北师大版数学必修一综合检测试题(附答案)
(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)
第一章综合测试一、选择题(本大题共10小题,共50分)1.已知集合{}15A x x =≤<,{}3B x a x a =-+<≤.若()B A B ⊆,则a 的取值范围为( )A .312⎛⎫-- ⎪⎝⎭,B .32⎛⎫-∞- ⎪⎝⎭,C .()1-∞-,D .32⎛⎫-+∞ ⎪⎝⎭, 2.已知集合M ,P 满足MP M =,则下列关系中:①M P =;②M P ;③M P P =;④P M ⊆.一定正确的是( )A .①②B .③④C .③D .④3.有下列四个命题:①{}0是空集;②若a ∈N ,则a -∉N ; ③集合{}2210A x x x =∈-+=R 有两个元素; ④集合6B x x ⎧⎫=∈∈⎨⎬⎩⎭N N 是有限集. 其中正确命题的个数是( )A .0B .1C .2D .34.下列命题中,真命题的个数是( )①若a b >,0c <,则c c a b>②“1a >,1b >”是“1ab >”的充分不必要条件 ③若0a <,则12a a+≤-④命题:“若1xy ≠,则1x ≠或1y ≠” A .1 B .2 C .3 D .45.“关于x 的不等式220x ax a -+>对x ∈R 恒成立”的一个必要不充分条件是( )A .01a <<B .01a ≤≤C .102a << D .1a ≥或a ≤06.已知集合65M a a a +⎧⎫=∈∈⎨⎬-⎩⎭N Z ,且,则M 等于( ) A .{}23, B .{}1234,,, C .{}1236,,, D .{}1234-,,, 7.已知集合{}220A x x x =--<,B 是函数()2lg 1y x =-的定义域,则( )A .AB = B .A B ⊂C .B A ⊂D .A B =∅8.已知集合401x A x x ⎧⎫-=⎨⎬+⎩⎭≤,()(){}2210B x x a x a =---<,若A B =∅,则实数a 的取值范围是( ) A .()2+∞, B .{}[)12+∞, C .()1+∞, D .[)2+∞,9.已知集合{}2340A x x x =--<,()(){}20B x x m x m =-⎡-+⎤⎣⎦>,若AB =R ,则实数m 的取值范围是( ) A .()1-+∞, B .()2-∞, C .()12-, D .[]12-,10.不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是( ) A .()30-, B .(]30-, C .[]30-, D .()[)30-∞-+∞,,二、填空题(本大题共4小题,共20分)11.已知集合{}2021A a a =-,,,{}519B a a =--,,,且()9A B ∈,则a =________. 12.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q =,则实数a 的取值范围是________.13.命题:p x ∀∈R ,20x ax a ++≥,若命题p 为真命题,则实数a 的取值范围是________.14.若全集U =R ,集合{}24M x x =>,103x N x x ⎧⎫+=⎨⎬-⎩⎭<,则M N =________.三、解答题(本大题共7小题,共80分)15.设集合{}2320A x x x =-+=,集合()(){}()222150B x x a x a a =+++-=∈R .(1)若{}1AB =,求实数a 的值;(2)若AB A =,求实数a 的取值范围.16.设集合{}2230A x x x =+-<,集合{}10B x x a a =+<,>,命题:p x ∈A ,命题:p x ∈B .(1)若p 是q 的充要条件,求正实数a 的值;(2)若q ⌝是p ⌝的必要不充分条件,求正实数a 的取值范围.17.已知集合{}30A x x a =->,{}260B x x x =-->.(1)当3a =时,求A B ,A B ;(2)若()AC B ≠∅R ,求实数a 的取值范围.18.设集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=,且A B A =,A C C =,求实数a ,m 的取值范围.19.已知二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,. (1)求函数()f x 的解析式(2)若()f x x d +≥在x ∈R 时恒成立,求实数d 的取值范围.20.(1)已知()22f x x bx c =-++,不等式()0f x >的解集是()13-,,求b 的值.(2)若对于任意[]10x ∈-,,不等式()4f x t +≤恒成立,则实数t 的取值范围是多少?21.已知函数()()223f x x a x =+--.(1)若函数()f x 在[]24-,上是单调函数,求实数a 的取值范围;(2)当5a =,[]11x ∈-,时,不等式()24f x m x +->恒成立,求实数m 的范围.第一章综合测试答案解析一、1.【答案】C【解析】解:由条件得()B AB ⊆,又因为()A B B ⊆, 所以A B B =,即有B A ⊆.①当B =∅,有3a a -+≥,解得:32a -≤; ②当B ≠∅,有3135a a a a -+⎧⎪-⎨⎪+⎩<≥<,解得:312a --<≤. 综上,实数a 的取值范围为:312⎛⎤-- ⎥⎝⎦,. 2.【答案】B【解析】解:已知集合M ,P 满足M P M =,则P M ⊆,故④正确,①错误,②错误;由P M ⊆可得MP P =,故③正确. 3.【答案】B【解析】解:①{}0不是空集,故①不正确;②若a ∈N ,当0a =时,a -∈N ,故②不正确; ③集合{}{}22101A x x x =∈-+==R ,只有1个元素,故③不正确; ④集合{}61236B x x ⎧⎫=∈∈=⎨⎬⎩⎭N N ,,,,是有限集,故④正确. 故选B.4.【答案】C【解析】解:若a b >,0c <,则()c b a c c a b ab -=-可知,当0ab >时,有c c a b >;当0ab <时,有c c a b<.故①是假命题;②若1a >,1b >时,有1ab >;反之不一定,比如取2a =-,3b =-,有61ab =>成立,但不满足1a >,1b >,所以“1a >,1b >”是“1ab >”的充分不必要条件.故②是真命题;③若0a <,则()12a a ⎛⎫-+- ⎪⎝⎭≥,当且仅当1a =-时等号成立,所以有12a a +≤-.故③是真命题;④命题:“若1xy ≠,则1x ≠或1y ≠”的逆否命题为“若1x =且1y =,则1xy =”,是真命题,所以原命题亦为真命题.故④是真命题.5.【答案】B【解析】:若关于x 的不等式220x ax a -+>,x ∈R 恒成立可得2440a a -<,解得01a <<,所以“关于x 的不等式220x ax a -+>,x ∈R 恒成立”的一个必要不充分条件是01a ≤≤.6.【答案】D 【解析】解:因为集合65M a a a +⎧⎫⎧=∈∈⎨⎨⎬-⎩⎩⎭N Z ,且, 所以5a -可能值为1,2,3,6,所以对应a 的值为4,3,2,1-,所以集合{}1234M =-,,,. 7.【答案】C 【解析】解:{}{}22012A x x x x x =--=-<<<,要使函数()2lg 1y x =-有意义,则210x ->,解得11x -<<,即集合{}11B x x =-<<, 所以B A ⊂.8.【答案】B 【解析】解:集合{}40141x A x x x x ⎧⎫-==-⎨⎬+⎩⎭≤<≤, ()221210a a a -=-+∵≥,212a a +∴≥, 当212a a +=即1a =时,()(){}2210B x x a x a =---=∅<此时,满足已知A B =∅,当212a a +>即1a ≠时,()(){}{}2221021B x x a x a x a x a =---=+<<<若A B =∅,则24a ≥或211a +-≤,解得2a ≥.∴实数a 的取值范围是{}[)12+∞,9.【答案】C 【解析】解:集合{}()234014A x x x =--=-<,,集合()(){}()()2082B x x m x m m m =-⎡-+⎤=-++∞⎣⎦>,,, 若A B =R ,则124m m -⎧⎨+⎩>< 解得:()12m ∈-,. 10.【答案】A【解析】解:当0k =时不等式308-<符合题意;当0k ≠时,由一元二次不等式23208kx kx +-<对一切实数x 都成立, 则2034208k k k ⎧⎪⎨⎛⎫-⨯⨯- ⎪⎪⎝⎭⎩<<, 解得30k -<<. 综上,满足一元二次不等式23208kx kx +-<对一切实数x 都成立的k 的取值范围是(]30-,二、11.【答案】5或3-【解析】解:()9A B ∈;9A ∈∴;219a -=∴,或29a =;5a =∴,或3a =±;①5a =时,{}0925A =,,,{}049B =-,,,满足条件;②3a =时,{}229B =--,,,不满足集合元素的互异性; ③3a =-时,{}079A =-,,,{}849B =-,,,满足条件; 故答案为5或3-.12.【答案】()4+∞,【解析】解:由集合{}2280P x x x =-->解得{}24P x x x =-<或>,由P Q Q =,得Q P ⊆,{}Q x x a =∵≥,4a ∴>,故实数a 的取值范围是()4+∞,. 13.【答案】{}04a a ≤≤【解析】解:∵命题p 为真命题,即20x ax a ++≥在R 上恒成立,则240a a ∆=-≤,解得04a ≤≤,故实数a 的取值范围是{}04a a ≤≤.14.【答案】()23, 【解析】解:{}()(){}{}2422022M x x x x x x x x ==-+=->>>或<,()(){}{}10130133x N x x x x x x x ⎧⎫+==+-=-⎨⎬-⎩⎭<<<<,{}{}{}221323M N x x x x x x x =--=∴>或<<<<<三、15.【答案】解:(1)由题意知:{}{}232012A x x x =-+==,,{}1A B =∵,1B ∈∴,将1带入集合B 中得:()()212150a a +++-=,解得:3a =-或1a =,当时3a =-,集合{}14B =,符合题意;当1a =时,集合{}14B =,-,符合题意,综上所述:3a =-或1a =;(2)若A B A =,则B A ⊆,{}12A =∵,,B =∅∴或{}1B =或{}2或{}12,,①若B =∅,则()()2221450a a ∆=+--<,解得214a -<;②若{}1B =,则()21121115a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;③若{}2B =,则()22221225a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;④若{}12B =,,则()21221125a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解. 综上214a -<. 16.【答案】解:{}()223031A x x x =+-=-<,,()11B a a =---,, (1)p ∵是q 的充要条件,A B =∴,即13110a a a --=-⎧⎪-=⎨⎪⎩>,解得2a =.(2)q ⌝∵是p ⌝的必要不充分条件,p ∴是q 的必要不充分条件,∴集合B 是集合A 的真子集, 13110.a a a ---⎧⎪-⎨⎪⎩≥,∴<,>或13110.a a a ---⎧⎪-⎨⎪⎩>,≤,>解得02a <<,即正实数a 的取值范围是()02,. 17.【答案】解:由30x a ->得3a x >,所以3a A x x ⎧⎫=⎨⎬⎩⎭>, 由260x x -->,得()()23x x +->0,解得2x -<或3x >,所以{}23B x x x =-<或>(1)当3a =时,{}1A x x =>, 所以{}3A B x x =>,{}21A B x x x =-<或>. (2)因为{}23B x x =-<或>,所以{}23C B x x =-R ≤≤.又因为()A C B ≠∅R ,所以33a <,解得9a <. 所以实数a 的取值范围是()9-∞,. 18.【答案】解:{}{}232012A x x x =-+==,. 因为A B A =,所以B A ⊆,所以B 可能为∅,{}1,{}2,{}12,,因为()()()224120a a a ∆=---=-≥,所以B ≠∅,又因为()()2111x ax a x x a -+-=-⎡--⎤⎣⎦,所以B 中一定有1,所以11a -=或12a -=,即2a =或3a =.经验证2a =,3a =均满足题意;又因为A C C =,所以C A ⊆, 所以C 可能为∅,{}1,{}2,{}12,. 当C =∅时,方程220x mx -+=无解,所以28m ∆=-<0,所以m -<当{}1C =时,m 无解;当{}2C =时,m 也无解;当{}12C =,时,3m =.综上所述,2a =或3a =;m -<3m =.19.【答案】解:(1)二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,, 则()220ax a x c -++<的解集为()12,, 即方程()220ax a x c -++=的两个根为1和2,且0a >, 由根与系数关系可得:212a a ++=,12c a⨯=, 解得1a =,2c =,故函数()f x 的解析式为()22f x x x =-+;(2)若()f x x d +≥在x ∈R 时恒成立,则222x x d -+≥在x ∈R 时恒成立,由于()2222111x x x -+=-+≥,故1d ≤.高中数学 必修第一册 11 / 11 20.【答案】解:(1)由不等式()0f x >的解集是()13-,,可知1-和3是方程220x bx c -++=的根, 即2232b c ⎧=⎪⎪⎨⎪-=-⎪⎩,,解得46b c =⎧⎨=⎩,, 所以4b =(2)由(1)可知()2246f x x x =-++.所以不等式()4f x t +≤可化为2242t x x --≤,[]10x ∈-,. 令()2242g x x x =--,[]10x ∈-,, 由二次函数的性质可知()g x 在[]10x ∈-,上单调递减, 则()g x 的最小值为()02g =-,则2t -≤.所以实数t 的取值范围为(]2-∞-,. 21.【答案】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]24-,上是单调函数,242a --∴≥或222a ---≤, 解得6a -≤或6a ≥.∴实数a 的取值范围为(][)66-∞-+∞,,; (2)当5a =,[]11x ∈-,时,()24f x m x +->恒成立,即21x x m ++>恒成立,令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]1112x =-∈-,, ()min 1324g x g ⎛⎫=-= ⎪⎝⎭∴,即34m >, m ∴的范围为34⎛⎫-∞ ⎪⎝⎭,.。
2024-2025年北师大版数学必修第一册模块质量检测卷(带答案)
模块质量检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A =⎩⎨⎧⎭⎬⎫x∈Z ⎪⎪⎪-3<x <12 ,B ={-1,0,1,2},能正确表示图中阴影部分的集合是( )A .{-1,0,1}B .{1,2}C .{0,1,2}D .{2}2.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方式估计该运动员三次投篮恰有两次命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以三个随机数为一组,代表三次投篮结果,经随机模拟产生了如下12组随机数:137 960 197 925 271 815 952 683 829 436 730 257,据此估计,该运动员三次投篮恰有两次命中的概率为( )A .14B .38C .512D .583.函数f (x )=e x+2x -3的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)4.某地甲、乙、丙三所学校举行高三联考,三所学校参加联考的人数分别为300,400,500,为了调查此次联考数学学科的成绩,现采用分层抽样的方法从这三所学校中抽取一个容量为120的样本,那么应从乙学校中抽取的数学成绩的份数为( )A .30B .40C .50D .805.a ,b ∈R ,记m ax {a ,b }=⎩⎪⎨⎪⎧a (a ≥b )b (a <b ) ,则函数f (x )=m ax {|x +1|,x 2}(x ∈R )的最小值是( )A .3-52B .3+52C .1+52D .1-526.复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,我国现行定期储蓄中的自动转存业务就是类似复利计算的储蓄.某人在银行存入本金5万元并办理了自动转存业务,已知每期利率为p ,若存m 期,本利和为5.4万元,若存n 期,本利和为5.5万元,若存m +n 期,则利息为( )A .5.94万元B .1.18万元C .6.18万元D .0.94万元7.现有四个函数:①y =x ·sin x ;②y =x ·cos x ;③y =x ·|cos x |;④y =x ·2x的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④②③ B.①④③② C .④①②③ D.③④②①8.已知a 是方程x +lg x =3的解,b 是方程2x +100x=3的解,则a +2b 为( ) A .-32 B .32C .3D .-3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.下列命题是真命题的是( )A .若幂函数f (x )=x α过点(12 ,4),则α=-12B .∃x ∈(0,1),(12 )x>log 12 xC .∀x ∈(0,+∞),log 12x >log 13xD .命题“∃x ∈R ,sin x +cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1” 10.PM2.5的监测值是用来评价环境空气质量的指标之一.划分等级为:PM2.5日均值在35μg/m 3以下,空气质量为一级:PM2.5日均值在35~75μg/m 3,空气质量为二级:PM2.5日均值超过75μg/m 3为超标.如图是某地12月1日至10日PM2.5的日均值(单位:μg/m 3)变化的折线图,关于PM2.5日均值说法正确的是( )A .这10天的日均值的80%分位数为60B .前5天的日均值的极差小于后5天的日均值的极差C .这10天的日均值的中位数为41D .前5天的日均值的方差小于后5天的日均值的方差 11.下列选项正确的是( ) A .若a ≠0,则a +4a的最小值为4B .若x ∈R ,则x 2+3x 2+2的最小值是2C .若ab <0,则a b +b a的最大值为-2D .若正实数x ,y 满足x +2y =1,则2x +xy的最小值为612.已知函数f (x )=⎩⎪⎨⎪⎧2a -x,x ≥12x -a ,x <1 的图象如图所示,则下列说法正确的是( )A .a =1B .a =-1C .函数y =f (x +1)是偶函数D .关于x 的不等式f (x )>12的解集为(0,2)第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知一组样本数据x 1,x 2,…,x 10,且x 21 +x 22 +…+x 210 =2 022,平均数x -=12,则该组数据的方差为________.14.某电子商务公司对10 000名网络购物者2022年度的消费情况进行了统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 15.已知a >0,且a ≠1,log a 2=x ,则a 2x+a -2x=________.16.三个元件a ,b ,c 独立正常工作的概率分别是13 ,12 ,23 ,把它们随意接入如图所示电路的三个接线盒T 1,T 2,T 3中(一盒接一个元件),各种连接方法中,此电路正常工作的最大概率是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分12分)甲、乙两名战士在相同条件下各射靶10次,每次命中的环数如下:甲:8 6 7 8 6 5 9 10 4 7 乙:6 7 7 8 6 7 8 7 9 5 (1)分别计算以上两组数据的平均数; (2)分别求出以上两组数据的方差;(3)根据计算结果,评价这两名战士的射击情况.18.(本小题满分10分)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.19.(本小题满分12分)某工厂为了检验某产品的质量,随机抽取100件产品,测量其某一质量指数,根据所得数据,按[10,12),[12,14),[14,16),[16,18),[18,20]分成5组,得到如图所示的频率分布直方图.(1)估计该产品这一质量指数的中位数;(2)若采用分层抽样的方法从这一质量指数在[16,18)和[18,20]内的该产品中抽取6件,再从这6件产品中随机抽取2件,求这2件产品不是取自同一组的概率.20.(本小题满分12分)某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2 500万元,每生产x 百件,需另投入成本c (x )(单位:万元),当年产量不足30百件时,c (x )=10x 2+100x ;当年产量不小于30百件时,c (x )=501x +10 000x-4 500;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润y (万元)关于年产量x (百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?21.(本小题满分12分)甲、乙、丙三人进行摔跤比赛,比赛规则如下:①每场比赛有两人参加,另一人当裁判,没有平局;②每场比赛结束时,负的一方在下一场当裁判;③累计负两场者被淘汰;④当一人被淘汰后,剩余的两人继续比赛,直至其中一人累计负两场被淘汰,另一人最终获得冠军,比赛结束.已知在每场比赛中,甲胜乙和甲胜丙的概率均为23 ,乙胜丙的概率为12,各局比赛的结果相互独立.经抽签,第一场比赛甲当裁判.(1)求前三场比赛结束后,丙被淘汰的概率; (2)求只需四场比赛就决出冠军的概率; (3)求甲最终获胜的概率.22.(本小题满分12分)已知f (x )=log 3(3x+1)+12 kx (x ∈R )是偶函数.(1)求k 的值;(2)若函数y =f (x )的图象与直线y =12 x +a 有公共点,求a 的取值范围.模块质量检测卷1.答案:B解析:由题意,集合A ={x∈Z ⎪⎪⎪-3<x <12 }={-2,-1,0}, 根据图中阴影部分表示集合B 中元素除去集合A 中的元素,即为{1,2}. 故选B. 2.答案:A解析:由题意可知经随机模拟产生的12组随机数中,137,271,436这三组表示三次投篮恰有两次命中,故该运动员三次投篮恰有两次命中的概率为P =312 =14 ,故选A. 3.答案:C解析:f (x )=e x+2x -3,函数单调递增,计算得到f (0)=-2<0,f (1)=e -1>0,故函数在(0,1)有唯一零点.4.答案:B解析:由题意知,应从乙学校抽取120×400300+400+500 =40(份)数学成绩.5.答案:A解析:当|x +1|≥x 2,即x +1≥x 2或x +1≤-x 2,解得1-52 ≤x ≤1+52时,f (x )=max{|x +1|,x 2}=|x +1|=x +1,函数单调递增,所以f (x )min =1-52 +1=3-52;当x <1-52 时,f (x )=max{|x +1|,x 2}=x 2,函数单调递减,f (x )>f (1-52 )=3-52 ;当x >1+52 时,f (x )=max{|x +1|,x 2}=x 2,函数单调递增,f (x )>f (1+52 )=3+52 ;综上,f (x )min =3-52.故选A. 6.答案:D解析:由题意可得⎩⎪⎨⎪⎧5(1+p )m=5.45(1+p )n=5.5,则5(1+p )m ·5(1+p )n=5.4×5.5, 即存m +n 期,本利和为5(1+p )m +n=5.4×1.1=5.94,则存m +n 期,则利息为5.94-5=0.94万元.故选D. 7.答案:A解析:①y =x ·sin x 为偶函数,它的图象关于y 轴对称,故第一个图象即是;②y =x ·cosx 为奇函数,它的图象关于原点对称,它在⎝⎛⎭⎪⎫0,π2 上的值为正数,在⎝⎛⎭⎪⎫π2,π 上的值为负数,故第三个图象满足;③y =x ·|cos x |为奇函数,当x >0时,f (x )≥0,故第四个图象满足;④y =x ·2x,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A.8.答案:C解析:因为a 是方程x +lg x =3的解,所以a +lg a =3,令t =lg a ,则有a =10t, 所以10t+t =3, ①因为b 是方程2x +100x =3的解,所以2b +100b =3,即2b +102b=3, ② 设f (x )=10x+x ,易知f (x )在R 上单调递增, 由①②得,t =2b ,所以lg a =2b , 代入a +lg a =3得,a +2b =3.故选C. 9.答案:BD解析:f (12 )=(12 )α=4,∴α=-2,A 错误;在同一平面直角坐标系上画出y =(12 )x与y =log 12x 两函数图象,如图1所示.图1 图2由图可知∃x ∈(0,1),(12 )x>log 12 x ,故B 正确;在同一平面直角坐标系上画出y =log 13x 与y =log 12x 两函数图象,如图2所示.