQ =k λ+λ/4,则1k 4121k 434+=+⨯=λ k=0,1,2【例7】 有两列简谐横波a 、b 在同一媒质中沿x 轴正方向传播,波速均为v =2.5m/s 。
在t =0时,两列波的波峰正好在x =2.5m 处重合,如图所示。
(1)求两列波的周期T a 和T b 。
(2)求t =0时,两列波的波峰重合处的所有位置。
(3)辨析题:分析并判断在t =0时是否存有两列波的波谷重合处。
某同学分析如下:既然两列波的波峰存有重合处,那么波谷与波谷重合处也一定存有。
只要找到这两列波半波长的最小公倍数,……,即可得到波谷与波谷重合处的所有位置。
你认为该同学的分析准确吗?若准确,求出这些点的位置。
若不准确,指出错误处并通过计算说明理由。
解析:(1)从图中能够看出两列波的波长分别为λa =2.5m ,λb =4.0m ,所以它们的周期分别为2.52.5aa T vλ==s =1s4.02.5bb T vλ==s =1.6s (2)两列波的最小公倍数为 S =20mt =0时,两列波的波峰生命处的所有位置为x =(2.5±20k )m ,k =0,1,2,3,……(3)该同学的分析不准确。
要找两列波的波谷与波谷重合处,必须从波峰重合处出发,找到这两列波半波长的厅数倍恰好相等的位置。
设距离x =2.5m 为L 处两列波的波谷与波谷相遇,并设L =(2m -1)2aλ L =(2n -1),式中m 、n 均为正整数只要找到相对应的m 、n 即可将λa =2.5m ,λb =4.0m 代入并整理,得21 4.0821 2.55a b m n λλ-===- 因为上式中m 、n 在整数范围内无解,所以不存有波谷与波谷重合处。
【例8】 一列简谐横波沿直线由a 向b 传播,相距10.5 m 的a 、b 两处的质点振动图象如图中a 、b 所示,则( )A.该波的振幅可能是20 cmB.该波的波长可能是8.4 mC.该波的波速可能是10.5 m/sD.该波由a 传播到b 可能历时7 s解析:题目中给出了两个质点的振动图象,从图中直接能够看出振动的振幅为10 cm ,周期为4 s ,A 错误,因为波是沿着a 向b 传播,所以从振动形式能够看出,b 比a 至少晚振动34个周期,满足t =(n +34)T =4n +3s ,(n =0,1,2…),再利用v =λT =st ,可得B 、C 错,D 准确.【例9】如图所示,(1)为某一波在t =0时刻的波形图,(2)为参与该波动的P 点的振动图象,则下列判断准确的是A . 该列波的波速度为4m /s ;B .若P 点的坐标为x p =2m ,则该列波沿x 轴正方向传播C 、该列波的频率可能为 2 Hz ;D .若P 点的坐标为x p =4 m ,则该列波沿x 轴负方向传播;解析:由波动图象和振动图象可知该列波的波长λ=4m ,周期T =1.0s ,所以波速 v =λ/T =4m /s . 由P 质点的振动图象说明在t=0后,P 点是沿y 轴的负方向运动:若P 点的坐标为x p =2m ,则说明波是沿x 轴负方向传播的;若P 点的坐标为x p =4 m ,则说明波是沿x 轴的正方向传播的.该列波周期由质点的振动图象被唯一地确定,频率也就唯一地被确定为f = l /t =0Hz .综上所述,只有A 选项准确.点评:当一列波某一时刻的波动图象已知时,它的波长和振幅就被唯一地确定,当其媒质中某质点的振动图象已知时,这列波的周期也就被唯一地确定,所以本题中的波长λ、周期T 、波速v 均是唯一的.因为质点P 的坐标位置没有唯一地确定,所以由其振动图象可知P 点在t =0后的运动方向,再由波动图象确定波的传播方向9.(2011年江西南昌高二检测)在一均匀介质中选择平衡位置在同一直线上的9个质点,相邻两质点间的距离均为0.1 m ,如图12-8甲所示,一列横波沿该直线向右传播,t =0时到达质点1,质点1开始向下运动,振幅为0.2 m ,经过时间0.3 s 第一次出现如图乙所示的波形.则( )图12-8A .第9个质点的起振方向向上B .该波的周期为0.2 sC .该波的波速为4 m/sD .在介质中还有一质点P ,距质点1的距离为10 m ,则再经2.35 s P 点处于波峰.解析:选BCD.因为质点1起振方向向下,故最前面质点的起振方向也向下.根据t =0.3 s 时的波形图可知,0.3 s 内传播了Δx =1.5 λ=1.2 m ,故波速v =Δx Δt =1.20.3m/s =4 m/s.质点的振动周期等于波传播的周期T =0.2 s.t =0.3 s 时,最前面的波峰为质点7,故波峰传到P 点的时间Δt =10-0.64s =2.35 s.10.一列简谐横波沿直线传播,该直线上的a 、b 两点相距4.42 m.图中实、虚两条曲线分别表示平衡位置在a 、b 两点处质点的振动曲线,从图示可知( )A.此列波的频率一定是10 HzB.此列波的波长一定是0.1 mC.此列波的传播速度可能是34 m/sD.a 点一定比b 点距波源近解析:由图象可知:T =0.1 s ,f =1T=10 Hz ,A 准确.若波从a 到b ,t =0.03 s +nT (n =0,1,2,…),由v =s t = 4.420.03+0.1n m/s =44210n +3m/s (n =0,1,2,…);当n =1时,v =34 m/s ,C 准确.因为波的传播方向未确定及波的多解性,所以B 、D 错误.答案:AC11.一列简谐横波沿x 轴传播,周期为T ,t =0时刻的波形如图所示.此时平衡位置位于x =3 m 处的质点正在向上运动,若a 、b 两质点平衡位置的坐标分别为x a =2.5 m , x b =5.5 m ,则( )A.当a 质点处在波峰时,b 质点恰在波谷B.t =T4时,a 质点正在向y 轴负方向运动C.t =3T4时,b 质点正在向y 轴负方向运动D.在某一时刻,a 、b 两质点的位移和速度可能相同解析:由图可得出此波的波长为4 m ,t =0时刻x =3 m 处的质点向上振动,可得该波向左传播.将整个波形图向左平移1.5 m 时,a 质点到达波峰,此时b 质点正好在平衡位置,与t =0时刻平衡位置在7 m 处的质点振动状态一样,故a 质点到达波峰时,b 质点正在平衡位置并向上振动,A 错误;将图象整体向左平移1 m ,即波传播T4时,a 的振动状态与t =0时刻平衡位置在3.5 m 处的质点振动状态一样,即处在平衡位置上方并向y 轴正方向运动,B 错误;将图线整体向左平移3 m ,即波传播3T4时,b 的振动状态与t =0时刻平衡位置在8.5m 处的质点振动状态一样,即处在平衡位置上方并向y 轴负方向运动,C 准确;只有平衡位置相距波长整数倍的质点才可能速度、位移都相同(而且总是相同).D 错误.答案:C12. 图甲为一列简谐横波在某一时刻的波形图,图乙为质点P 以此时刻为计时起点的振动图象。