由图可知,当x ∈(0,1)时,log 12x >log 13x ,当x =1时,log 12x =log 13x ,当x ∈(1,+∞)时,log 12x <log 13x ,故C 错误;根据存在量词命题的否定为全称量词命题可知,命题“∃x∈R ,sin x +cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1”,故D 正确.故选BD.10.答案:BD解析:10个数据为:30,32,34,40,41,45,48,60,78,80, 10×0.8=8,故80%分位数为60+782=69,A 选项错误.5天的日均值的极差为41-30=11,后5天的日均值的极差为80-45=35,B 选项正确. 中位数是41+452=43,C 选项错误.根据折线图可知,前5天数据波动性小于后5天数据波动性,所以D 选项正确. 故选BD.11.答案:CD解析:当a <0时,a +4a =-(-a -4a)≤-2-a ·(-4a) =-4,当且仅当-a =-4a,即a =-2时取等号,则a +4a 有最大值为-4,当a >0时,a +4a≥2a ·4a =4,当且仅当a =4a,即a =2时取等号,则a +4a的最小值为4,故A 错误;因为x 2+2 ≥2 ,1x 2+2>0,所以x 2+2 +1x 2+2≥2x 2+2·1x 2+2=2, 等号成立的条件是x 2+2 =1x 2+2,即x 2+2=1,方程无解,即最小值不为2,B 错误;若ab <0,故b a <0,a b <0,则a b +b a =-[(-a b )+(-b a)]≤-2-a b ·-ba=-2,当且仅当-ba =-a b即a =-b 时取等号,此时取得最大值-2,C 正确; 正实数x ,y 满足x +2y =1,则2x +x y =2x +4y x +x y =2+4y x +xy ≥2+24y x·x y=6,当且仅当4y x =x y ,即x =2y =12 时取等号,则2x +xy 的最小值为6,D 正确.故选CD.12.答案:ACD解析:由函数图象可知x =1为函数f (x )的对称轴,即函数满足f (2-x )=f (x ), 则当x >1时,2-x <1,故22-x -a=2a -x,∴2-x -a =a -x ,则a =1, 同理当x <1时,2-x >1,故2a -2+x=2x -a,∴a -2+x =x -a ,则a =1,综合可知a =1,A 正确;B 错误.将f (x )=⎩⎪⎨⎪⎧2a -x,x ≥12x -a ,x <1 的图象向左平移1个单位,即得函数y =f (x +1),x ∈R 的图象,则y =f (x +1)的图象关于y 轴对称,故y =f (x +1)为偶函数,C 正确; 当x ≥1时,f (x )=21-x,令21-x>12,解得x <2,故1≤x <2; 当x <1时,f (x )=2x -1,令2x -1>12,解得x >0,故0<x <1,综合可得0<x <2,即不等式f (x )>12 的解集为(0,2),D 正确.故选ACD. 13.答案:58.2解析:因为一组样本数据x 1,x 2,…,x 10,且x 21 +x 22 +…+x 210 =2 022,平均数x -=12,所以该组数据的方差为110[(x 1-12)2+(x 2-12)2+…+(x 10-12)2]=110 [(x 21 +x 22 +…+x 210 )-24(x 1+x 2+…+x 10)+10×122] =110 (2 022-24×10×12+10×122) =58.2.14.答案:(1)3.0 (2)6 000解析:(1)0.1×1.5+0.1×2.5+0.1×a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3.0.(2)消费金额在区间[0.5,0.9]内的频率为1-0.1×1.5-0.1×2.5=0.6, 则该区间内购物者的人数为10 000×0.6=6 000. 15.答案:174解析:由指对数的互化,log a 2=x ⇒a x=2,∴a 2x+a -2x=(a x )2+1(a x )2 =22+122 =174.16.答案:49解析:若T 1接入a ,T 2,T 3分别接入b ,c ,则该电路正常工作的概率为13 ×(1-12 ×13 )=518; 若T 1接入b ,T 2,T 3分别接入a ,c ,则该电路正常工作的概率为12 ×(1-23 ×13 )=718 ;若T 1接入c ,T 2,T 3分别接入a ,b ,则该电路正常工作的概率为23 ×(1-23 ×12 )=49 ;∵49 >718 >518 ,∴此电路正常工作的最大概率为49. 17.解析:(1)x -甲=110 ×(8+6+7+8+6+5+9+10+4+7)=7,x -乙=110×(6+7+7+8+6+7+8+7+9+5)=7.(2)s 2甲 =110×[(8-7)2+(6-7)2+…+(7-7)2]=3,s 2乙 =110×[(6-7)2+(7-7)2+…+(5-7)2]=1.2.(3)x - 甲=x -乙,说明甲、乙两战士的平均水平相当;s 2甲 >s 2乙 ,说明甲战士的射击情况波动大,因此乙战士比甲战士射击情况稳定.18.解析:由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3. ∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 19.解析:(1)因为(0.025+0.125)×2=0.3<0.5,0.3+0.200×2=0.7>0.5, 所以该产品这一质量指数的中位数在[14,16)内,设该产品这一质量指数的中位数为m ,则(m -14)×0.2+0.3=0.5, 解得m =15.(2)由频率分布直方图可得100×0.100×2=20,100×0.050×2=10, 即在[16,18)和[18,20]的产品分别有20,10件,采用分层抽样的方法抽取的6件产品中这一质量指数在[16,18)内的有4件,记为a ,b ,c ,d ,这一质量指数在[18,20]内的有2件,记为e ,f ,从这6件产品中随机抽取2件的情况有ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种;其中符合条件的情况有ae ,af ,be ,bf ,ce ,cf ,de ,df ,共8种,故所求概率P =815.20.解析:(1)当0<x <30时,y =500x -10x 2-100x -2 500=-10x 2+400x -2 500; 当x ≥30时,y =500x -501x -10 000x+4 500-2 500=2 000-⎝⎛⎭⎪⎫x +10 000x;∴y =⎩⎪⎨⎪⎧-10x 2+400x -2 500,0<x <30,2 000-⎝ ⎛⎭⎪⎫x +10 000x ,x ≥30.(2)当0<x <30时,y =-10(x -20)2+1 500,∴当x =20时,y max =1 500;当x ≥30时,y =2 000-⎝⎛⎭⎪⎫x +10 000x≤2000-2 x ·10 000x=2 000-200=1 800,当且仅当x =10 000x,即x =100时,y max =1 800>1 500,∴年产量为100百件时,该企业获得利润最大,最大利润为1 800万元. 21.解析:(1)记事件A 为甲胜乙,则P (A )=23 ,P (A -)=13 ,事件B 为甲胜丙,则P (B )=23 ,P (B -)=13 ,事件C 为乙胜丙,则P (C )=12 ,P (C -)=12 ,前三场比赛结束后,丙被淘汰的概率为P 1=P (C A -C )+P (CAB )=12 ×13 ×12 +12 ×23 ×23 =1136.(2)只需四场比赛就决出冠军的概率为P 2=P (C A - C A - )+P (C - B - C - B - )+P (CABA )+P (C -BAB )=12 ×13 ×12 ×13 +12 ×13 ×12 ×13 +12 ×23 ×23 ×23 +12 ×23 ×23 ×23 =1954 . (3)由于甲胜乙和甲胜丙的概率均为23 ,且乙胜丙和丙胜乙的概率也相等,均为12 ,第一场比赛甲当裁判,以后的比赛相对于甲,可视乙丙为同一人,设甲胜为事件D ,甲当裁判为事件E ,P 3=P (EDDD )+P (EDD D - D )+P (ED D - ED )+P (E D -EDD )=23 ×23 ×23 +23 ×23 ×13 ×23 +23 ×13 ×23 +13 ×23 ×23 =5681 . 22.解析:(1)∵y =f (x )是偶函数,∴f (-x )=f (x ), ∴log 3(3-x +1)-12 kx =log 3(3x+1)+12kx ,化简得log 3⎝ ⎛⎭⎪⎫3-x+13x +1 =kx ,即log 313x =kx ,∴log 33-x =kx ,∴-x =kx ,即(k +1)x =0对任意的x ∈R 都成立,∴k =-1; (2)由题意知,方程log 3(3x+1)-12 x =12x +a 有解,亦即log 3(3x+1)-x =a ,即log 3⎝ ⎛⎭⎪⎫3x+13x =a 有解, ∴log 3⎝ ⎛⎭⎪⎫1+13x =a 有解, 由13x >0,得1+13x >1,∴log 3⎝ ⎛⎭⎪⎫1+13x >0,故a >0,即a 的取值范围是(0,+∞).。
新北师大版数学必修一期末测试卷(含详细解析)
综合测试题(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·四川理,1)设集合A ={x|-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( )A .3B .4C .5D .62.已知集合A ={x|0<log4x<1},B ={x|x ≤2},则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]3.(2015·广东高考)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +exB .y =x +1xC .y =2x +12xD .y =1+x24.设f(x)=⎩⎪⎨⎪⎧|x -1|-2,|x|≤111+x2,|x|>1,则f[f(12)]=( )A.12B.413C .-95D.25415.log43、log34、log 4334的大小顺序是( )A.log34<log43<log433 4B.log34>log43>log433 4C.log34>log4334>log43D.log4334>log34>log436.函数f(x)=ax2-2ax+2+b(a≠0)在闭区间[2,3]上有最大值5,最小值2,则a,b的值为( )A.a=1,b=0B.a=1,b=0或a=-1,b=3C.a=-1,b=3D.以上答案均不正确7.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A.14B.12C.2 D.48.(2015·安徽高考)函数f(x)=错误!的图像如图所示,则下列结论成立的是( )A.a>0,b>0,c<0B .a<0,b>0,c>0C .a<0,b>0,c<0D .a<0,b<0,c<09.(2016·山东理,9)已知函数f(x)的定义域为R.当x <0时,f(x)=x3-1;当-1≤x ≤1时,f(-x)=-f(x);当x >12时,f(x +12)=f(x -12).则f(6)=( )A .-2B .-1C .0D .210.函数f(x)=(x -1)ln|x|-1的零点的个数为( )A .0B .1C .2D .311.设0<a<1,函数f(x)=loga(a2x -2ax -2),则使f(x)<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,loga3)D .(loga3,+∞)12.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg2=0.3010,lg3=0.4771)( )A .19B .20C .21D .22第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.已知loga 12>0,若ax2+2x -4≤1a,则实数x 的取值范围为________.14.直线y =1与曲线y =x2-|x|+a 有四个交点,则a 的取值范围________ .15.若函数y =m·3x-1-1m·3x-1+1的定义域为R ,则实数m 的取值范围是________.16.已知实数a ≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a , x<1-x -2a , x≥1,若f(1-a)=f(1+a),则a的值为________.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设A ={x|x2+4x =0},B ={x|x2+2(a +1)x +a2-1=0}. (1)若A ∩B =B ,求a 的值. (2)若A ∪B =B ,求a 的值.18.(本小题满分12分)已知函数f(x)=log 12 [(12)x -1],(1)求f(x)的定义域;(2)讨论函数f(x)的增减性.19.(本小题满分12分)设函数f(x)=ax -1x +1,其中a ∈R.(1)若a =1,f(x)的定义域为区间[0,3],求f(x)的最大值和最小值;(2)若f(x)的定义域为区间(0,+∞),求a 的取值范围,使f(x)在定义域内是单调减函数.20.(本小题满分12分)(1)定义在(-1,1)上的奇函数f(x)为减函数,且f(1-a)+f(1-a2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g(x),当x ≥0时,g(x)为减函数,若g(1-m)<g(m)成立,求m 的取值范围.21.(本小题满分12分)已知函数y =f(x)的定义域为D ,且f(x)同时满足以下条件: ①f(x)在D 上单调递增或单调递减函数;②存在闭区间[a ,b]∈D(其中a<b),使得当x ∈[a ,b]时,f(x)的取值集合也是[a ,b].那么,我们称函数y =f(x)(x ∈D)是闭函数.(1)判断f(x)=-x3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.(2)若f(x)=k +x +2是闭函数,求实数k 的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出增函数还是减函数即可) 22.(本小题满分12分)已知函数f(x)=log 12 (x2-mx -m.(1)若m =1,求函数f(x)的定义域;(2)若函数f(x)的值域为R ,求实数m 的取值范围;(3)若函数f(x)在区间(-∞,1-3)上是增函数,求实数m 的取值范围. 一.选择题1.[答案] C[解析] 由题可知,A ∩Z ={-2,-1,0,1,2},则A ∩Z 中元素的个数为5.故选C. 2.[答案] D[解析] 因为A ={x|0<log4x<1}={x|1<x<4}, B ={x|x ≤2}.所以A ∩B ={x|1<x<4}∩{x|x ≤2}={x|1<x ≤2}. 3.[答案] A[解析] 令f(x)=x +ex ,则f(1)=1+e ,f(-1)=-1+e -1即f(-1)≠f(1),f(-1)≠-f(1),所以 y =x +ex 既不是奇函数也不是偶函数,而BCD 依次是偶函数、奇函数、偶函数,故选A. 4.[答案] B[解析] 由于|12|<1,所以f(12)=|12-1|-2=-32,而|-32|>1,所以f(-32)=错误!=1134=413,所以f[f(12)]=413,选B. 5.[答案] B[解析] 将各式与0,1比较.∵log34>log33=1,log43<log44=1,又0<34<1,43>1,∴log 43 34<0.6.[答案] B[解析] 对称轴x =1,当a>0时在[2,3]上递增, 则错误!解得错误!当a<0时,在[2,3]上递减, 则错误!解得错误! 故选B.有log 43 34<log43<log34.所以选B.7.[答案] B[解析] ∵当a>1或0<a<1时,ax 与loga(x +1)的单调性一致, ∴f(x)min +f(x)max =a ,即1+loga1+a +loga(1+1)=a ,∴a =12.8.[答案] C[解析] 由f(x)=错误!及图像可知,x ≠-c ,-c>0,则c<0;当x =0时,f(0)=错误!>0,所以b>0;当y =0,ax +b =0,所以x =-ba >0,所以a<0.故a<0,b>0,c<0,选C.9.[答案] D[解析] ∵当x>2时,f(x +12)=f(x -12),∴f(x +1)=f(x),∴f(6)=f(5)=f(4)=…=f(1),又当-1≤x ≤1时,f(x)=-f(-x).∴f(1)=-f(-1),又因为当x<0时,f(x)=x3-1, ∴f(1)=-f(-1)=-[(-1)3-1]=2. 10.[答案] D[解析] f(x)=(x -1)ln|x|-1的零点就是方程(x -1)ln|x|-1=0的实数根,而该方程等价于方程ln|x|=1x -1,因此函数的零点也就是函数g(x)=ln|x|的图像与h(x)=1x -1的图像的交点的横坐标.在同一平面直角坐标系内分别画出两个函数的图像(图略),可知两个函数图像有三个交点,所以函数有三个零点. 11.[答案] C[解析] 利用指数、对数函数性质.考查简单的指数、对数不等式. 由a2x -2ax -2>1得ax>3,∴x<loga3. 12.[答案] C[解析] 操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21. 二.填空题13.[答案] (-∞,-3]∪[1,+∞) [解析] 由loga 12>0得0<a<1.由a x2+2x -4≤1a 得a x2+2x -4≤a -1,∴x2+2x -4≥-1,解得x ≤-3或x ≥1. 14.[答案] 1<a<54[解析] y =⎩⎪⎨⎪⎧x2-x +a ,x≥0x2+x +a ,x<0作出图像,如图所示.此曲线与y 轴交于(0,a)点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a<54.15.[答案] [0,+∞)[解析] 要使函数y =m·3x-1-1m·3x-1+1的定义域为R ,则对于任意实数x ,都有m·3x -1+1≠0,即m ≠-⎝ ⎛⎭⎪⎫13x -1.而⎝ ⎛⎭⎪⎫13x -1>0,∴m ≥0. 故所求m 的取值范围是m ≥0,即m ∈[0,+∞). 16.[答案] -34[解析] 首先讨论1-a,1+a 与1的关系. 当a<0时,1-a>1,1+a<1,所以f(1-a)=-(1-a)-2a =-1-a ; f(1+a)=2(1+a)+a =3a +2.因为f(1-a)=f(1+a),所以-1-a =3a +2. 解得a =-34.当a>0时,1-a<1,1+a>1,所以f(1-a)=2(1-a)+a =2-a. f(1+a)=-(1+a)-2a =-3a -1, 因为f(1-a)=f(1+a)所以2-a =-3a -1,所以a =-32(舍去)综上,满足条件的a =-34.三、解答题17.[分析] A ∩B =B ⇔B ⊆A ,A ∪B =B ⇔A ⊆B. [解析] A ={-4,0}. (1)∵A ∩B =B ,∴B ⊆A.①若0∈B ,则a2-1=0,a =±1. 当a =1时,B =A ;当a =-1时,B ={0},则B ⊆A.②若-4∈B ,则a2-8a +7=0,解得a =7,或a =1. 当a =7时,B ={-12,-4}, A.③若B =∅,则Δ=4(a +1)2-4(a2-1)<0,a<-1. 由①②③得a =1,或a ≤-1. (2)∵A ∪B =B ,∴A ⊆B.∵A ={-4,0},又∵B 中至多只有两个元素, ∴A =B. 由(1)知a =1.18.[解析] (1)(12)x -1>0,即x<0,所以函数f(x)定义域为{x|x<0}.(2)∵y =(12)x -1是减函数,f(x)=log 12 x 是减函数,∴f(x)=log 12 [(12)x -1]在(-∞,0)上是增函数.19.[解析] f(x)=ax -1x +1=错误!=a -错误!,设x1,x2∈R ,则f(x1)-f(x2)=a +1x2+1-a +1x1+1=错误!.(1)当a =1时,f(x)=1-2x +1,设0≤x1<x2≤3,则f(x1)-f(x2)=错误!, 又x1-x2<0,x1+1>0,x2+1>0, ∴f(x1)-f(x2)<0,∴f(x1)<f(x2), ∴f(x)在[0,3]上是增函数, ∴f(x)max =f(3)=1-24=12,f(x)min =f(0)=1-21=-1.(2)设x1>x2>0,则x1-x2>0,x1+1>0,x2+1>0. 若使f(x)在(0,+∞)上是减函数,只要f(x1)-f(x2)<0, 而f(x1)-f(x2)=错误!,∴当a +1<0,即a<-1时,有f(x1)-f(x2)<0, ∴f(x1)<f(x2).∴当a<-1时,f(x)在定义域(0,+∞)内是单调减函数. 20.[解析] (1)∵f(1-a)+f(1-a2)>0, ∴f(1-a)>-f(1-a2).∵f(x)是奇函数,∴f(1-a)>f(a2-1).又∵f(x)在(-1,1)上为减函数,∴⎩⎪⎨⎪⎧ 1-a<a2-1,-1<1-a<1,-1<1-a2<1,解得1<a< 2.(2)因为函数g(x)在[-2,2]上是偶函数,则由g(1-m)<g(m)可得g(|1-m|)<g(|m|).又当x ≥0时,g(x)为减函数,得到⎩⎪⎨⎪⎧ |1-m|≤2,|m|≤2,|1-m|>|m|,即错误!解之得-1≤m<12. 21.[解析] (1)f(x)=-x3在R 上是减函数,满足①;设存在区间[a ,b],f(x)的取值集合也是[a ,b],则⎩⎪⎨⎪⎧ -a3=b -b3=a ,解得a =-1,b =1,所以存在区间[-1,1]满足②,所以f(x)=-x3(x ∈R)是闭函数.(2)f(x)=k +x +2是在[-2,+∞)上的增函数,由题意知,f(x)=k +x +2是闭函数,存在区间[a ,b]满足②,即⎩⎨⎧ k +a +2=a k +b +2=b即a ,b 是方程k +x +2=x 的两根,化简得,a ,b 是方程x2-(2k +1)x +k2-2=0的两根,且a ≥k ,b>k.令f(x)=x2-(2k +1)x +k2-2,得错误!解得-94<k ≤-2, 所以实数k 的取值范围为(-94,-2]. 22.[解析] (1)m =1时,f(x)=log 12(x2-x -1),由x2-x -1>0可得:x>1+52或x<1-52, ∴函数f(x)的定义域为(1+52,+∞)∪(-∞,1-52). (2)由于函数f(x)的值域为R ,所以z(x)=x2-mx -m 能取遍所有的正数从而Δ=m2+4m ≥0,解得:m ≥0或m ≤-4.即所求实数m 的取值范围为m ≥0或m ≤-4.(3)由题意可知:错误!⇒2-2错误!≤m<2. 即所求实数m 的取值范围为[2-23,2).。
北师大版数学必修一综合测试题及答案
必修一综合测试注意事项:⒈本试卷分为选择题、填空题和简答题三部分,共计150分,时间90分钟。
⒉答题时,请将答案填在答题卡中。
一、选择题:本大题10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N 等于 ( )A.{0,4}B.{3,4}C.{1,2} D 。
∅ 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A 。
{0} B 。
{0,5} C.{0,1,5} D 。
{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)xy a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数12log y x =的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x|0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g (x)都是奇函数 B f(x)是奇函数,g (x)是偶函数C f(x)与g (x)都是偶函数D f(x )是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______ 13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x -+=的定义域是______三、解答题 :本大题共5小题,满分80分.解答须写出文字说明、证明过程或演算步骤。
2021-2022学年北师大版高中数学必修1全册检测含答案
本册综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共50分) 一、选择题(每小题5分,共50分)1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( C ) A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0}D .{-3,-2,-1}解析:由交集的意义可知M ∩N ={-2,-1,0}. 2.函数f (x )=x -4lg x -1的定义域是( D ) A .[4,+∞) B .(10,+∞) C .(4,10)∪(10,+∞)D .[4,10)∪(10,+∞) 解析:要使函数有意义需⎩⎪⎨⎪⎧ x -4≥0,lg x ≠1,即⎩⎪⎨⎪⎧x ≥4,x ≠10,解得:4≤x <10或x >10.3.已知幂函数f (x )=x α的部分对应值如下表,则f (x )的奇偶性是( C )A.奇函数 B .偶函数 C .非奇非偶函数D .既是奇函数,又是偶函数解析:由2=4α知α=12,∴f (x )=x 12 为非奇非偶函数.4.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有元素之和为( B )A .2B .-2C .0D. 2 解析:A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },①当k 2-2=2时,k =±2,k =2时,k -2=0∈A ,∴k ≠2;k =-2时,k -2=-4∉A ,成立;②当k 2-2=0时,k =±2,k -2=±2-2∉A ,成立; ③当k 2-2=1时,k =±3,k -2=±3-2∉A ,成立; ④当k 2-2=4时,k =±6,k -2= ±6-2∉A ,成立.从而得到B ={±2,±3,±6,-2},∴集合B 中所有元素之和为-2.故选B. 5.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2<0”的是( C )A .f (x )=ln xB .f (x )=(x -1)2C .f (x )=1x +1D .f (x )=x 3 解析:对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2<0,即x 1<x 2时,都有f (x 1)>f (x 2),即有f (x )在(0,+∞)上是减函数, 对于A ,y =ln x 在(0,+∞)上是增函数,故A 不满足;对于B ,函数在(-∞,1)上是减函数,(1,+∞)上是增函数,故B 不满足; 对于C ,函数在(-1,+∞),(-∞,-1)上均为减函数,则在(0,+∞)上是减函数,故C 满足;对于D ,函数在R 上是增函数,故D 不满足. 故选C.6.已知f (x )=⎩⎨⎧2e x -1,x <32,log 3(x 2-1),x ≥32,则f (f (2))的值是( C )A .0B .1C .2D .3解析:∵f (2)=log 3(22-1)=log 33=1, ∴f (f (2))=f (1)=2e 1-1=2.7.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则实数a 的范围是( D ) A .a ≤-3 B .a ≤5 C .a ≥3D .a ≥5解析:因为函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,所以-2(a -1)-2≥4,即a ≥5,故选D.8.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( D )A .一次函数B .二次函数C .指数型函数D .对数型函数解析:由题意可知,函数模型对应的函数是个增函数,而且增长速度越来越慢,故应采用对数型函数来建立函数模型,故选D.9.函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( C )A .f (x )=e x -1B .f (x )=(x -1)2C .f (x )=4x -1D .f (x )=ln(x -12)解析:g (12)=2+1-2>0,g (14)=2+12-2<0;且g (x )=4x +2x -2连续,故g (x )=4x +2x -2的零点在(14,12)上;f (x )=e x -1的零点为0,f (x )=(x -1)2的零点为1; f (x )=4x -1的零点为14,f (x )=ln(x -12)的零点为32;故选C.10.若函数y =f (x )定义域为R ,且满足f (-x )=-f (x ),当a ,b ∈(-∞,0]时总有f (a )-f (b )a -b>0(a ≠b ),若f (m +1)>f (2),则实数m 的取值范围是( B ) A .-3≤m ≤1 B .m >1C .-3<m <1D .m <-3或m >1解析:∵当a ,b ∈(-∞,0]时总有f (a )-f (b )a -b >0(a ≠b ),∴当a ,b ∈(-∞,0],a -b 与f (a )-f (b )同号, ∴f (x )在(-∞,0]上单调递增, 又∵f (-x )=-f (x ),∴f (x )为奇函数,∴f (x )在R 上为增函数, ∴由f (m +1)>f (2)得,m +1>2, ∴m >1.第Ⅱ卷(非选择题,共100分) 二、填空题(每小题5分,共25分)11.计算:lg 12-lg 58+lg 252-log 89×log 278=13.解析:lg 12-lg 58+lg 252-log 89×log 278=lg ⎝⎛⎭⎫12×85×252-2lg33lg2×3lg23lg3=lg10-23=1-23=13. 12.设f (x )是定义在R 上的偶函数,且当x >0时,f (x )=2x -3,则f (-2)=1. 解析:f (-2)=f (2)=22-3=1.13.已知函数y =log a (14x +b )(a ,b 为常数,其中a >0,a ≠1)的图像如图所示,则a +b的值为34.解析:由图像知,log a b =2,log a (34+b )=0,解得,b =14,a =12;故a +b =34.故答案为:34.14.若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是[-4,0].解析:f (x )=x 2+a |x -2|=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2x 2-ax +2a ,x <2,要使f (x )在(0,+∞)上单调递增,则⎩⎨⎧-a2≤2a 2≤0,解得-4≤a ≤0;∴实数a 的取值范围是[-4,0].故答案为[-4,0]. 15.下列叙述:①存在m ∈R ,使f (x )=(m -1)·x m 2-4m +3是幂函数; ②函数y =1x +1在(-∞,-1)∪(-1,+∞)上是减函数;③函数y =log 2x +x 2-2在(1,2)内只有一个零点;④定义域内任意两个变量x 1,x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )在定义域内是增函数.其中正确的结论序号是①③④.解析:①使f (x )=(m -1)·x m 2-4m +3是幂函数,则 m -1=1,得m =2,此时f (x )=x -1,故①正确;②减区间应为(-∞,-1)和(-1,+∞)不能合并,故②错误;③∵f (1)=log 21+1-2=-1<0,f (2)=lg 22+22-2=3>0,∴f (1)f (2)<0,且f (x )在(1,2)上单调递增.故③正确;④由已知得x 1-x 2与f (x 1)-f (x 2)同号,∴f (x )在定义域上为增函数.三、解答题(本题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤)16.(本题满分12分)已知全集U =R ,集合A ={x |x >4},B ={x |-6<x <6}. (1)求A ∩B ; (2)求∁R B ;(3)定义A -B ={x |x ∈A ,x ∉B },求A -B ,A -(A -B ). 解:(1)∵A ={x |x >4},B ={x |-6<x <6}, ∴A ∩B ={x |4<x <6}; (2)∁R B ={x |x ≥6,或x ≤-6}; (3)∵A -B ={x |x ∈A ,x ∉B }, ∴A -B ={x |x ≥6}, A -(A -B )={x |4<x <6}.17.(本题满分12分)(1)计算:(8125)- 13 -(-35)0+160.75+(0.25) 12 ;(2)已知:log 32=a,3b =5,试用a ,b 表示log 330 . 解:(1)原式=(1258) 13 -1+16 34 +(25100)12=52-1+23+510=10; (2)∵3b =5,∴b =log 35,∴log 330=12log 330=12log 3(2×3×5)=12(log 32+log 33+log 35)=12(a +b +1). 18.(本题满分12分)已知函数f (x )=a +b x (b >0,b ≠1)的图像过点(1,4)和点(2,16). (1)求f (x )的表达式; (2)解不等式f (x )>(12)3-x 2;(3)当x ∈(-3,4]时,求函数g (x )=log 2f (x )+x 2-6的值域.解:(1)由题知⎩⎪⎨⎪⎧4=a +b ,16=a +b 2,解得⎩⎪⎨⎪⎧ a =0,b =4或⎩⎪⎨⎪⎧a =7,b =-3.(舍去)∴f (x )=4x .(2)f (x )>(12)3-x 2,∴4x >(12)3-x 2,∴22x >23-x 2,∴2x >x 2-3, 解得-1<x <3.∴不等式的解集为(-1,3).(3)∵g (x )=log 2f (x )+x 2-6=log 24x +x 2-6 =2x +x 2-6=(x +1)2-7, 又∵x ∈(-3,4],∴g (x )min =-7,当x =4时,g (x )max =18.∴值域为[-7,18].19.(本题满分12分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB =a (a >2),BC =2,且AE =AH =CF =CG ,设AE =x ,绿地面积为y .(1)写出y 关于x 的函数关系式,指出这个函数的定义域; (2)当AE 为何值时,绿地面积最大? 解:(1)S △AEH =S △CFG =12x 2,S △BEF=S △DGH =12(a -x )(2-x ).∴y =S ▭ABCD -2S △AEH -2S △BEF =2a -x 2-(a -x )(2-x )=-2x 2+(a +2)x . 由⎩⎪⎨⎪⎧x >0,a -x >0,2-x ≥0,a >2,得0<x ≤2,∴y =-2x 2+(a +2)x,0<x ≤2; (2)当a +24<2,即2<a <6时, 则x =a +24时,y 取最大值(a +2)28;当a +24≥2,即a ≥6时,y =-2x 2+(a +2)x ,在(0,2]上是增函数,则x =2时,y 取最大值2a -4.综上所述:当2<a <6时,AE =a +24时,绿地面积取最大值(a +2)28;当a ≥6时,AE =2时,绿地面积取最大值2a -4.20.(本题满分13分)已知定义域为R 的函数f (x )=-2x +a2x +1是奇函数.(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围. 解:(1)由题设,需f (0)=-1+a2=0,∴a =1,∴f (x )=1-2x1+2x,经验证,f (x )为奇函数,∴a =1.(3)由f (t 2-2t )+f (2t 2-k )<0, 得f (t 2-2t )<-f (2t 2-k ),∵f (x )是奇函数,∴f (t 2-2t )<f (k -2t 2), 由(2)知,f (x )是减函数, ∴原问题转化为t 2-2t >k -2t 2, 即3t 2-2t -k >0对任意t ∈R 恒成立, ∴Δ=4+12k <0,解得k <-13,所以实数k 的取值范围是⎝⎛⎭⎫-∞,-13. 21.(本题满分14分)已知函数f (x )=bx -aax (a >0,x >0)的图像过点(a,0).(1)判断函数f (x )在(0,+∞)上的单调性并用函数单调性定义加以证明; (2)若a >15,函数f (x )在[15a ,5a ]上的值域是[15a,5a ],求实数a 的值.解:(1)函数f (x )=bx -a ax (a >0,x >0)的图像过点(a,0),则0=ab -aa 2,则b =1,则f (x )=x -a ax =1a -1x, f (x )在(0,+∞)上为增函数,证明如下:设0<m <n ,则f (m )-f (n )=1a -1m -(1a -1n )=m -nmn ,由于0<m <n ,则m -n<0,mn >0,则f (m )-f (n )<0,则f (x )在(0,+∞)上为增函数. (2)由于f (x )在(0,+∞)上为增函数,则函数f (x )在[15a ,5a ]上的值域是[f (15a),f (5a )],即有⎩⎨⎧1a -5a =15a1a -15a =5a,解得a =25.。
(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)
第七章综合测试一、选择题1.已知甲射击命中目标的概率为12,乙射击命中日标的概率为13,甲、乙是否命中目标相互之间无影响,现在甲、乙两人同时射击目标一次,则目标被击中的概率是()A.16B.13C.23D.562.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为()A.0.2484B.0.25C.0.90D.0.39243.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,如果他记得密码的最后一位是偶数,则他不超过2次就按对的概率是()A.45B.35C.25D.154.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.12B.512C.14D.165.如图,A B C,,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是()A.0.994B.0.686C.0.504D.0.4966.甲乙两名射击运动员进行射击比赛,甲中靶的概率为0.8,乙中靶的概率为0.9.甲乙各射击一次,则两人都中靶的概率为()A.0.26B.0.72C.0.8D.0.987.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是()A.0.18B.0.21C.0.39D.0.428.根据天气预报,某一天A城市和B城市降雨的概率均为0.6,假定这一天两城市是否降雨相互之间没有影响,则该天这两个城市中,至少有一个城市降雨的概率为()A.0.16B.0.48C.0.52D.0.849.甲乙两人投球命中率分别为23,35,且是否投中互不影响,两人各投球一次,恰好有一人命中的概率为( )A .12B .25C .715D .81510.若事件A 与B 相互独立,()23P A =,()14P B =,则P AB( ) A .16 B .712 C .34D .111211.5G 指的是第五代移动通信技术,是最新一代蜂窝移动通信技术,某公司研发5G 项目时遇到一项技术难题,由甲、乙两个部门分别独立攻关,已知甲部门攻克该技术难题的概率为0.8,乙部门攻克该技术难题的概率为0.7,则该公司攻克这项技术难题的概率为( ) A .0.56B .0.86C .0.94D .0.9612.甲、乙、丙三人参加学业水平测试,已知他们通过测试的概率分别为112323,,,且每人是否通过测试相互独立,则这三人中至少有一人通过测试的概率为( ) A .19B .12C .78D .89二、填空题13.世卫组织就新型冠状病毒感染的肺炎疫情称,新型病毒可能造成“持续人传人”.通俗点说就是存在A 传B ,B 又传C ,C 又传D ,这就是“持续人传人”.那么A 、B 、C 就会被称为第一代、第二代、第三代传播者.假设一个身体健康的人被第一代、第二代、第三代传播者感染的概率分别为0.9,0.8,0.7,健康的小明参加了一次多人宴会,事后知道,参加宴会的人有5名第一代传播者,3名第二代传播者,2名第三代传播者,试计算,小明参加聚会,仅和感染的10个人其中一个接触,感染的概率有多大________.14.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是________.15.在一段线路中有4个自动控制的常用开关A 、B 、C 、D ,如图连接在一起,假定在2019年9月份开关A ,D 能够闭合的概率都是0.7,开关B ,C 能够闭合的概率都是0.8,则在9月份这段线路能正常工作的概率为________.16.每次同时抛掷质地均匀的硬币4枚,抛n 次()*2n n N ,∈,各次结果相互独立,记出现至少有1枚硬币面朝上的次数为X ,若()5E X >,则n 的最小值为________.三、解答题17.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?18.袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求取球3次即终止的概率;(2)求甲取到白球的概率.19.某学校就学生对端午节文化习俗的了解情况,进行了一次20道题的问卷调查,每位同学都是独立答题,在回收的试卷中发现甲同学答对了12个,乙同学答对了16个.假设答对每道题都是等可能的,试求:(1)任选一道题目,甲乙都没有答对的概率;(2)任选一道题目,恰有一人答对的概率.20.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为123234,,,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.2020年6月28日上午,未成年人保护法修订草案二审稿提请十三届全国人大常委第二十次会议审议,修改草案二审稿针对监护缺失、校园欺凌研究损害、网络沉迷等问题,进一步压实监护人、学校住宿经营者网络服务提供者等主体,加大对未成年人保护力度我校为宣传未成年保护法,特举行一次未成年人保护法知识竞赛,两人一组,每一轮竞赛中,小组两人分别答两题,若答对题数不少于3题,被称为“优秀小组”,已知甲乙两位同学组成一组,且同学甲和同学乙答对题的概率分为1p ,2p .(1)若134p =,223p =,则在第一轮竞赛中,求他们获“优秀小组”的概率;(2)若1265p p +=,且每轮比赛互不影响,则在竞赛中甲乙同学要想获得“优秀小组”次数为9次,则理论上至少要进行多少轮竞赛才行?并求此时1p ,2p 的值.22.某高校的入学面试中有4道不同的题目,每位面试者都要回答这4道题目.已知李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,,假设对这4道题目能否答对是独立的,该高校要求至少答对其中的3道题才能通过面试.用i A 表示事件“李明答对第i 道题”(1234i ,,,). (1)写出所有的样本点;(2)求李明通过面试的概率.第七章综合测试答案解析一、 1.【答案】C【解析】先转化对立事件,根据独立事件概率乘法公式以及对立事件概率公式求解,即得结果.因为目标被击中,指甲、乙两人至少有一人命中目标,其对立事件为甲、乙两人都未命中目标,所以目标被击中的概率是1121(1)(1)233---=, 故选:C本题考查独立事件概率乘法公式以及对立事件概率公式,考查基本分析求解能力,属基础题. 2.【答案】D【解析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案.由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=; 两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D .本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题. 3.【答案】C【解析】任意按最后一位数字,不超过2次就按对有两种情形,一种是按1次就按对和第一次没有按对,第二次按对,求两种情形的概率和即可;密码的最后一个数是偶数,可以为0,2,4,6,8. 按一次就按对的概率:115P =, 第一次没有按对,第二次按对的概率:2411545P =⨯= 则不超过两次就按对的概率:1225P P P =+=, 故选:C .本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式的运用,是基础题.4.【答案】B【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(1A )与仅第二个实习生加工一等品(2A )两种情况, 则1221135+=343412P A P A P A . 故选B . 5.【答案】B【解析】由题中意思可知,当A 、B 元件至少有一个在工作,且C 元件在工作时,该系统正常工作,再利用独立事件的概率乘法公式可得出所求事件的概率.由题意可知,该系统正常工作时,A 、B 元件至少有一个在工作,且C 元件在工作, 当A 、B 元件至少有一个在工作时,其概率为()()110.910.80.98--⨯-=, 由独立事件的概率乘法公式可知,该系统正常工作的概率为0.980.70.686⨯=, 故选B .本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题. 6.【答案】B【解析】利用独立事件的概率乘法公式可求得所求事件的概率. 甲乙各射击一次,则“甲中靶”与“乙中靶”相互独立, 所以,甲乙各射击一次,则两人都中靶的概率为0.80.90.72⨯=. 故选:B .本题考查利用独立事件的概率的乘法公式计算事件的概率,考查计算能力,属于基础题. 7.【答案】C【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解.解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束). 根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是:20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中等题. 8.【答案】D【解析】求其对立事件两城市均未降雨的概率,进而可得结果.记A 城市和B 城市降雨分别为事件A 和事件B ,故()0.6P A =,()0.6P B =, 可得()0.4P A =,()0.4P B =,两城市均未降雨的概率为()0.40.40.16P A B ⋅=⨯=, 故至少有一个城市降雨的概率为10.160.84-=, 故选:D .本题主要考查了相互独立事件的概率公式的应用,以及对立事件的应用,属于基础题. 9.【答案】C【解析】恰有一人命中有两种情形:甲中乙不中和甲不中乙中甲命中的概率为23,不命中的概率为21133-=; 乙命中的概率为35,不命中的概率为32155-=;设恰好有一人命中的概率为P ,则22137353515P =⨯+⨯=.故选:C此题为基本概念题,考查独立事件发生的概率算法. 10.【答案】C【解析】根据事件A 与B 相互独立,则P AB P A P B ,再由P AB P A P BP AB 求解.因为事件A 与B 相互独立,且23P A ,14P B , 所以16P AB P A P B , 所以21133464P A BP AP BP AB故选:C本题主要考查独立事件的概率以及并集事件的概率,属于基础题. 11.【答案】C【解析】计算不能攻克的概率,得到答案. 根据题意:()()110.810.70.94P =---=. 故选:C .本题考查了概率的计算,意在考查学生的计算能力和应用能力. 12.【答案】D【解析】先求得三人都没通过测试的概率,由此求得三人中至少有一人通过测试的概率. 所求事件的对立事件为“三人均未通过测试”,概率为21113239⨯⨯=,故至少一人通过测试的概率为18199-=. 故选:D本小题主要考查相互独立事件概率计算,属于基础题. 二、13.【答案】0.83【解析】求出小明与第一代、第二代、第三代传播者接触的概率,利用独立事件、互斥事件的概率公式求解即可.设事件A ,B ,C 为第一代、第二代、第三代传播者接触, 事件D 为小明被感染,由已知得:()0.5P A =,()0.3P B =,()0.2P C =,()|0.9P D A =,()|0.8P D B =,()|0.7P D C =, ()()()()()()()|+||0.90.50.80.30.70.20.83P D P D A P A P D B P B P D C P C +==⨯+⨯+⨯=.∴小明参加聚会,仅和感染的10个人其中一个接触,感染的概率为0.83.故答案为:0.83.本题考查概率的求法,考查独立事件、互斥事件的概率公式以及条件概率的性质等基础知识,考查运算求解能力,是基础题. 14.【答案】0.18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查. 前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108⨯⨯⨯=, 前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072⨯⨯⨯=,综上所述,甲队以4:1获胜的概率是0.1080.0720.18q =+=.由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 15.【答案】0.967 6【解析】先计算线路不能正常工作的概率,用1减去这个概率,求得正常工作的概率.B C ,段不能正常工作的概率为10.80.80.36-⨯=.线路不能正常工作的概率为0.30.30.36⨯⨯,故能正常工作的概率为10.30.30.360.9676-⨯⨯=.本小题主要考查相互独立事件概率计算,考查对立事件的方法计算概率,属于基础题. 16.【答案】6【解析】先计算出实验一次,至少有1枚硬币正面朝上的概率,根据二项分布期望公式列不等式,解不等式求得n 的最小值.实验一次,至少有1枚硬币正面朝上的概率为41151216⎛⎫-= ⎪⎝⎭,由题知15~,16X B n ⎛⎫ ⎪⎝⎭,则15516EX n =>,即163n >,所以正整数n 的最小值为6. 故答案为:6本小题主要考查二项分布的识别和二项分布期望的有关计算,属于中等题. 三、17.【答案】解:(1)设事件M 为“甲和乙先赛且共进行4场比赛”,则有两类:第一种是甲和乙比赛,甲胜乙,再甲与丙比赛,丙胜甲,再丙与乙比赛,乙胜丙,再进行第四场比赛; 第二种是甲和乙比赛,乙胜甲,再乙与丙比赛,丙胜乙,再丙与甲比赛,甲胜丙,再进行第四场比赛; 故所求概率()231213711135232530P M ⎛⎫⎛⎫⎛⎫=⨯-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以甲和乙先赛且共进行4场比赛的概率为730; (2)设事件A 表示甲与乙先赛且甲获得冠军;事件B 表示甲与丙先赛且甲获得冠军;事件C 表示乙与丙先赛且甲获得冠军, 则()2323122132511135352332539P A ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯⨯+-⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ()323213312327111535325523550P B ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯-⨯+-⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()123132212352535P C ⎛⎫=⨯⨯+-⨯⨯= ⎪⎝⎭;因为52729505>>, 所以甲与乙进行首场比赛时,甲获得冠军的概率最大.【解析】(1)将情况按照第一场比赛甲胜乙、乙胜甲分类,由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式即可得解;(2)由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式分别计算出三种情况下甲获得冠军的概率,比较大小即可得解.本题考查了互斥事件概率加法公式及独立事件概率乘法公式的应用,考查了运算求解能力与分类讨论思想,属于中等题.18.【答案】解:(1)设事件A 为“取球3次即终止”.即甲第一次取到的是黑球,接着乙取到的是黑球,甲取到的是白球,因此,()433765635P A ⨯⨯==⨯⨯(2)设事件B 为“甲取到白球”,“第i 次取到白球”为事件i A ,1,2,3,4,5i =,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球, 所以()()()()()131355P B P A A A P A P A P A ==++343343213776576543⨯⨯⨯⨯⨯⨯=++⨯⨯⨯⨯⨯⨯ 361227353535=++=. 【解析】(1)依题意甲第一次取到的是黑球,接着乙取到的是黑球,第三次取球甲取到的是白球,即可求出概率;(2)依题意甲只可能在第1次,第3次和第5次取到白球,再根据互斥事件的概率公式计算可得; 考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.属于中等题.19.【答案】记“任选一道题目,甲答对”为事件A ,“任选一道题目,乙答对”为事件B , 根据古典概型概率计算公式,得()123205P A ==,()164205P B == 所以()25P A =,()15P B =(1)“两人都没答对记为AB , 所以()()()2125525P AB P A P B ==⨯=. (2)“恰有一人答对”AB AB =所以()()()()()()()312411555525P ABAB P AB P AB P A P B P A P B =+=+=⨯+⨯=.【解析】根据古典概型求出任选一道题目,甲答对和乙答对的概率,再利用相互独立事件和互斥事件的概率,求出(1)和(2)中的每一个事件的概率.本题主要考查了古典概型,概率的加法公式和乘法公式,属于基础题.20.【答案】解:(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B , 甲队得3分,即三人都回答正确,其概率为()222833327P A =⨯⨯=, 甲队得1分,即三人中只有1人回答正确,其余两人都答错, 其概率为()2222222222(1)(1)(1)(1)(1)(1)3333333339P B =⨯-⨯-+-⨯⨯-+-⨯-⨯=. ∴甲队总得分为3分与1分的概率分别为827,29.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D , 事件C 即甲队三人中有2人答对,其余1人答错, 则()2222222224(1)(1)(1)3333333339P C =⨯⨯-+⨯-⨯+-⨯⨯=, 事件D 即乙队3人中只有1人答对,其余2人答错, 则()1231231231(1)(1)(1)(1)(1)(1)2342342344P D =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 由题意得事件C 与事件D 相互独立,∴甲队总得分为2分且乙队总得分为1分的概率:()()()411949P CD P C P D ==⨯=.【解析】(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B ,甲队得3分,即三人都回答正确,甲队得1分,即三人中只有1人回答正确,其余两人都答错,由此利用相互独立事件概率乘法公式能求出甲队总得分为3分与1分的概率.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D ,事件C 即甲队三人中有2人答对,其余1人答错,事件D 即乙队3人中只有1人答对,其余2人答错,由题意得事件C 与事件D 相互独立,由此利用相互独立事件概率乘法公式能求出甲队总得分为2分且乙队总得分为1分的概率. 本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中等题.21.【答案】(1)由题可知,所以可能的情况有①同学甲答对1次,同学乙答对2次; ②同学甲答对2次,同学乙答对1次;③同学甲答对2次,同学乙答对2次.故所求概率2222122122222222312321322443433433P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)他们在轮竞赛中获“优秀小组”的概率为()()()()()()()()22222122122211222122221221212121123P C p p C p C p C p p C p C p p p p p p p =-+-+=+-因为1265p p +=,所以()212121235P p p p p =- 因为101p ≤≤,201p ≤≤,1265p p +=,所以1115p ≤≤,2115p ≤≤,又212129225p p p p ≤+⎛⎫= ⎪⎝⎭所以12192525p p ≤≤, 令12t p p =,则2212212()335525P h t t t t ⎛⎫==-+=--+ ⎪⎝⎭19,525t ⎡⎤∈⎢⎥⎣⎦ 所以当925t =时,max 297625P =,他们小组在n 竞赛中获“优秀小组”次数ξ满足~(,)B n p ξ由max ()9np =,则96251929733625n ==≈,所以理论上至少要进行19轮比赛. 此时1265p p +=,12925p p =,1235p p ==.【解析】(1)由题意可知获“优秀小组”的情况包含三种情况,分别计算概率,再求和; (2)首先计算甲乙同学获得“优秀小组”的概率()()212121223P p p p p p p =+-,再根据1265p p +=,利用基本不等式求12p p 的范围,再将概率表示为二次函数求P 的最大值,根据()max 9np =,计算n 的最小值.本题考查独立事件概率,二项分布,最值的综合应用,重点考查读懂题意,抽象与概括能力,属于中等题型,本题第二问的关键是求出每次获得“优秀小组”的概率的最大值,并能抽象概括他们小组在n 竞赛中获“优秀小组”次数ξ满足~(,)B n p ξ.22.【答案】(1)李明能通过面试的样本空间中样本点:1231241342341234{}A A A A A A A A A A A A A A A A A ,,,,= (2)由(1)知,李明通过面试的概率()()()()()()1231241342341234P A P X A A A P X A A A P X A A A P X A A A P X A A A A ==+=+=+=+=又这4道题目能否答对是独立的,且李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,()123124P X A A A ==,()124130P X A A A ==,()134140P X A A A ==,()134160P X A A A ==,()12341120P X A A A A ==即()18P A =【解析】(1)由题意知李明通过面试的样本点有:1231241342341234A A A A A A A A A A A A A A A A ,,,,; (2)由这4道题目能否答对是独立的,且李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,,即可求得李明通过面试的概率.本题考查了概率的概念及独立事件的概念计算,由题意任意答对3个及以上的题可通过面试即可写出通过面试的所有样本点,根据基本事件的独立性,利用独立事件的乘法概率公式求样本点概率,进而求得通过面试的概率.。
北师大版数学必修一综合测试题及答案
1,已知函数()lg(2),()lg(2),()()().f x x g x x h x f x g x =+=-=+设 (1)求函数()h x 的定义域(2)判断函数()h x 的奇偶性,并说明理由. 解:(1)()()()lg(2)lg(2)h x f x g x x x =+=++-由 20()20x f x x +>⎧=⎨->⎩ 得22x -<< 所以,()h x 的定义域是(-2,2)()f x Q 的定义域关于原点对称()()()lg(2)lg(2)()()()h x f x g x x x g x f x h x -=-+-=-++=+=()h x ∴为偶函数2.已知函数()f x 对一切实数,x y R ∈都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =. (Ⅰ)求(0)f 的值; (Ⅱ)求()f x 的解析式;(Ⅲ)已知a R ∈,设P :当102x <<时,不等式()32f x x a +<+ 恒成立; Q :当[2,2]x ∈-时,()()g x f x ax =-是单调函数。
如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求()R A C B I (R 为全集). ,解析:(Ⅰ)令1,1x y =-=,则由已知(0)(1)1(121)f f -=--++ ∴(0)2f =-(Ⅱ)令0y =, 则()(0)(1)f x f x x -=+ 又∵(0)2f =- ∴2()2f x x x =+-(Ⅲ)不等式()32f x x a +<+ 即2232x x x a +-+<+即21x x a -+<当102x <<时,23114x x <-+<, 又213()24x a -+<恒成立故{|1}A a a =≥又()g x 在[2,2]-上是单调函数,故有112,222a a --≤-≥或 ∴{|3,5}B a a a =≤-≥或 ∴{|35}R C B a a =-<< ∴()R A C B I ={|15}a a ≤<22()2(1)2g x x x ax x a x =+--=+--3,(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.解:(Ⅰ) 设12,[1,)x x ∈+∞,且12x x <,则21212111()()()()f x f x x x x x -=+-+122112(1)()x x x x x x -=- 121x x ≤<Q ∴210x x -> ∴121x x >,∴1210x x ->∴122112(1)()0x x x x x x --> ∴21()()0f x f x ->,即12()()f x f x < ∴()y f x =在[1,)+∞上是增函数4,已知函数f(x)=2x +2ax +b,且f(1)=52,f(2)=174。
2024-2025年北师大版数学必修第一册第一章单元质量评估卷(带答案)
第一章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|x 2-1=0},则下列结论错误..的是( ) A .1∈A B .{-1} A C .∅⊇A D .{-1,1}=A2.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”.其名篇“但使龙城飞将在,不教胡马度阴山”(人在阵地在,人不在阵地在不在不知道),由此推断,胡马度过阴山是龙城飞将不在的什么条件?( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知集合M ={x|x(x -2)<0},N ={x|x -1<0},则下列Venn 图中阴影部分可以表示集合{x|1≤x<2}的是( )4.已知命题p :∃x ,y ∈Z ,2x +4y =3,则( ) A.p 是假命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 B.p 是假命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 C.p 是真命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 D.p 是真命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 5.已知a <0,-1<b <0,则( ) A.-a <ab <0 B .-a >ab >0C.a >ab >ab 2 D .ab >a >ab 26.已知集合A ={x |x 2+x -2≤0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +1x -2≥0 ,则A ∩(∁R B )=( ) A.(-1,2) B .(-1,1) C.(-1,2] D .(-1,1]7.“关于x 的不等式x 2-2ax +a >0的解集为R ”的一个必要不充分条件是( )A.0<a <1 B .0<a <13C.0≤a ≤1 D.a <0或a >138.若正数a ,b 满足2a +1b =1,则2a+b 的最小值为( )A.42 B .82 C.8 D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.有下列命题中,真命题有( )A.∃x ∈N *,使x 为29的约数B.∀x ∈R ,x 2+x +2>0C.存在锐角α,sin α=1.5D.已知A ={a |a =2n },B ={b |b =3m },则对于任意的n ,m ∈N *,都有A ∩B =∅10.已知1a <1b<0,下列结论中正确的是( )A.a <b B .a +b <ab C.|a |>|b | D .ab <b 211.若对任意x ∈A ,1x∈A ,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是( )A.{-1,1} B .⎩⎨⎧⎭⎬⎫12,2 C.{}x |x 2>1 D .{x |x >0}12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(-1,0),则下面结论中正确的是( )A.2a +b =0B.4a -2b +c <0C.b 2-4ac >0D.当y <0时,x <-1或x >4第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.不等式-x 2+6x -8>0的解集为________.14.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值为________.15.若1a +1b =12(a >0,b >0),则4a +b +1的最小值为________.16.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对(A ,B )叫作有序集合对,则有序集合对(A ,B )的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |1<x <2},B ={x |m -2<x <2m }. (1)当m =2时,求A ∩B ;(2)若________,求实数m 的取值范围.请从①∀x ∈A 且x ∉B ;②“x ∈B ”是“x ∈A ”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)已知p :x 2-3x -4≤0;q :x 2-6x +9-m 2≤0,若p 是q 的充分条件,求m 的取值范围.19.(本小题满分12分)已知函数f (x )=ax 2+bx ,a ∈(0,1).(1)若f (1)=2,求1a +4b的最小值;(2)若f (1)=-1,求关于x 的不等式f (x )+1>0的解集.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为y =x 2-40x +1 600,x ∈[30,50],已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合A ={x |x 2+2x -8<0},B ={x ||x +2|>3},C ={x |x2-2mx +m 2-1<0,m ∈R }.(1)若A ∩C =∅,求实数m 的取值范围. (2)若(A ∩B )⊆C ,求实数m 的取值范围.22.(本小题满分12分)已知x >0,y >0,2xy =x +4y +a . (1)当a =16时,求xy 的最小值;(2)当a =0时,求x +y +2x +12y的最小值.第一章 单元质量评估卷1.答案:C解析:因为A ={x |x 2-1=0}={-1,1},所以选项A ,B ,D 均正确,C 不正确. 2.答案:A解析:因为人在阵地在,所以胡马度过阴山说明龙城飞将不在,因为人不在阵地在不在不知道,所以龙城飞将不在,不能确定胡马是否度过阴山,所以胡马度过阴山是龙城飞将不在的充分条件,结合选项,可得A 正确.3.答案:B解析:x (x -2)<0⇒0<x <2,x -1<0⇒x <1,选项A 中Venn 图中阴影部分表示M ∩N =(0,1),不符合题意;选项B 中Venn 图中阴影部分表示∁M (M ∩N )=[1,2),符合题意;选项C 中Venn 图中阴影部分表示∁N (M ∩N )=(-∞,0],不符合题意;选项D 中Venn 图中阴影部分表示M ∪N =(-∞,2),不符合题意.故选B.4.答案:A解析:由于x ,y 是整数,2x +4y 是偶数,所以p 是假命题.原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以p 的否定是“∀x ,y ∈Z ,2x +4y ≠3”.故选A.5.答案:B解析:∵a <0,-1<b <0,∴ab >0,a <ab 2<0,故A ,C ,D 都不正确,正确答案为B.6.答案:D解析:由x 2+x -2≤0,得-2≤x ≤1,∴A =[-2,1].由x +1x -2≥0,得x ≤-1或x >2,∴B =(-∞,-1]∪(2,+∞).则∁R B =(-1,2],∴A ∩(∁R B )=(-1,1].故选D.7.答案:C解析:因为关于x 的不等式x 2-2ax +a >0的解集为R ,所以函数f (x )=x 2-2ax +a 的图象始终落在x 轴的上方,即Δ=4a 2-4a <0,解得0<a <1,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,故选C.8.答案:D解析:∵a >0,b >0,且2a +1b =1,则2a+b =⎝ ⎛⎭⎪⎫2a +b ⎝ ⎛⎭⎪⎫2a +1b =5+2ab+2ab ≥5+4=9,当且仅当2ab =2ab 即a =13,b =3时取等号,故选D.9.答案:AB解析:A 中命题为真命题.当x =1时,x 为29的约数成立;B 中命题是真命题.x 2+x +2=⎝ ⎛⎭⎪⎫x +12 2+74 >0恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0<sin α<1;D 中命题为假命题.易知6∈A ,6∈B ,故A ∩B ≠∅.10.答案:BD解析:因为1a <1b<0,所以b <a <0,故A 错误;因为b <a <0,所以a +b <0,ab >0,所以a +b <ab ,故B 正确;因为b <a <0,所以|a |>|b |不成立,故C 错误;ab -b 2=b (a -b ),因为b <a <0,所以a -b >0,即ab -b 2=b (a -b )<0,所以ab <b 2成立,故D正确.故选BD.11.答案:ABD解析:根据“影子关系”集合的定义,可知{-1,1},⎩⎨⎧⎭⎬⎫12,2 ,{x |x >0}为“影子关系”集合,由{x |x 2>1},得{x |x <-1或x >1},当x =2时,12 ∉{x |x 2>1},故不是“影子关系”集合.故选ABD.12.答案:ABC解析:∵二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为x =1,∴-b2a =1,得2a +b=0,故A 正确;当x =-2时,y =4a -2b +c <0,故B 正确;该函数图象与x 轴有两个交点,则b 2-4ac >0,故C 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴为x =1,点B 的坐标为(-1,0),∴点A 的坐标为(3,0),∴当y <0时,x <-1或x >3,故D 错误.故选ABC.13.答案:(2,4)(或写成{x |2<x <4}) 解析:原不等式等价于x 2-6x +8<0, 即(x -2)(x -4)<0,得2<x <4. 14.答案:20解析:把一月份至十月份的销售额相加求和,列出不等式,求解. 七月份:500(1+x %),八月份:500(1+x %)2. 所以一月份至十月份的销售总额为:3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-2.2(舍)或1+x %≥1.2,所以x min =20. 15.答案:19解析:由1a +1b =12 ,得2a +2b=1,4a +b +1=(4a +b )⎝ ⎛⎭⎪⎫2a +2b +1=8+2+8a b +2b a+1≥11+28a b ·2ba=19.当且仅当8a b =2ba,即a =3,b =6时,4a +b +1取得最小值19.16.答案:(1){6} (2)32解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个;当集合A 中有2个元素时,5∉B ,2∉A ,此时有序集合对(A ,B )有5个;当集合A中有3个元素时,4∉B ,3∉A ,此时有序集合对(A ,B )有10个;当集合A 中有4个元素时,3∉B ,4∉A ,此时有序集合对(A ,B )有10个;当集合A 中有5个元素时,2∉B ,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个.综上,可知有序集合对(A ,B )的个数是1+5+10+10+5+1=32.17.解析:(1)当m =2时,B ={x |0<x <4}, 所以A ∩B ={x |1<x <2}. (2)若选择条件①,由∀x ∈A 且x ∉B 得:A ∩B =∅, 当B =∅时,m -2≥2m ,即m ≤-2; 当B ≠∅时,m -2<2m ,即m >-2m -2≥2或2m ≤1,即m ≥4或m ≤12 , 所以m ≥4或-2<m ≤12,综上所述:m 的取值范围为:m ≥4或m ≤12.若选择条件②,由“x ∈B ”是“x ∈A ”的必要条件得:A ⊆B,即⎩⎪⎨⎪⎧m -2≤12m ≥2 ,所以1≤m ≤3. 18.解析:由x 2-3x -4≤0,解得-1≤x ≤4, 由x 2-6x +9-m 2≤0,可得[x -(3+m )][x -(3-m )]≤0,① 当m =0时,①式的解集为{x |x =3};当m <0时,①式的解集为{x |3+m ≤x ≤3-m }; 当m >0时,①式的解集为{x |3-m ≤x ≤3+m };若p 是q 的充分条件,则集合{x |-1≤x ≤4}是①式解集的子集.可得⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m ≥4 或⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m ≥4,解得m ≤-4或m ≥4.故m 的取值范围是(-∞,-4]∪[4,+∞). 19.解析:(1)由f (1)=2可得:a +b =2, 因为a ∈(0,1),所以2-b ∈(0,1)⇒1<b <2,所以1a +4b =12 ×(a +b )⎝ ⎛⎭⎪⎫1a +4b =12 ×⎝ ⎛⎭⎪⎫1+4+b a +4a b ≥12 ×⎝ ⎛⎭⎪⎫5+2b a ·4a b =92,当且仅当b a =4a b 时取等号,即当且仅当a =23 ,b =43 时取得最小值为92.(2)由f (1)=-1可得:a +b =-1, 则f (x )+1>0化为:ax 2-(a +1)x +1=(ax -1)(x -1)>0,因为0<a <1,所以1a>1,则解不等式可得x >1a或x <1,则不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1a或x <1 .20.解析:(1)当x ∈[30,50]时,设该工厂获利为S 万元,则S =20x -(x 2-40x +1 600)=-(x -30)2-700,所以当x ∈[30,50]时,S 的最大值为-700,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题知,二氧化碳的平均处理成本P =y x=x +1 600x-40,x ∈[30,50],当x ∈[30,50]时,P =x +1 600x-40≥2x ·1 600x-40=40,当且仅当x =1 600x,即x =40时等号成立,所以当处理量为40吨时,每吨的平均处理成本最少.21.解析:(1)由已知可得A ={x |-4<x <2},B ={x |x <-5或x >1},C ={x |m -1<x <m +1}.若A ∩C =∅,则m -1≥2或m +1≤-4, 解得m ≥3或m ≤-5.所以实数m 的取值范围为{m |m ≤-5或m ≥3}. (2)结合(1)可得A ∩B ={x |1<x <2}.若(A ∩B )⊆C ,即{x |1<x <2}⊆{x |m -1<x <m +1}, 则⎩⎪⎨⎪⎧m -1≤1m +1≥2,解得1≤m ≤2.所以实数m 的取值范围为{m |1≤m ≤2}.22.解析:(1)当a =16时,2xy =x +4y +16≥2x ·4y +16=4xy +16, 即2xy ≥4xy +16, 即(xy +2)(xy -4)≥0, 所以xy ≥4,即xy ≥16,当且仅当x =4y =8时等号成立, 所以xy 的最小值为16.(2)当a =0时,2xy =x +4y ,即12y +2x=1,所以x+y+2x+12y=x+y+1=(x+y)⎝⎛⎭⎪⎫2x+12y+1=72+2yx+x2y≥72+22yx·x2y=112,当且仅当2yx=x2y,即x=3,y=32时等号成立,所以x+y+2x+12y的最小值为112.。
2022版高中数学综合测评含解析北师大版必修1
高中数学北师大版必修1:综合测评(满分:150分;时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={-1,0,1,2,3,4},集合A ={0,1,2},集合B ={-1,0,3},则(∁U A )∩B = ( ) A.{-1} B.{0,1} C.{-1,3} D.{-1,0,1,3}2.函数f (x )=√9-x 2log 2(x +1)的定义域是 ( )A.(-1,3)B.(-1,3]C.(-1,0)∪(0,3)D.(-1,0)∪(0,3]3.函数f (x )=(m 2-m -1)x m是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是 ( )A.-1B.2C.3D.-1或24.函数f (x )=πx +log 2x 的零点所在区间为 ( )A.(0,18)B.(18,14) C.(14,12)D.(12,1)5.三个数(12)e,e 12,ln 12的大小关系为 ( )A.ln 12<(12)e<e 12B.(12)e<ln 12<e 12C.ln 12<e 12<(12)e D.(12)e<e 12<ln 126.已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则a 的取值范围是 ( )A.(-∞,4]B.(-4,2]C.(-4,4]D.(-∞,2]7.关于x 的方程2ax 2-x -1=0在0<x <1内恰有一解,则a 的取值范围是 ( ) A.a <-1 B.a >1 C.-1<a <1D.0<a ≤18.函数y =x -5x -x -2在(-1,+∞)上单调递增,则a 的取值范围是 ( )A.a =-3B.a <3C.a ≤-3D.a ≥-39.对于函数f (x ),在使f (x )≤m 恒成立的式子中,常数m 的最小值称为函数f (x )的“上界值”,则函数f (x )=3x -33x +3的“上界值”为( )A.2B.-2C.1D.-110.函数f (x )=(3-x 2)·ln|x |的图像大致是( )11.在考古学中,要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性14C,动植物死亡后,停止新陈代谢,14C 不再产生,且原有的14C 会自动衰变.经科学测定,14C 的半衰期为5730年设14C 的原始量为1,经过x 年后,14C 的含量f (x )=a x(a >0,且a ≠1),且有f (5730)=12,现有一古物,测得其14C 的含量为原始量的79.37%,则该古物距今的年数约为参考数据:√123≈0.7937,√125730≈0.9998 ( )A.17190B.9168C.3581D.191012.已知f (x )是定义在(0,+∞)上的单调函数,并且满足f [f (x )-e x-2ln x ]=e+1,则函数f (x )的零点所在的区间为( )A.(1e 3,1e 2) B.(1e 2,1e )C.(1e,1)D.(1,e)二、填空题(本大题共4小题,每小题5分,共20分.将答 案填在题中横线上)13.已知全集U =R,集合M ={x |1≤x ≤4},N ={x |1<log 2(x +2)<2},则(∁U M )∪N = . 14.已知f (x )=3-x,若f (a )+f (-a )=3,则f (2a )+f (-2a )= . 15.已知a >b >1,若log a b +log b a =103,a b=b a,则ab = . 16.已知函数f (x )={|x -1|,0≤x ≤2,(12)x -1,2<x ≤3,若存在实数x 1,x 2,x 3,当0≤x 1<x 2<x 3≤3时,f (x 1)=f (x 2)=f (x 3),则(x 1+x 2)·x 2·f (x 3)的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)化简求值:(1)(278)-23-(499)0.5+(0.008)-23×225;(2)log535-2log0.5√2-log5150-log514-5log53.18.(本小题满分12分)已知集合A={x|-2<x<3},集合B={x|x>1},集合C={x|x<a}.(1)求A∩B,A∪B;(2)设全集为R,若A⊆∁R C,求实数a的取值范围.19.(本小题满分12分)已知二次函数的零点为0和2,且f(1)=-1.(1)求二次函数的解析式;(2)若函数g(x)=f(x)-2ax+2,求g(x)在[1,2]上的最小值.20.(本小题满分12分)某旅游公司为入境游玩的外国游客提供移动Wi-Fi租赁服务,每台设备押金800元,最多租借30天,丢失或逾期未还,押金不退.收费标准如下:租借10天以内(含10天),按每台每天40元收费(不足一天按一天收费);租借10天以上的部分采取优惠政策,每多租借1天,这部分的平均日租费用减少2元,如:租借一台设备12天,则前10天按每天40元收费,后2天的平均日租费用为40-(12-10)×2=36元,所以后2天按每天36元收费.(1)若某客户租借一台设备x天(1≤x≤30,x∈N),写出应收费用y(元)关于x(天)的函数关系式;(2)客户租借一台设备多少天时,该公司所获租借费用最高?最高为多少元?21.(本小题满分12分)已知函数f(x)=log a x+b(其中a,b均为常数,a>0且a≠1)的图像经过点(2,5)与点(8,7).(1)求a,b的值;(2)设函数g(x)=b x-a x+2,若对任意的x1∈[1,4],存在x2∈[0,log25],使得f(x1)=g(x2)+m成立,求实数m的取值范围.22.(本小题满分12分)已知函数f(x)=e2x+(t+1)e x+t.(1)当t=-e时,求不等式f(x)≥0的解集;(2)若对任意x∈R,不等式f(x)<e x(e x+1)+1e x+1-4恒成立,求t的最大值;(3)对于函数g(x),若∀a,b,c∈R,g(a),g(b),g(c)为某一三角形的三边长,则称g(x)为“可构造三角形函数”,已知函数g(x)=x(x)(e x+1)2是“可构造三角形函数”,求实数t的取值范围.答案全解全析 全书综合测评1.C2.D3.B4.C5.A6.C7.B8.C9.C 10.A 11.D12.B一、选择题1.C 由全集U ={-1,0,1,2,3,4},集合A ={0,1,2},可得∁U A ={-1,3,4},又集合B ={-1,0,3},所以(∁U A )∩B ={-1,3}.故选C .2.D 要使函数f (x )有意义,则{9-x 2≥0,x +1>0,log 2(x +1)≠0,即{x 2≤9,x >-1,x +1≠1,即{-3≤x ≤3,x >-1,x ≠0,所以-1<x ≤3且x ≠0,故函数f (x )的定义域为(-1,0)∪(0,3].故选D .3.B 由函数f (x )=(m 2-m -1)x m 是幂函数知,m 2-m -1=1,即m 2-m -2=0,解得m =-1或m =2,因此f (x )=x -1或f (x )=x 2.又f (x )在x ∈(0,+∞)上为增函数,故f (x )=x 2,故选B .4.C ∵f (18)=π8+log 218=π8-3<0,f (14)=π4+log 214=π4-2<0,f (12)=π2+log 212=π2-1>0,f (1)=π+log 21=π>0,∴f (14)·f (12)<0,又f (x )的图像是连续曲线,且f (x )在定义域上为增函数,∴f (x )的零点所在区间为(14,12),故选C .5.A 由y =(12)x 是减函数知,0<(12)e <(12)0=1; 由y =e x是增函数知,e 12>e 0=1; 由y =ln x 是增函数知,ln 12<ln1=0. 因此ln 12<(12)e<e 12,故选A . 6.C 设u =x 2-ax +3a ,依题意得u =x 2-ax +3a 在[2,+∞)上是增函数,因此x2≤2,即a ≤4,①又f (x )在[2,+∞)上有意义,结合单调性知,当x =2时,u =4-2a +3a >0,解得a >-4.② 由①②知,-4<a ≤4,故选C .7.B 当a =0时,x =-1∉(0,1),不符合题意,∴a ≠0,令f (x )=2ax 2-x -1,有f (0)=-1,f (1)=2(a -1),关于x 方程2ax 2-x -1=0在0<x <1内恰有一解等价于f (x )=2ax 2-x -1在0<x <1内恰有一个零点,要使f (x )在0<x <1内恰有一个零点,需使f (0)·f (1)<0, 则-2(a -1)<0,∴a >1. 故选B . 易错提醒二次项系数中含有参数a ,要注意对a 进行分类讨论. 8.C y =x -5x -x -2=1+x -3x -(x +2),由函数在(-1,+∞)上单调递增, 得{x -3<0,x +2≤-1,解得a ≤-3,故选C .9.C f (x )=3x +3-63x+3=1-63x+3.∵3x>0,∴3x+3>3, 从而0<63x +3<63=2⇒-2<-63x +3<0⇒-1<-63x +3+1<1, ∴f (x )的值域为(-1,1). 由f (x )≤m 恒成立知,m ≥1, 故m 的最小值为1,即f (x )的“上界值”为1,故选C .10.A f (-x )=(3-x 2)ln|x |=f (x ),函数f (x )的定义域关于原点对称,即f (x )是偶函数,当0<x <1时,3-x 2>0,ln|x |=ln x <0,因此f (x )<0,故选A .11.D 设14C 的原始量为1,经过x 年后,14C 的含量f (x )=a x,由题意可知:f (5730)=12,∴a5730=12,∴a =√125730.∵f (x )=0.7937,∴a x=0.7937,∴x =log a 0.7937=lg0.7937lg x≈lg √13lg √25730=13lg 1215730lg 12=57303=1910,∴该古物距今约1910年.故选D .12.B 设f (x )-e x-2ln x =c ,则f (x )=e x+2ln x +c ,且f (c )=e+1.由f (x )=e x+2ln x +c 在(0,+∞)上单调递增,且f (1)=e+c 得c =1,因此,f (x )=e x+2ln x +1,所以f (1e 2)=e 1e 2+2ln 1e 2+1=e 1e 2-3<e-3<0,f (1e )=e 1e +2ln 1e +1=e 1e -1>e 0-1=0,又f (x )的图像是连续曲线,所以函数f (x )的零点所在的区间为(1e 2,1e ),故选B . 二、填空题13.答案 (-∞,2)∪(4,+∞)解析 集合N 中不等式变形得,log 22<log 2(x +2)<log 24,即2<x +2<4,解得0<x <2,即N ={x |0<x <2}.∵M ={x |1≤x ≤4},∴∁U M ={x |x >4或x <1},∴(∁U M )∪N ={x |x <2或x >4}. 14.答案 7解析 依题意得f (a )+f (-a )=3-a+3a=3,∴(3a +3-a )2=3-2a +32a +2=9,∴f (-2a )+f (2a )=32a +3-2a=7. 15.答案 9解析 log a b +log b a =1logxx+log b a =103, 整理,得3(log b a )2-10log b a +3=0,解得log b a =3或log b a =13.因为a >b >1,所以log b a >1,则log b a =3,即a =b 3.因为a b=b a,所以b 3b=x x 3,所以3b =b 3,解得b =-√3或b =√3或b =0.因为b >1,所以b =√3,所以a =(√3)3=3√3,所以ab =3√3×√3=9. 16.答案 [58,32)解析 根据题意作出函数f (x )的图像,如图所示:由图知x 1+x 2=2,1-x 1=x 2-1=(12)x 3-1,即x 2=(12)x 3-1+1,令y =(x 1+x 2)·x 2·f (x 3) =2[(12)x 3-1+1](12)x 3-1,令t =(12)x 3-1,由x 3∈(2,3],得t ∈[14,12),又y =2(t +1)t =2t 2+2t =2(x +12)2-12,所以58≤y <32,因此所求的取值范围是[58,32).三、解答题17.解析 (1)原式=(3323)-23-(7232)12+(23103)-23×225=(32)-2-73+(15)-2×225 =49-73+25×225=19. (5分)(2)原式=log 57+1-2lo g 12√2+log 550-log 52-log 57-3=log 57+1+2×12×log 22+log 52+2-log 52-log 57-3 =1+1+2-3=1. (10分)18.解析 (1)A ∩B ={x |1<x <3}; (3分)A ∪B ={x |x >-2}.(6分)(2)∁R C ={x |x ≥a }, 画数轴如图所示:(10分)由图知a ≤-2,故a 的取值范围是(-∞,-2].(12分) 19.解析 (1)设f (x )=mx (x -2),m ≠0. 因为f (1)=-1,所以m =1, 所以f (x )=x 2-2x.(4分)(2)由(1)可知g (x )=x 2-2x -2ax +2,函数图像的对称轴方程为x =a +1. (6分)①当a +1≤1,即a ≤0时,在[1,2]上g (1)=1-2a 为最小值; ②当1<a +1≤2,即0<a ≤1时,在[1,2]上g (a +1)=-a 2-2a +1为最小值;③当a +1>2,即a >1时,在[1,2]上g (2)=2-4a 为最小值. (11分) 综上可得,在[1,2]上,g (x )min ={1-2x ,x ≤0,-x 2-2x +1,0<x ≤1,2-4x ,x >1.(12分)20.解析 (1)依题意得,y ={40x ,1≤x ≤10,x ∈x ,400+(60-2x )(x -10),10<x ≤30,x ∈N,即y ={40x ,1≤x ≤10,x ∈x ,-2x 2+80x -200,10<x ≤30,x ∈N.(6分)(2)当1≤x ≤10,x ∈N 时,40≤y ≤400; 当10<x ≤30,x ∈N 时,y =-2(x -20)2+600, 当x =20时,y max =600, (11分)所以当客户租借一台设备20天时,该公司所获租借费用最高,最高为600元. (12分) 21.解析 (1)由已知得{log x 2+x =5,log x 8+x =7,消去b ,得log a 8-log a 2=log a 4=2,即 a 2=4,又a >0,且a ≠1, 所以a =2,b =4. (4分)(2)由(1)知函数f (x )的解析式为f (x )=log 2x +4,g (x )的解析式为g (x )=4x -2x +2. (5分) 当x ∈[1,4]时,函数f (x )=log 2x +4单调递增,其值域为A =[4,6]; 令2x=t ,当x ∈[0,log 25]时,t ∈[1,5], 于是y =t 2-4t =(t -2)2-4∈[-4,5].设函数h (x )=g (x )+m ,则函数h (x )的值域为B =[-4+m ,5+m ], (8分)根据条件知A ⊆B ,于是{5+x ≥6,-4+x ≤4, (10分)解得1≤m ≤8.所以实数m 的取值范围为[1,8].(12分)22.解析 (1)当t =-e 时,不等式f (x )≥0,即(e x+1)(e x-e)≥0, (2分) ∴e x≥e,解得x ≥1,∴不等式f (x )≥0的解集为[1,+∞). (3分) (2)不等式f (x )<e x (e x+1)+1e x +1-4, 即e 2x+(t +1)e x +t <e x (e x+1)+1e x +1-4,即t <1(e x +1)2-4e x +1对任意x ∈R 恒成立, (5分)记h (x )=1(e x +1)2-4e x +1(x ∈R). (6分)当x ∈R 时,1e x +1∈(0,1),则h (x )=(1e x +1-2)2-4∈(-3,0), (7分) ∴t max =-3.(8分)(3)由于函数g (x )=x (x )(e x +1)2=e x +x e x +1=1+x -1e x +1是“可构造三角形函数”,首先,必有t ≥0才能保证g (x )>0; 其次,必需g (x )max <2g (x )min ,(9分)而当0≤t <1时,g (x )=e x +xe x +1=1+x -1e x +1是R 上的增函数,则g (x )的值域为(t ,1), 由1≤2t ,得12≤t ,∴12≤t <1;当t =1时,g (x )=1,符合题意; (10分) 而当t >1时,g (x )=e x +x e x +1=1+x -1e x +1是R 上的减函数,则g (x )的值域为(1,t ),由t ≤2⇒1<t ≤2. 综上所述,t ∈[12,2].(12分)解析 由(17)x =13得a =log 73,又b =log 74,∴log 4948=lg48lg49=lg3+2lg42lg7=log 73+2log 742=x +2x2.。
北师大版高中数学必修一模块综合测评(附解析)
北师大版高中数学必修一模块综合测评(解析版)一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A)∪(∁U B)等于()A. {1,6}B. {4,5}C. {2,3,4,5,7}D. {1,2,3,6,7}【答案】D【解析】【分析】由题意首先求解补集,然后进行并集运算即可.【详解】由补集的定义可得:∁U A={1,3,6},∁U B={1,2,6,7}, 所以(∁U A)∪(∁U B)={1,2,3,6,7}. 本题选择D选项. 【点睛】本题主要考查补集的运算,并集运算等知识,意在考查学生的转化能力和计算求解能力.2.设A={x|0≤x≤2},B={y|1≤y≤2},在下列各图中能表示从A到B的映射的是()A. B. C. D.【答案】D【解析】A:当0<x<1时,y<1,所以集合A到集合B不成映射,故A不成立;B:1≤x≤2时,y<1,所以集合A到集合B不成映射,故B不成立;C:0≤x≤1时,任取一个x值,在0≤y≤2内,有两个y值与之相对应,所以构不成映射,故C不成立;D:0≤x≤1时,任取一个x值,在0≤y≤2内,总有唯一确定的一个y值与之相对应,故D成立。
故选D3.已知函数的定义域为M,g(x)=的定义域为N,则M∩N=A. B. C. D.【答案】C 【解析】考查函数的定义域和集合的基本运算。
由解不等式1-x>0求得M=(-,1),由解不等式1+x>0求得N=(-1,+),因而MN=(-1,1),故选C 。
4.若幂函数的图象过点,则它的单调递增区间是( )A. (0,+∞)B. [0,+∞)C. (-∞,+∞)D. (-∞,0)【答案】D 【解析】本题主要考查的是幂函数的图像与性质。
设幂函数为,因为图像过,所以。
由幂函数的性质:当时,在上是减函数。
又为偶函数,所以在上是增函数。
(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)
第一章综合测试第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}12323A B ==,,,,,则( ) A .A B =B .AB =∅C .AB D .B A2.已知全集U =R ,集合{}{}010M x x N x x ==<≤,≤,则()U M N =( )A .{}01x x ≤<B .{}01x x <≤C .{}01x x ≤≤D .{}1x x <3.已知集合{}{}211M a P a ==--,,,,若MP 有三个元素,则MP =( )A .{}01,B .{}01-,C .{}0D .{}1-4.命题“200x x x ∀+≥,≥”的否定是( ) A .200x x x ∃+<,<B .200x x x ∃+≥,≤C .200x x x ∃+≥,<D .200x x x ∃+<,≥ 5.已知010a b -<,<<,则( ) A .0a ab -<<B .0a ab ->>C .2a ab ab >>D .2ab a ab >>6.已知集合{}212002x A x x x B xx ⎧⎫+=+-=⎨⎬-⎩⎭≤,≥,则()A B =R ( )A .()12-,B .()11-,C .(]12-,D .(]11-,7.“关于x 的不等式220x ax a -+>的解集为R ”的一个必要不充分条件是( )A .01a <<B .103a << C .01a ≤≤D .103a a <或>8.若正数a b ,满足121a b +=,则2b a+的最小值为( )A .B .C .8D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分) 9.有下列命题中,真命题有( ) A .*x ∃∈N ,使x 为29的约数 B .220x x x ∀∈++R ,> C .存在锐角sin 1.5a α=,D .已知{}{}23A a a n B b b m ====,,则对于任意的*n m ∈N ,,都有AB =∅10.已知110a b<<,下列结论中正确的是 ( )A .a b <B .a b ab +<C .a b >D .2ab b <11.如下图,二次函数()20y ax bx c a =++≠的图像与x 轴交于A B ,两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为()10-,,则下面结论中正确的是( )A .20a b +=B .420a b c -+<C .240b ac ->D .当0y <时,1x -<或4x >12.设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有aa b a b ab P b+-∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( ) A .有理数集Q 是一个数域 B .整数集是数域C .若有理数集M ⊆Q ,则数集M 必为数域D .数域必为无限集第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.不等式2680x x -+->的解集为________.14.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()*0100x x x ∈N <<,人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2%x .若要保证产品A 的年产值不减少,则最多能分流的人数是________. 15.若()11102a b a b +=>,>,则41a b ++的最小值为________. 16.已知非空集合A B ,满足下列四个条件: ①{}1234567A B =,,,,,,; ②AB =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对()A B ,叫作有序集合对,则有序集合对()A B ,的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知全集为实数集R ,集合{}{}1721A x x B x m x m ==-+≤≤,<<. (1)若5m =,求()A B A B R ,;(2)若A B A =,求m 的取值范围.18.(本小题满分12分)已知不等式()21460a x x --+>的解集为{}31x x -<<.(1)求a 的值;(2)若不等式230ax mx ++≥的解集为R ,求实数m 的取值范围.19.(本小题满分12分)已知2340P x x --:≤;2269q x x m -+-:≤0,若p 是q 的充分条件,求m 的取值范围.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为[]24016003050y x x x =-+∈,,,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合{}2280A x x x =+-<,{}13B x x =+>,{}22210C x x mx m m =-+-∈R <,.(1)若A C =∅,求实数m 的取值范围.(2)若()A B C ⊆,求实数m 的取值范围.22.(本小题满分12分)已知正实数a b ,满足1a b +=,求2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值.第一章综合测试答案解析一、 1.【答案】D【解析】由真子集的概念,知B A ,故选D .2.【答案】B【解析】{}(){}001U U N x x M N x x ==∵>,∴<≤.故选B .3.【答案】C【解析】由题意知2a a =-,解得0a =或1a =-.①当0a =时,{}{}{}1010101M P M P ==-=-,,,,,,,满足条件,此时{}0M P =;②当1a =-时,21a =,与集合M 中元素的互异性矛盾,舍去,故选C .4.【答案】C【解析】“200x x x ∀+≥,≥”的否定是“200x x x ∃+≥,<”. 5.【答案】B【解析】201000a b ab a ab -∵<,<<,∴>,<<,故A ,C ,D 都不正确,正确答案为B . 6.【答案】D【解析】由220x x +-≤,得[]2121x A -=-≤≤,∴,.由102x x +-≥,得1x -≤或2x >,(]()12B =-∞-+∞∴,,.则(]12B =-R,,()(]11A B =-R ∴,.故选D . 7.【答案】C【解析】因为关于x 的不等式220x ax a -+>的解集为R ,所以函数()22f x x ax a =-+的图象始终落在x轴的上方,即2440a a ∆=-<,解得01a <<,因为要找其必要不充分条件,从而得到()01,是对应集合的真子集,故选C . 8.【答案】D【解析】00a b ∵>,>,且121b b +=,则2212252549b b a ab a a b ab ⎛⎫⎛⎫+=++=+++= ⎪⎪⎝⎭⎝⎭≥,当且仅当22ab ab =即133a b ==,时取等号,故选D . 二、9.【答案】AB【解析】A 中命题为真命题.当1x =时,x 为29的约数成立;B 中命题是真命题.22172024x x x ⎛⎫++=++ ⎪⎝⎭>恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0sin 1a <<;D 中命题为假命题.易知66A B ∈∈,,故A B ≠∅.10.【答案】BD【解析】因为110a b<<,所以0b a <<,故A 错误;因为0b a <<,所以00a b ab +<,>,所以a b ab +<,故B 正确;因为0b a <<,所以a b >不成立,故C 错误;()2ab b b a b -=-,因为0b a <<,所以0a b ->,即()20ab b b a b -=-<,所以2ab b <成立,故D 正确.故选BD .11.【答案】ABC【解析】∵二次函数()20y ax bx c a =++≠图象的对称轴为112bx a==,∴-,得20a b +=,故A 正确;当2x =-时,420y a b c =-+<,故B 正确;该函数图象与x 轴有两个交点,则240b ac ->,故C 正确;∵二次函数()20y ax bx c c =++≠的图象的对称轴为1x =,点B 的坐标为()10-,,∴点A 的坐标为()30,,∴当0y <时,1x -<或3x >,故D 错误,故选ABC.12.【答案】AD【解析】若a b ∈Q ,,则a b +∈Q ,a b -∈Q ,ab ∈Q ,()0ab b∈≠Q ,所以有理数Q 是一个数域,故A正确;因为1122∈∈∉Z Z Z ,,,所以整数集不是数域,B 不正确;令数集{}2M =Q,则1M M ∈,但1M ,所以C 不正确;根据定义,如果()0a b b ≠,在数域中,那么2a b a b a kb +++,,…,(k k 为整数),…都在数域中,故数域必为无限集,D 正确.故选AD . 三、13.【答案】()24,(或写成{}24x x <<) 【解析】原不等式等价于2680x x -+<,即()()240x x --<,得24x <<. 14.【答案】16【解析】由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为()()1001 1.2%x x t -+,由()()01001001 1.2%100x x x t t ⎧⎪⎨-+⎪⎩<<≥,解得5003x <≤.因为*x ∈N ,所以x 的最大值为16.15.【答案】19 【解析】由1112a b +=,得221a b+=, ()228241418211119a b a b a b a b b a a ⎛⎫++=+++=+++++= ⎪⎝⎭≥.当且仅当82a bb a=,即36a b ==,时,41a b ++取得最小值19. 16.【答案】(1){}6 (2)32【解析】(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6B ∉,故{}6A =.(2)当集合A 中有1个元素时,{}6A =,{}123457B =,,,,,,此时有序集合对()A B ,有1个;当集合A 中有2个元素时,5B ∉,2A ∉,此时有序集合对()A B ,有5个;当集合A 中有3个元素时,4B ∉,3A ∉,此时有序集合对()A B ,有10个;当集合A 中有4个元素时,3A ∉,4A ∉,此时有序集合对()A B ,有10个;当集合A 中有5个元素时,2B ∉,5A ∉,此时有序集合对()A B ,有5个;当集合A 中有6个元素时,{}123457A =,,,,,,{}6B =,此时有序集合对()A B ,有1个.综上,可知有序集合对()A B ,的个数是1510105132+++++=.四、17.【答案】解:(1){}595m B x x ==-∵,∴<<,又{}17A x x =≤≤,{}97A B x x =-∴<≤.又{}17A x x x =R<,或>,(){}91A B x x =-R ∴<<.(2)AB A A B =⊆∵,∴,2117m m -+⎧⎨⎩<∴>,即07m m ⎧⎨⎩>>,解得7m >.m ∴的取值范围是{}7m m >.18.【答案】解(1)由已知,10a -<,且方程()21460a x x --+=的两根为31-,, 有4311631aa⎧=-+⎪⎪-⎨⎪=-⎪-⎩,解得3a =.(2)不等式2330x mx ++≥的解集为R , 则24330m ∆=-⨯⨯≤,解得66m -≤≤,实数m 的取值范围为[]66-,. 19.【答案】解:由2340x x --≤,解得14x -≤≤, 由22690x x m -+-≤,可得()()330x m x m ⎡-+⎤⎡--⎤⎣⎦⎣⎦≤,① 当0m =时,①式的解集为{}3x x =;当0m <时,①式的解集为{}33x m x m +-≤≤; 当0m >时,①式的解集为{}33x m x m -+≤≤;当p 是q 的充分条件,则集合{}14x x -≤≤是①式解集在的子集.可得03134m m m ⎧⎪+-⎨⎪-⎩<≤≥或03134m m m ⎧⎪--⎨⎪+⎩>≤≥, 解得4m -≤或4m ≥.故m 的取值范围是(][)44-∞-+∞,,. 20.【答案】解:(1)当[]3050x ∈,时,设该工厂获利为S 万元, 则()()222040160030700S x x x x =--+=---,所以当[]3050x ∈,时,S 的最大值为700-,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损. (2)由题知,二氧化碳的平均处理成本[]1600403050x P x x y x=+-∈,,,当[]3050x ∈,时,1600404040P x x x x=+--=≥, 当且仅当1600x x=,即40x =时等号成立,所以当处理最为40吨时,每吨的平均处理成本最少. 21.【答案】解:(1)由已知可得{}42A x x =-<<,{}51B x x x =-<或>,{}11C x m x m =-+<<.若A C =∅,则12m -≥或14m +-≤, 解得3m ≥或5m -≤.所以实数m 的取值范围为{}53m m m -≤或≥. (2)结合(1)可得{}12A B x x =<<.若()AB C ⊆,即{}{}1211x x x m x m ⊆-+<<<<,则1112m m -⎧⎨+⎩≤≥, 解得12m ≤≤.所以实数m 的取值范围为{}12m m ≤≤.22.【答案】解:()()()22222222222222211114111421411214a b a b a b a b a b a b ab a b a b ab a b ⎛⎫⎛⎫+++=++++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎡⎤=+++=+-++ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎛⎫=-++ ⎪⎝⎭,由1a b +=,得2124a b ab +⎛⎫= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以1112122ab --=≥,且22116a b≥,所以()2211125116422a b a b ⎛⎫⎛⎫+++⨯++= ⎪ ⎪⎝⎭⎝⎭≥,所以2211a b a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值为252.。
(北师大版)高中数学必修第一册第三章综合测试01(含答案)
第三章综合测试第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1111242x M N xx +⎧⎫=−=∈⎨⎬⎩⎭Z ,,<<,,则M N 为( )A .{}11−,B .{}1−C .{}0D .{}10−,2.在下列根式与分数指数幂的互化中,正确的是( ) A .())0.50x x −=≠B()130yy =<C.)340x xy y −⎛⎫=≠ ⎪⎝⎭D.13x−=3.已知关于x 的不等式42133x x −−⎛⎫⎪⎝⎭>,则该不等式的解集为( )A .[)4+∞,B .()4−+∞,C .()4−∞−,D .(]41−,4.下列函数中,值域为+R 的是( )A .125xy −=B .113xy −⎛⎫= ⎪⎝⎭C.y =D.y =5.已知函数()2020xx a x f x x −⎧⎪=⎨⎪⎩,≥,<若()()11f f −=,则a =( )A .14B .12C .1D .26.已知3114221133a b c π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则下列不等式正确的是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>7.已知函数()()()x xf x x e ae x −=+∈R ,若()f x 是偶函数,记a m =,若()f x 是奇函数,记a n =,则2m n +的值为( )A .0B .1C .2D .1−8.在下图中,二次函数2y bx ax =+与指数函数xa yb ⎛⎫= ⎪⎝⎭的图象只可能是( )二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分)9.若函数()1x y a b =+−(0a >,且1a ≠)的图象不经过第二象限,则有( ) A .1a >B .01a <<C .1b >D .0b ≤10.已知函数()133xxf x ⎛⎫=− ⎪⎝⎭,则()f x ( )A .是奇函数B .是偶函数C .在R 上是增函数D .在R 上是减函数11.设指数函数()x f x a =(0a >,且1a ≠),则下列等式中正确的是( ) A .()()()f x y f x f y +=B .()()()f x f x y f y −=C .()()()nf nx f x n =∈⎡⎤⎣⎦QD .()()()()nnnf xy f x f y n +=∈⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦N12.已知3515a b ==,则a b ,可能满足的关系是( ) A .4a b +>B .4ab >C .()()22112a b −+−>D .228a b +<第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知函数()f x 是指数函数,且35225f ⎛⎫−=⎪⎝⎭,则()f x =________. 14.函数()2223x xf x −⎛⎫= ⎪⎝⎭的单调递减区间是________,值域为________.15.已知函数()x af x e −=(a 为常数).若()f x 在区间[)1+∞,上是增函数,则a 的取值范围是________. 16.设函数()31121x x x f x x −⎧=⎨⎩,<,≥,则满足()()2f a f f a =⎡⎤⎣⎦的a 的取值范围是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)00.54413925421e −⎛⎫⎛⎫−++− ⎪ ⎪−⎝⎭⎝⎭;(2)若346a b c ==,则1112a b c+−.18.(本小题满分12分)函数()y F x =的图象如图所示,该图象由指数函数()x f x a =与幂函数()b g x x =“拼接”而成. (1)求()F x 的解析式;(2)比较b a 与a b 的大小;(3)若()()432bbm m −−+−<,求m 的取值范围.19.(本小题满分12分)设()0x xe aa f x a e =+>,是R 上的偶函数.(1)求a 的值;(2)证明()f x 在()0+∞,上是增函数.20.(本小题满分12分)某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题: (1)写出x 年后该城市的人口总数y (万人)与年数x (年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万);(3)计算大约多少年以后该城市人口总数将达到120万(精确到1年).()()()1015161 1.2% 1.1271 1.2% 1.1961 1.2% 1.21⎡⎤+≈+≈+≈⎣⎦,,21.(本小题满分12分)已知函数()x f x b a =(其中a b ,为常数,且01a a ≠>,)的图象经过点()()16324A B ,,,.(1)试确定()f x ;(2)若不等式110x xm a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]81x ∈−,时恒成立,求实数m 的取值范围.22.(本小题满分12分)已知()f x 是定义在()11−,上的奇函数,当()01x ∈,时,()241xx f x =+. (1)求()f x 在()11−,上的解析式;(2)求()f x 的值域.第三章综合测试 答案解析1.【答案】B【解析】1124112212x x x +−+−∵<<,∴<<,∴<<.又x ∈Z ,{}{}101N M N =−=−∴,,∴∩.2.【答案】C【解析】)33440x y xy y x −⎛⎫⎛⎫==≠ ⎪⎪⎝⎭⎝⎭,故选C .3.【答案】B【解析】依题意可知,原不等式可转化为4233x x −+−>,由于指数函数3x y =为增函数,故424x x x −+−−>,>,故选B . 4.【答案】B【解析】选项A 中函数的值域为()()011+∞,,,选项C 中函数的值域为[)0+∞,,选项D 中函数的值域为[)01,,故选B . 5.【答案】A【解析】根据题意可得()()()()121221221f f f f a −==−===,∴,解得14a =,故选A . 6.【答案】D【解析】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,且13024<<,所以1b a >>.又因为x y π=在R 上单调递增,且102>,所以1c >.所以c b a >>.故选D . 7.【答案】B【解析】当()f x 是偶函数时,()()f x f x =−,即()()x x xx x e ae x e ae −−+=−+,即()()10x x a e e x −++=①.因为①式对任意实数x 都成立,所以1a =−,即1m =−.当()f x 是奇函数时,()()f x f x =−−,即()()x x x x x e ae x e ae −−+=+,即()()10x x a e e x −−−=②. 因为②式对任意实数x 都成立,所以1a =,即1n =,所以21m n +=. 8.【答案】C【解析】由二次函数常数项为0可知函数图象过原点,排除A ,D ;B ,C 中指数函数单调递减,因此()01a b∈,,因此二次函数图象的对称轴02ax b=−<.故选C . 9.【答案】AD【解析】由题意当()1x y a b =+−)不过第二象限时,其为增函数,1a ∴>且110b +−≤,即1a >且0b ≤,故选AD . 10.【答案】AC【解析】()()113333xx xx f x f x −−⎡⎤⎛⎫⎛⎫−=−=−−=−⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以()f x 是奇函数,A 正确;又3x y =为增函数,13xg ⎛⎫= ⎪⎝⎭为减函数,所以()133xx f x ⎛⎫=− ⎪⎝⎭为增函数,C 正确,故选A 、C .11.【答案】ABC【解析】因为()()()x y x y x y f x y a f x f y a a a +++===,,所以A 正确;()()()x y f x f x y a f y −−==,所以B 正确;()()()nnnx xf nx a a f x ===⎡⎤⎣⎦,所以C 正确;()()()()()()n nn nxy xyn x yf xy a a a a f x f y ====⎡⎤⎡⎤⎣⎦⎣⎦,所以D 错误,故选ABC . 12.【答案】ABC【解析】由3515a b ==,得()()315515315515351515baab b a ab b ab a ab ab b a =====,,∴,,∴,即1515ab a b a b ab +=+=,∴,又a b ,为不相等的正数,a b ab +∴>>,即4ab >,故A ,B 正确;()()22112a b −+−>等价于()222a b a b ++>,又a b ab +=,则222a b ab +>,故C 正确;因为2222248a b ab ab a b ++>,>,∴>,故D 错误.故选A 、B 、C .13.【答案】5x【解析】设()xf x a =(0a >,且1a ≠),由32f ⎛⎫−= ⎪⎝⎭得()31322225555x a a f x −−−====,∴,∴.14.【答案】[)1+∞,302⎛⎤⎥⎝⎦, 【解析】令22u x x =−,其单调递增区间为[)1+∞,,根据函数23uy ⎛⎫= ⎪⎝⎭是定义域上的减函数知,函数()f x 的单调递减区间就是[)1+∞,.由1u ≥,得23032u⎛⎫⎪⎝⎭<≤,所以()f x 的值域为302⎛⎤ ⎥⎝⎦,. 15.【答案】(]1−∞,【解析】令t x a =−,则t x a =−在区间[)a +∞,上单调递增,而t y e =在R 上为增函数,所以要使函数()x af x e−=在[)1+∞,上单调递增,则有1a ≤,所以a 的取值范围是(]1−∞,. 16.【答案】23⎡⎫+∞⎪⎢⎣⎭, 【解析】因2x y =与31y x =−在()1−∞,上没有公共点,故由()()2f a f f a =⎡⎤⎣⎦可得()1f a ≥,故有1311a a ⎧⎨−⎩<≥或121a a ⎧⎨⎩≥≥,解得a 的取值范围是23⎡⎫+∞⎪⎢⎣⎭,. 17.【答案】(1)原式221133e e =−++−=+. (2)设346a b c m ===,则0m >.346log log log a m b m c m ===∴,,.1111log 3log 4log 622m m m a b c +−=+−∴ log 3log 2log 6m m m =+−32log log 106mm ⨯===. 18.【答案】(1)依题意得11421142b a ⎧=⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得11612a b ⎧=⎪⎪⎨⎪=⎪⎩,所以()111641124x x F x x x ⎧⎛⎫⎪ ⎪⎪⎝⎭=⎨⎪⎪⎩,≤,>. (2)因为1122161111622b a a b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,指数函数12xy ⎛⎫= ⎪⎝⎭单调递减,所以12161122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即b a a b <.(3)由()()1122432m m −−+−<,得40320432m m m m +⎧⎪−⎨⎪+−⎩>>>,解得1332m −<<,所以m 的取值范围是1332⎛⎫− ⎪⎝⎭,.19.【答案】(1)因为()x xe af x a e =+是R 上的偶函数,所以()()f x f x =−,即x x x x e a e aa e a e −−+=+, 故()10x x a e e a −⎛⎫−−= ⎪⎝⎭,又x x e e −−不可能恒为0, 所以当10a a−=时,()()f x f x =−恒成立,故1a =. (2)证明:在()0+∞,上任取12x x <, 因为()()12121211f x f x ex ex ex ex −=+−− ()()()()()12121212211212121111ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex −−⎛⎫=−+−=−+−= ⎪⎝⎭, 又12100e x x >,>,>,所以121ex ex <<,所以1212010ex ex ex ex −−<,>,故()()120f x f x −<,即()()12f x f x <,所以()f x 在()0+∞,上是增函数.20.【答案】(1)1年后该城市人口总数为()100100 1.2%1001 1.2%y =+⨯=⨯+; 2年后该城市人口总数为()()()21001 1.2%1001 1.2% 1.2%1001 1.2%y =⨯++⨯+⨯=⨯+; 3年后该城市人口总数为()31001 1.2%y =⨯+;……;x 年后该城市人口总数为()1001 1.2%xy x +=⨯+∈N ,.(2)10年后该城市人口总数为()()10101001 1.2%100 1.012112.7y =⨯+=⨯≈万. (3)令120y =,则有()1001 1.2%120x⨯+=, 解方程可得1516x <<.故大约16年后该城市人口总数将达到120万.21.【答案】(1)因为()x f x b a =的图象过点()()16324A B ,,,,所以3624b a b a =⎧⎨=⎩,①,②÷②①得24a =,又0a >且1a ≠,所以23a b ==,,所以()32x f x =.(2)由(1)知110x x m a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]1x ∈−∞,时恒成立可化为1123x xm ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤在(]1x ∈−∞,时恒成立. 令()1123xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 在(]1−∞,上单调递减, 所以()()min 1151236m g x g ==+=≤, 即实数m 的取值范围是56⎛⎤−∞ ⎥⎝⎦,.22.【答案】(1)当()10x ∈−,时,()01x −∈,. ∵函数()f x 为奇函数,()()224114x xx xf x f x −−=−−=−=−++∴. 又()()()()()00020000f f f f f =−=−==,∴,.故当()11x ∈−,时,()f x 的解析式为()()()201410021041xx xx x f x x x ⎧∈⎪+⎪==⎨⎪⎪−∈−+⎩,,,,,. (2)因为()214xxf x =+在()01,上单调递减,从而由奇函数的对称性知()f x 在()10−,上单调递减. ∴当01x <<时,()1010224141f x ⎛⎫∈ ⎪++⎝⎭,,即()2152f x ⎛⎫∈ ⎪⎝⎭,;当10x −<<时,()010*******f x −−⎛⎫∈−− ⎪++⎝⎭,,必修第一册 6 / 6 即()1225f x ⎛⎫∈−− ⎪⎝⎭,. 而()00f =,故函数()f x 在()11−,上的值域为{}211205225⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭,,.。
最新北师大版高一数学必修一测试题全套及答案
最新北师大版高一数学必修一测试题全套及答案第一章测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B等于()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5} D.{x|-1<x≤5}解析:结合数轴分析可知,A∪B={x|-1≤x≤5}.答案:B2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.5解析:集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.答案:B3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}解析:画出满足题意的Venn图,由图可知B={1,3,5}.答案:D4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素解析:∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.答案:B5.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:∵∁U M={1,4,5,6},∁U N={2,3,5,6},∴(∁U M)∩(∁U N)={5,6}.答案:D6.如图,I为全集,M,P,S是I的三个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S)D.(M∩P)∪(∁I S)解析:阴影部分在M中,也在P中但不在S中,故表示的集合为(M∩P)∩(∁I S).答案:C7.已知集合A={x|x<3,或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为() A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3,或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.答案:A8.已知集合A={x|x>a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}解析:∁R B={x|x≤1或x≥2},∵A∪(∁R B)=R,∴a≤1.答案:A9.若集合A={x||x|=1},B={x|ax=1},若A∪B=A,则实数a的值为()A.1 B.-1C.1或-1 D.1或0或-1解析:∵A={-1,1}且A∪B=A,∴B⊆A,∴B={-1}或{1}或∅.当B={1}时a=1;当B={-1}时a=-1;当B=∅时a=0.∴a的值为0或1或-1.答案:D10.定义集合M与N的新运算:M⊕N={x|x∈M或x∈N且x∉M∩N},则(M⊕N)⊕N =()A.M∩N B.M∪NC.M D.N解析:按定义,M⊕N表示右上图的阴影部分,两圆内部的公共部分表示M∩N.(M⊕N)⊕N应表示x∈M⊕N或x∈N且x∉(M⊕N)∩N的所有x的集合,(M⊕N)∩N表示右下图右边的阴影部分,因此(M⊕N)⊕N=M.答案:C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.解析:如图中数轴所示,要使A∪B=R,需满足a≤2.答案:a≤212.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为________.解析:当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.答案:513.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________________________________________________________________________.解析: ∵∁U B ={x |x ≤1},借助数轴可以求出∁U B 与A 的交集为图中阴影部分,即{x |0<x ≤1}.答案: {x |0<x ≤1} 14.已知集合A{2,3,7},且A 中至多有1个奇数, 则这样的集合共有________个.解析: (1)若A 中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅. 答案: 6三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知M ={1,t },N ={t 2-t +1},若M ∪N =M ,求t 的取值集合. 解析: ∵M ∪N =M , ∴N ⊆M ,即t 2-t +1∈M ,(1)若t 2-t +1=1,即t 2-t =0,解得t =0或t =1,当t =1时,M 中的两元素相同,不符合集合中元素的互异性,舍去.∴t =0. (2)若t 2-t +1=t ,即t 2-2t +1=0,解得t =1, 由(1)知不符合题意,舍去. 综上所述,t 的取值集合为{0}.16.(12分)已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}(2)∵C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,∴-a2<2, ∴a >-4.∴a 的取值范围是{a |a >-4}.17.(13分)若集合A ={x |-3≤x ≤4}和B ={x |2m -1≤x ≤m +1}. (1)当m =-3时,求集合A ∩B . (2)当B ⊆A 时,求实数m 的取值范围.解析: (1)当m =-3时,B ={x |-7≤x ≤-2}, A ∩B ={x |-3≤x ≤-2}. (2)∵B ⊆A ,∴B =∅或B ≠∅. 当B =∅时,2m -1>m +1,即m >2. 当B ≠∅时,有 ⎩⎪⎨⎪⎧2m -1≤m +12m -1≥-3m +1≤4,即-1≤m ≤2.综上所述,所求m 的范围是m ≥-1.18.(13分)已知全集U =R ,集合A ={a |a ≥2或a ≤-2},B ={a |关于x 的方程ax 2-x +1=0有实根}.求A ∪B ,A ∩B ,A ∩(∁U B ).解析: A ={a |a ≥2或a ≤-2}, 对于方程ax 2-x +1=0有实根, 当a =0时,x =1;当a ≠0时,Δ=1-4a ≥0,a ≤14. 所以B =⎩⎨⎧⎭⎬⎫a | a ≤14 .所以A ∪B =⎩⎨⎧⎭⎬⎫a | a ≤14或a ≥2,A ∩B ={a |a ≤-2},A ∩(∁UB )={a |a ≥2}.第二章 测试题一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A.{-1,0,3} B.{0,1,2,3}C.{y|-1≤y≤3} D.{y|0≤y≤3}解析:当x=0时y=0,当x=1时y=-1,当x=2时y=0,当x=3时y=3,值域为{-1,0,3}.答案:A2.幂函数y=xm2-2m-3(m∈Z)的图像如图所示,则m的值为()A.-1<m<3B.0C.1D.2解析:从图像上看,由于图像不过原点,且在第一象限下降,故m2-2m-3<0,即-1<m<3;又从图像看,函数是偶函数,故m2-2m-3为负偶数,将m=0,1,2分别代入,可知当m=1时,m2-2m-3=-4,满足要求.答案:C3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是()解析:汽车经过启动、加速行驶、匀速行驶、减速行驶直至停车,在行进过程中s 随时间t的增大而增大,故排除D.另外汽车在行进过程中有匀速行驶的状态,故排除C.又因为在开始时汽车启动后加速行驶的过程中行驶路程s随时间t的变化越来越快,在减速行驶直至停车的过程中行驶路程s随时间t的变化越来越慢,排除B.答案:A4.函数y=f(x)的图像与直线x=a(a∈R)的交点有()A.至多有一个B.至少有一个C.有且仅有一个D.有一个或两个以上解析:由函数的定义对于定义域内的任意一个x值,都有唯一一个y值与它对应,所以函数y =f (x )的图像与直线x =a (a ∈R )至多有一个交点(当a 的值不在定义域时,也可能没有交点).答案: A5.对于定义域为R 的奇函数f (x ),下列结论成立的是( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )≤0D .f (x )·f (-x )>0解析: f (-x )=-f (x ),则f (x )·f (-x )=-f 2(x )≤0. 答案: C6.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则有( ) A .b ≥0 B .b ≤0 C .c ≥0D .c ≤0解析: 作出函数y =x 2+bx +c 的简图,对称轴为x =-b2.因该函数在[0,+∞)上是单调函数,故对称轴只要在y 轴及y 轴左侧即可,故-b2≤0,所以b ≥0.答案: A7.幂函数y =f (x )图像如图,那么此函数为( )A .y =x -2B .y =x 32 C .y =x 12D .y =x 23解析: 可设函数为y =x α,将(2,2)代入得α=12. 答案: C8.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.6 m解析: 建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m.答案: A9.设f (x )=⎩⎪⎨⎪⎧x +3,(x >10),f (f (x +5)),(x ≤10),则f (5)的值是( ) A .24 B .21 C .18D .16解析: f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24. 答案: A10.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( ) A .f (x )=2x B .f (x )=-3x +1 C .f (x )=x 2+4x +3D .f (x )=x +1x解析:f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在(0,+∞)上为增函数,而f (x )=2x 及f (x )=-3x +1在(0,+∞)上均为减函数,故排除A ,B.f (x )=x +1x 在(0,1)上递减,在[1,+∞)上递增,故排除D.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧x -12,x >0,-2,x =0,(x +3)12,x <0,则f (f (f (0)))=________.解析: f (0)=-2,f (f (0))=f (-2)=(-2+3)12=1, f (f (f (0)))=f (1)=1-12=1. 答案: 112.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________. 解析: 由题意得m -1<2m -1,故m >0. 答案: (0,+∞)13.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析: f (-x )=(1-x )(a -x )-x ,又f (x )为奇函数,故f (x )=-f (-x ), 即(x +1)(x +a )x =(1-x )(a -x )x ,所以x 2+(a +1)x +a x =x 2-(a +1)x +a x , 从而有a +1=-(a +1),即a =-1. 答案: -114.已知函数f (x ),g (x )分别由下表给出:当g [f (x )]=2时,x =解析: ∵g [f (x )]=2, ∴f (x )=2,∴x =1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.解析: ∵f (3)=f (-1)=5, ∴对称轴为x =1,又∵最大值为13,∴开口向下,设为f (x )=a (x -1)2+13(a <0),代入x =-1, ∴4a +13=5,∴a =-2, ∴f (x )=-2(x -1)2+13.函数在(-∞,1]上单调递增,在[1,+∞)上单调递减. 16.(12分)已知函数f (x )=x 2+ax ,且f (1)=2, (1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数; (3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2所以1+a =2,即a =1f (x )=x 2+1x =x +1x f (-x )=-x -1x =-f (x ) 所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2 f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2) =(x 1-x 2)·x 1x 2-1x 1x 2∵x 1<x 2,且x 1x 2∈(1,+∞) ∴x 1-x 2<0,x 1x 2>1,∴f (x 1)-f (x 2)<0 所以f (x )在(1,+∞)上为增函数.(3)由(2)知,f (x )在[2,5]上的最大值为f (5)=265, 最小值为f (2)=52.17.(13分)已知函数f (x )=1x 2+1,令g (x )=f ⎝⎛⎭⎫1x .(1)如图,已知f (x )在区间[0,+∞)的图像,请据此在该坐标系中补全函数f (x )在定义域内的图像,并说明你的作图依据;(2)求证:f (x )+g (x )=1(x ≠0).解析: (1)∵f (x )=1x 2+1,所以f (x )的定义域为R . 又任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), 所以f (x )为偶函数,故f (x )的图像关于y 轴对称,补全图像如图所示.(2)证明:∵g (x )=f ⎝⎛⎭⎫1x =1⎝⎛⎭⎫1x 2+1=x 21+x 2(x ≠0), ∴f (x )+g (x )=11+x 2+x 21+x 2=1+x 21+x 2=1, 即f (x )+g (x )=1(x ≠0).18.(13分)已知函数f (x )=ax 2+(2a -1)x -3在区间⎣⎡⎦⎤-32,2上的最大值为1,求实数a的值.解析: 当a =0时,f (x )=-x -3,f (x )在⎣⎡⎦⎤-32,2上不能取得1,故a ≠0.∴f (x )=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为x 0=1-2a 2a .(1)令f ⎝⎛⎭⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎡⎦⎤-32,2, 因为a <0,f (x 0)最大,所以f ⎝⎛⎭⎫-32=1不合适;(2)令f (2)=1,解得a =34, 此时x 0=-13∈⎣⎡⎦⎤-32,2,因为a =34>0,x 0=-13∈⎣⎡⎦⎤-32,2,且距右端点2较远, 所以f (2)最大,合适;(3)令f (x 0)=1,得a =12(-3±22), 验证后知只有a =12(-3-22)才合适. 综上所述,a =34或a =-12(3+22).第三章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简[3(-5)2]34的结果为()A .5B .5C .- 5D .-5解析: [3(-5)2]34=(352)34=523×34=512= 5.答案: B2.若log 513·log 36·log 6x =2,则x =( )A .9B .19C .25D .125解析: 由换底公式,得 lg13lg 5·lg 6lg 3·lg x lg 6=2,∴-lg x lg 5=2. ∴lg x =-2lg 5=lg 125.∴x =125. 答案: D3.已知函数f (x )=4+a x +1的图像恒过定点P ,则点P 的坐标是( )A .(-1,5)B .(-1,4)C .(0,4)D .(4,0)解析: ∵y =a x 恒过定点(0,1), ∴y =4+a x +1恒过定点(-1,5). 答案: A4.函数y =(a 2-1)x 在(-∞,+∞)上是减函数,则a 的取值范围是( ) A .|a |>1 B .|a |>2 C .a > 2D .1<|a |<2解析: 由0<a 2-1<1得1<a 2<2,∴1<|a |< 2. 答案: D5.函数y =a x -1的定义域是(-∞,0],则a 的取值范围是( ) A .a >0 B .a >1 C .0<a <1D .a ≠1解析: 由a x -1≥0得a x ≥1,又知此函数的定义域为(-∞,0],即当x ≤0时,a x ≥1恒成立,∴0<a <1.答案: C6.函数y =f (x )=a x -b的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0解析: 由图像得函数是减函数, ∴0<a <1.又分析得,图像是由y =a x 的图像向左平移所得, ∴-b >0,即b <0.从而D 正确. 答案: D7.函数y =⎩⎪⎨⎪⎧3x -1-2,x ≤1,⎝⎛⎭⎫13x -1-2,x >1的值域是( )A .(-2,-1)B .(-2,+∞)C .(-∞,-1]D .(-2,-1]解析: 当x ≤1时,0<3x -1≤31-1=1, ∴-2<3x -1-2≤-1. 当x >1时,⎝⎛⎭⎫13x<⎝⎛⎭⎫131, ∴0<⎝⎛⎭⎫13x -1<⎝⎛⎭⎫130=1,则-2<⎝⎛⎭⎫13x -1-2<1-2=-1.答案: D8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图像为( )解析: 由题意知前3年年产量增大速度越来越快,可知在单位时间内,C 的值增大的很快,从而可判定结果.答案: A9.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2)C .(-∞,-1)∪(3,+∞)D .(-1,3)解析: 当x 0≥2时,∵f (x 0)>1, ∴log 2(x 0-1)>1,即x 0>3; 当x 0<2时,由f (x 0)>1得⎝⎛⎭⎫12x 0-1>1,⎝⎛⎭⎫12x 0>⎝⎛⎭⎫12-1,∴x 0<-1.∴x 0∈(-∞,-1)∪(3,+∞). 答案: C10.函数f (x )=log a (bx )的图像如图,其中a ,b 为常数.下列结论正确的是( ) A .0<a <1,b >1 B .a >1,0<b <1 C .a >1,b >1D .0<a <1,0<b <1解析: 由于函数单调递增,∴a >1,又f (1)>0, 即log a b >0=log a 1,∴b >1. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x,x ∈[-1,0],3x ,x ∈(0,1],则f ⎝⎛⎭⎫log 312=________. 解析: ∵-1=log 313<log 312<log 31=0,∴f ⎝⎛⎭⎫log 312=⎝⎛⎭⎫13log 312=3-log 312=3log 32=2.答案: 212.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8升,则m=________.解析: 根据题意12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n ,所以⎝⎛⎭⎫123=e 5n ×3.故18=e 15n ,解得t =15, 故m =15-5=10. 答案: 1013.若函数y =2x +1,y =b ,y =-2x -1三图像无公共点,结合图像则b 的取值范围为________.解析: 如图.当-1≤b ≤1时,此三函数图像无公共点. 答案: [-1,1]14.函数f (x )=-a 2x -1+2恒过定点的坐标是________. 解析: 令2x -1=0,解得x =12,又f ⎝⎛⎭⎫12=-a 0+2=1, ∴f (x )过定点⎝⎛⎭⎫12,1.答案: ⎝⎛⎭⎫12,1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)计算下列各式的值: (1)(32×3)6+(2×2)43-(-2 008)0;(2)lg 5lg 20+(lg 2)2;(3)(log 32+log 92)·(log 43+log 83)+(log 3312)2+ln e -lg 1. 解析: (1)原式=(213×312)6+(2×212)12×43-1=213×6×312×6+232×12×43-1 =22×33+21-1 =4×27+2-1 =109.(2)原式=lg 5lg(5×4)+(lg 2)2 =lg 5(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2 =(lg 5+lg 2)2=1.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3·⎝⎛⎭⎫lg 32lg 2+lg 33lg 2+14+12-0 =3lg 22lg 3·5lg 36lg 2+34=54+34=2. 16.(12分)已知函数f (x )=log a (1-x )+log a (x +3)(a >0,且a ≠1). (1)求函数f (x )的定义域和值域;(2)若函数f (x )有最小值为-2,求a 的值.解析: (1)由⎩⎪⎨⎪⎧1-x >0x +3>0得-3<x <1,所以函数的定义域{x |-3<x <1}, f (x )=log a (1-x )(x +3), 设t =(1-x )(x +3)=4-(x +1)2, 所以t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为{y |y ≤log a 4}. 当0<a <1时,y ≥log a 4,值域为{y |y ≥log a 4}. (2)由题意及(1)知:当0<a <1时,函数有最小值, 所以log a 4=-2,解得:a =12.17.(13分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3a -4x 的定义域为[0,1]. (1)求函数g (x )的解析式; (2)判断函数g (x )的单调性.解析: (1)∵f (x )=3x ,∴f (a +2)=3a +2=18,∴3a =2. ∴g (x )=2-4x (x ∈[0,1]).(2)设x 1,x 2为区间[0,1]上任意两个值,且x 1<x 2, 则g (x 2)-g (x 1)=2-4x 2-2+4x 1=(2x 1-2x 2)(2x 1+2x 2), ∵0≤x 1<x 2≤1,∴2x 2>2x 1>1, ∴g (x 2)<g (x 1).所以,函数g (x )在[0,1]上是减函数. 18.(13分)已知f (x )=-x +log 21-x1+x ,(1)求f (x )的定义域;(2)求f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012;(3)当x ∈(-a ,a ](其中a ∈(-1,1),且a 为常数)时,f (x )是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.解析: (1)由1-x 1+x >0得x -1x +1<0∴⎩⎪⎨⎪⎧x -1>0x +1<0或⎩⎪⎨⎪⎧x -1<0x +1>0, ∴-1<x <1,即f (x )的定义域为(-1,1). (2)对x ∈(-1,1)有f (-x )=-(-x )+log 21+x 1-x=-⎝ ⎛⎭⎪⎫-x +log 21-x 1+x =-f (x )∴f (x )为奇函数∴f ⎝⎛⎭⎫-12 012=-f ⎝⎛⎭⎫12 012. ∴f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012=0. (3)设-1<x 1<x 2<1,则1-x 11+x 1-1-x 21+x 2=2(x 2-x 1)(1+x 1)(1+x 2). ∵-1<x 1<x 2<1,∴x 2-x 1>0,(1+x 1)(1+x 2)>0, ∴1-x 11+x 1>1-x 21+x 2. ∴函数y =1-x1+x在(-1,1)上是减函数.从而得f (x )=-x +log 21-x1+x在(-1,1)上也是减函数.又a ∈(-1,1),∴当x ∈(-a ,a ]时,f (x )有最小值,且最小值为f (a )=-a +log 21-a1+a .第四章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =(x -1)(x 2-2x -3)的零点为( ) A .1,2,3 B .1,-1,3 C .1,-1,-3D .无零点解析: 令y =(x -1)(x 2-2x -3)=0,解得x =1,-1,3,故选B. 答案: B2.下列函数中没有零点的是( ) A .f (x )=log 2x -3 B .f (x )=x -4 C .f (x )=1x -1D .f (x )=x 2+2x解析: 由于函数f (x )=1x -1中,对任意自变量x 的值,均有1x -1≠0,故该函数不存在零点.答案: C3.如图所示的函数图像与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④解析: 对于①③在函数零点两侧函数值的符号相同,故不能用二分法求. 答案: A4.已知函数f (x )=e x -x 2+8x ,则在下列区间中f (x )必有零点的是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析: f (-1)=1e -9<0,f (0)=e 0=1>0,f (x )是连续函数,故f (x )在(-1,0)上有一零点.答案: B5.若函数f (x )的图像是连续不断的,且f (0)>0, f (1)·f (2)·f (4)<0,则下列说法中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点解析: 因为f (0)>0,f (1)·f (2)·f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图像与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点. 答案: D6.二次函数y =x 2+px +q 的零点为1和m ,且-1<m <0,那么p 、q 应满足的条件是( ) A .p >0且q <0 B .p >0且q >0 C .p <0且q >0D .p <0且q <0解析: 由已知得f (0)<0,-p2>0,解得q <0,p <0.答案: D7.若x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析: 构造函数f (x )=ln x +x -4,则函数f (x )的图像是连续不断的一条曲线,又f (2)=ln 2+2-4<0,f (3)=ln 3+3-4>0,所以f (2)·f (3)<0,故函数的零点所在区间为(2,3),即方程ln x +x =4的解x 0属于区间(2,3),故选C.答案: C8.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,-12C .0,12D .2,12解析: 函数f (x )=ax +b 只有一个零点2,则2a +b =0,所以b =-2a (a ≠0),所以g (x )=-2ax 2-ax =-ax (2x +1),故函数g (x )有两个零点0,-12,故选B.答案: B9.当x ∈(4,+∞)时,f (x )=x 2,g (x )=2x ,h (x )=log 2x 的大小关系是( ) A .f (x )>g (x )>h (x ) B .g (x )>f (x )>h (x ) C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析: 在同一坐标系中,画出三个函数的图像,如右图所示. 当x =2时,f (x )=g (x )=4,当x =4时,f (x )=g (x )=16,当x >4时,g (x )图像在最上方,h (x )图像在最下方,故g (x )>f (x )>h (x ). 答案: B10.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x 年植树亩数y (万亩)是时间x (年)的一次函数,这个函数的图像是( )解析: 函数解析式为y =x +0.5,故选A. 答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.解析: 设f (x )=x 3-6x 2+4,显然f (0)>0,f (1)<0, 又f ⎝⎛⎭⎫12=⎝⎛⎭⎫123-6×⎝⎛⎭⎫122+4>0, ∴下一步可断定方程的根所在的区间为⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,112.函数f (x )=x 3-x 2-x +1在[0,2]上的零点有________个. 解析: x 3-x 2-x +1=(x -1)2(x +1), 由f (x )=0得x =1或x =-1. ∴f (x )在[0,2]上有1个零点. 答案: 113.已知函数f (x )=⎩⎨⎧2x ,(x ≥2)(x -1)3,(x <2)若函数y =f (x )-k 有两个零点,则实数k 的取值范围是________.解析: 画出分段函数f (x )的图像如图所示.结合图像可以看出,函数y =f (x )-k 有两个零点,即y =f (x )与y =k 有两个不同的交点,k 的取值范围为(0,1).答案: (0,1)14.已知函数t =-144lg ⎝⎛⎭⎫1-N100的图像可表示打字任务的“学习曲线”,其中t (小时)表示达到打字水平N (字/分钟)所需的学习时间,N (字/分钟)表示每分钟打出的字数,则按此曲线要达到90字/分钟的水平,所需的学习时间是________小时.解析: 当N =90时,t =-144lg ⎝⎛⎭⎫1-90100=144. 答案: 144三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)若函数y =ax 2-x -1只有一个零点,求实数a 的取值范围.解析: (1)若a =0,则f (x )=-x -1为一次函数,函数必有一个零点-1.(2)若a ≠0,函数是二次函数,因为二次方程ax 2-x -1=0只有一个实数根,所以Δ=1+4a =0,得a =-14.综上,当a =0和-14时函数只有一个零点.16.(12分)以下是用二分法求方程x 3+3x -5=0的一个近似解(精确度0.1)的不完整的过程,请补充完整,并写出结论.设函数f (x )=x 3+3x -5,其图像在(-∞,+∞)上是连续不断的一条曲线. 先求值:f (0)=________,f (1)=________,f (2)=________,f (3)=________. 所以f (x )在区间________内存在零点x 0,填表:结论:________________________________________________________________________. 解析: -5 -1 9 31 (1,2)∵|1.187 5-1.125|=0.062 5<0.1, ∴原方程的近似解可取为1.187 5.17.(13分)某商品在近100天内,商品的单位f (t )(元)与时间t (天)的函数关系式如下:f (t )=⎩⎨⎧t4+22,0≤t ≤40,t ∈Z ,-t2+52,40<t ≤100,t ∈Z .销售量g (t )与时间t (天)的函数关系式是( ) g (t )=-t 3+1123(0≤t ≤100,t ∈Z ).这种商品在这100天内哪一天的销售额最高?解析: 依题意,该商品在近100天内日销售额F (t )与时间t (天)的函数关系式为F (t )=f (t )·g (t )=⎩⎨⎧⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123,0≤t ≤40,t ∈Z ,⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123,40<t ≤100,t ∈Z .(1)若0≤t ≤40,t ∈Z ,则F (t )=⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123 =-112(t -12)2+2 5003,当t =12时,F (t )max =2 5003(元).(2)若40<t ≤100,t ∈Z ,则 F (t )=⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123 =16(t -108)2-83,∵t =108>100, ∴F (t )在(40,100]上递减,∴当t =41时,F (t )max =745.5. ∵2 5003>745.5,∴第12天的日销售额最高.18.(13分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图像如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解析: (1)由图像可知:当0≤t ≤10时,v =3t ,则 当t =4,v =3×4=12, 故s =12×4×12=24.(2)当0≤t ≤10时, s =12·t ·3t =32t 2, 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10]30t -150,t ∈(10,20]-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650, ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40. ∵20<t ≤35, ∴t =30.即沙尘暴发生30 h 后将侵袭到N 城.模块质量评估(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示错误的是( ) A .{a }∈{a ,b } B .{a ,b }⊆{b ,a } C .{-1,1}⊆{-1,0,1}D .∅⊆{-1,1}解析: A 中两个集合之间不能用“∈”表示,B ,C ,D 都正确. 答案: A2.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A ⊆BB .A ⊇BC.A=B D.A∩B=∅解析:A={y|y>0},B={y|y≥0},∴A⊆B.答案:A3.设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>aC.c>b>a D.c>a>b解析:易知log23>1,log32,log52∈(0,1).在同一平面直角坐标系中画出函数y=log3x 与y=log5x的图像,观察可知log32>log52.所以c>a>b.比较a,b的其他解法:log32>log33=1 2,log52<log55=12,得a>b;0<log23<log25,所以1log23>1log25,结合换底公式即得log32>log52.答案:D4.函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则() A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不定解析:由题知a<0,-b2a=-1,∴b=2a<0.答案:B5.要得到y=3×⎝⎛⎭⎫13x的图像,只需将函数y=⎝⎛⎭⎫13x的图像()A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度解析:由y=3×⎝⎛⎭⎫13x=⎝⎛⎭⎫13-1×⎝⎛⎭⎫13x=⎝⎛⎭⎫13x-1知,D正确.答案:D6.在同一坐标系内,函数y=x a(a<0)和y=ax+1a的图像可能是如图中的()解析:∵a<0,∴y=ax+1a的图像不过第一象限.还可知函数y=x a(a<0)和y=ax+1a在各自定义域内均为减函数.答案:B7.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<aC.a<b<c D.b<a<c解析:∵0<log53<log54<1,log45>1,∴b<a<c.答案:D8.若函数f(x)=ax2+2x+1至多有一个零点,则a的取值范围是()A.1 B.[1,+∞)C.(-∞,-1] D.以上都不对解析:当f(x)有一个零点时,若a=0,符合题意,若a≠0,则Δ=4-4a=0得a=1,当f(x)无零点时,Δ=4-4a<0,∴a>1.综上所述,a≥1或a=0.答案:D9.已知函数f(x)=log a|x|在(0,+∞)上单调递增,则()A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)解析:因为f(x)=log a|x|在(0,+∞)上单调递增,所以a>1,f(1)<f(2)<f(3).又函数为f(x)=log a|x|为偶函数,所以f(2)=f(-2),所以f(1)<f(-2)<f(3).答案:B10.设f(x)是奇函数,且在(0,+∞)内是增加的,又f(-3)=0,则x·f(x)<0的解集是() A.{x|x<-3,或0<x<3}B.{x|-3<x<0,或x>3}C.{x|x<-3,或x>3}D.{x|-3<x<0,或0<x<3}解析:∵f(x)是奇函数,∴f(3)=-f(-3)=0.∵f(x)在(0,+∞)是增加的,∴f(x)在(-∞,0)上是增加的.结合函数图像x·f(x)<0的解为0<x<3或-3<x<0.答案:D11.一个商人有一批货,如果月初售出可获利1 000元,再将收益都存入银行,已知银行月息为2.4%;如果月末售出可获利1 200元,但要付50元货物保管费.这个商人若要获得最大收益,则这批货( )A .月初售出好B .月末售出好C .月初或月末一样D .由成本费的大小确定出售时机解析: 设这批货成本为a 元,月初售出可收益y 1=(a +1 000)×(1+2.4%)(元),月末售出可收益y 2=a +1 200-50=a +1 150(元).则y 1-y 2=(a +1 000)×1.024-a -1 150 =0.024a -126.当a >1260.024>5 250时,月初售出好;当a <5 250时,月末售出好;当a =5 250时,月初、月末收益相等,但月末售出还要保管一个月,应选择月初售出. 答案: D12.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析: 计算出函数在区间端点处的函数值并判断符号,再利用零点的存在条件说明零点的位置.∵f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ), ∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0,∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内. 答案: A二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=________. 解析: ∵g ⎝⎛⎭⎫12=ln 12<0,∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=eln 12=12.答案: 1214.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析: A ={x |0<x ≤4},B =(-∞,a ).若A ⊆B ,则a >4,即a 的取值范围为(4,+∞),∴c =4. 答案: 415.函数y =22-2x -3x 2的递减区间是________. 解析: 令u =2-2x -3x 2,y =2u ,由u =-3x 2-2x +2知,u 在⎝⎛⎭⎫-13,+∞上为减函数,而y =2u 为增函数,所以函数的递减区间为⎝⎛⎭⎫-13,+∞. 答案: ⎝⎛⎭⎫-13,+∞ 16.函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1的图像和函数g (x )=log 2x 的图像有________个交点.解析: 作出函数y =f (x )与y =g (x )的图像如图,由图可知,两个函数的图像有3个交点.答案: 3三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }. (1)求A ∪B ; (2)求(∁R A )∩B ;(3)若A ⊆C ,求a 的取值范围.解析: (1)因为A ={x |3≤x <7},B ={x |2<x <10}, 所以A ∪B ={x |2<x <10}.(2)因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7}.。
(北师大版)高中数学必修第一册 第二章综合测试试卷02及答案
第二章综合测试一、单选题(每小题5分,共40分),1.函数()f x = )A .[]12-,B .(]12-,C .[)2+¥,D .[)1+¥,2.设函数()221121x x f x x x x ì-ï=í+-ïî,≤,,>,则()12f f öæ÷çç÷èø的值为( )A .1-B .34C .1516D .43.已知()32f x x x =+,则()()f a f a +-=( )A .0B .1-C .1D .24.幂函数223a a y x --=是偶函数,且在()0+¥,上单调递减,则整数a 的值是( )A .0或1B .1或2C .1D .25.函数()34f x ax bx =++(a b ,不为零),且()510f =,则()5f -等于( )A .10-B .2-C .6-D .146.已知函数22113f x x x x öæ+=++ç÷èø,则()3f =( )A .8B .9C .10D .117.如果函数()2f x x bx c =++对于任意实数t 都有()()22f t f t +=-,那么( )A .()()()214f f f <<B .()()()124f f f <<C .()()()421f f f <<D .()()()241f f f <<8.定义在R 上的偶函数()f x 满足对任意的[)()12120x x x x Î+¥¹,,,有()()21210f x f x x x --,且()20f =,则不等式()0xf x <的解集是( )A .()22-,B .()()202-+¥U ,,C .()()8202--U ,,D .()()22-¥-+¥U ,,二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.定义运算()()a ab a b b a b ìï=íïî≥□<,设函数()12x f x -=□,则下列命题正确的有( )A .()f x 的值域为[)1+¥,B .()f x 的值域为(]01,C .不等式()()12f x f x +<成立的范围是()0-¥,D .不等式()()12f x f x +<成立的范围是()0+¥,10.关于函数()f x =的结论正确的是( )A .定义域、值域分别是[]13-,,[)0+¥,B .单调增区间是(]1-¥,C .定义域、值域分别是[]13-,,[]02,D .单调增区间是[]11-,11.函数()f x 是定义在R 上的奇函数,下列命题中是正确命题的是( )A .()00f =B .若()f x 在[)0+¥,上有最小值1-,则()f x 在(]0-¥,上有最大值1C .若()f x 在[)1+¥,上为增函数,则()f x 在(]1-¥-,上为减函数D .若0x >时,()22f x x x =-,则0x <时,()22f x x x =--12.关于函数()f x )A .函数是偶函数B .函数在()1-¥-,)上递减C .函数在()01,上递增D .函数在()33-,上的最大值为1三、填空题(每小题5分,共20分)13.已知函数()()f x g x ,分别由表给出,则()()2g f =________.x 123()f x 131()g x 32114.已知()f x 为R 上的减函数,则满足()11f f x öæç÷èø>的实数x 的取值范围为________.15.已知函数()f x 是奇函数,当()0x Î-¥,时,()2f x x mx =+,若()23f =-,则m 的值为________.16.符号[]x 表示不超过x 的最大整数,如[][]3.143 1.62=-=-,,定义函数:()[]f x x x =-,则下列说法正确的是________.①()0.80.2f -=;②当12x ≤<时,()1f x x -;③函数()f x 的定义域为R ,值域为[)01,;④函数()f x 是增函数,奇函数.四、解答题(共70分)17.(10分)已知一次函数()f x 是R 上的增函数,()()()g x f x x m =+,且()()165f f x x =+.(1)求()f x 的解析式.(2)若()g x 在()1+¥,上单调递增,求实数m 的取值范围.18.(12分)已知()()212021021 2.f x x f x x x x x +-ìï=+íï-î,<<,,≤<,,≥(1)若()4f a =,且0a >,求实数a 的值.(2)求32f öæ-ç÷èø的值.19.(12分)已知奇函数()q f x px r x =++(p q r ,,为常数),且满足()()5171224f f ==,.(1)求函数()f x 的解析式.(2)试判断函数()f x 在区间102æùçúèû,上的单调性,并用函数单调性的定义进行证明.(3)当102x æùÎçúèû,时,()2f x m -≥恒成立,求实数m 的取值范围.20.(12分)大气中的温度随着高度的上升而降低,根据实测的结果,上升到12km 为止,温度的降低大体上与升高的距离成正比,在12km 以上温度一定,保持在55-℃.(1)当地球表面大气的温度是a ℃时,在km x 的上空为y ℃,求a x y 、、间的函数关系式.(2)问当地表的温度是29℃时,3km 上空的温度是多少?21.(12分)已知函数()f x 是定义在[]11-,上的奇函数,且()11f =,对任意[]110a b a b Î-+¹,,,时有()()0f a f b a b++成立.(1)解不等式()1122f x f x öæ+-ç÷èø<.(2)若()221f x m am -+≤对任意[]11a Î-,恒成立,求实数m 的取值范围.22.(12分)已知函数()[](]2312324.x x f x x x ì-Î-ï=í-Îïî,,,,,(1)画出()f x 的图象.(2)写出()f x 的单调区间,并指出单调性(不要求证明).(3)若函数()y a f x =-有两个不同的零点,求实数a 的取值范围.第二章综合测试答案解析一、1.【答案】B【解析】选B .由10420x x +ìí-î>,≥,得12x -<≤.2.【答案】C【解析】选C .因为()222224f =+-=,所以()211115124416f f f öæööææ==-=÷çç÷ç÷ç÷èèøøèø.3.【答案】A【解析】选A .()32f x x x =+是R 上的奇函数,故()()f a f a -=-,所以()()0f a f a +-=.4.【答案】C【解析】选C .因为幂函数223aa y x --=是偶函数,且在()0+¥,上单调递减,所以2223023a a a z a a ì--ïÎíï--î<,,是偶数.解得1a =.5.【答案】B【解析】选B .因为()51255410f a b =++=,所以12556a b +=,所以()()51255412554642f a b a b -=--+=-++=-+=-.6.【答案】C【解析】选C .因为22211131f x x x x x x ööææ+=++=++ç÷ç÷èèøø,所以()21f x x =+(2x -≤或2x ≥),所以()233110f =+=.7.【答案】A【解析】选A .由()()22f t f t +=-,可知抛物线的对称轴是直线2x =,再由二次函数的单调性,可得()()()214f f f <<.8.【答案】B【解析】选B .因为()()21210f x f x x x --<对任意的[)()12120x x x x Î+¥¹,,恒成立,所以()f x 在[)0+¥,上单调递减,又()20f =,所以当2x >时,()0f x <;当02x ≤<时,()0f x >,又()f x 是偶函数,所以当2x -<时,()0f x <;当20x -<<时,()0f x >,所以()0xf x <的解集为()()202-+¥U ,,.二、9.【答案】AC【解析】选AC .根据题意知()10210xx f x x ìöæïç÷=íèøïî,≤,,>,()f x 的图象为所以()f x 的值域为[)1+¥,,A 对;因为()()12f x f x +<,所以1210x x x +ìí+î>≤,或2010x x ìí+î<>,所以11x x ìí-î<≤,或01x x ìí-î<>,所以1x -≤或10x -<<,所以0x <,C 对.10.【答案】CD【解析】选CD .由2230x x -++≥可得,2230x x --≤,解可得,13x -≤≤,即函数的定义域为[]13-,,由二次函数的性质可知,()[]22231404y x x x =-++=--+Î,,所以函数的值域为[]02,,结合二次函数的性质可知,函数在[]11-,上单调递增,在[]13,上单调递减.11.【答案】ABD【解析】选ABD .()f x 为R 上的奇函数,则()00f =,A 正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以B 正确,C 不正确;对于D ,0x <时,()()()22022x f x x x x x --=---=+>,,又()()f x f x -=-,所以()22f x x x =--,即D 正确.12.【答案】ABD【解析】选ABD .函数满足()()f x f x -=,是偶函数;作出函数图象,可知在()1-¥-,,()01,上递减,()10-,,()1+¥,上递增,当()33x Î-,时,()()max 01f x f ==.三、13.【答案】1【解析】由题表可得()()2331f g ==,,故()()21g f =.14.【答案】()()01-¥+¥U ,,【解析】因为()f x 在R 上是减函数,所以11x,解得1x >或0x <.15.【答案】12【解析】因为()f x 是奇函数,所以()()223f f -=-=,所以()2223m --=,解得12m =.16.【答案】①②③【解析】()[]f x x x =-,则()()0.80.810.2f -=---=,①正确,当12x ≤<时,()[]1f x x x x =-=-,②正确,函数()f x 的定义域为R ,值域为[)01,,③正确,当01x ≤<时,()[]f x x x x =-=;当12x ≤<时,()1f x x =-,当0.5x =时,()0.50.5f =;当 1.5x =时,()1.50.5f =,则()()0.5 1.5f f =,即有()f x 不为增函数,由()()1.50.5 1.50.5f f -==,,可得()()1.5 1.5f f -=,即有()f x 不为奇函数,④错误.四、17.【答案】(1)由题意设()()0f x ax b a =+>.从而()()()2165f f x a ax b b a x ab b x =++=++=+,所以21655a ab ì=í+=î,,解得41a b =ìí=î,或453a b =-ìïí=-ïî,(不合题意,舍去).所以()f x 的解析式为()41f x x =+.(2)()()()()()()()414241g x f x x m x x m x m x m g x =+=++=+++,图象的对称轴为直线418m x +=-.若()g x 在()1+¥,上单调递增,则4118m +-≤,解得94m -≥,所以实数m 的取值范围为94öé-+¥÷êëø.18.【答案】(1)若02a <<,则()214f a a =+=,解得32a =,满足02a <<;若2a ≥,则()214f a a =-=,解得a =或a =,所以32a =或a =.(2)由题意,3311222f f f öööæææ-=-+=-ç÷ç÷ç÷èèèøøø1111212222f f ööææ=-+==´+=ç÷ç÷èèøø.19.【答案】(1)因为()f x 为奇函数,所以()()f x f x -=-,所以0r =.又()()5121724f f ì=ïïíï=ïî,即52172.24p q q p ì+=ïïíï+=ïî解得212p q =ìïí=ïî,,所以()122f x x x =+.(2)()122f x x x =+在区间102æùçúèû,上单调递减.证明如下:设任意的两个实数12x x ,,且满足12102x x <<≤,则()()()12121211222f x f x x x x x -=-+-()()()()21211212121214222x x x x x x x x x x x x ---=-+=.因为12102x x <<≤,所以2112121001404x x x x x x -->,<<,>,所以()()120f x f x ->,所以()122f x x x =+在区间102æùçúèû,上单调递减.(3)由(2)知()122f x x x =+在区间102æùçúèû,上的最小值是122f öæ=ç÷èø.要使当102x æùÎçúèû,时,()2f x m -≥恒成立,只需当102x æùÎçúèû,时,()min 2f x m -≥,即22m -≥,解得0m ≥即实数m 的取值范围为[)0+¥,.20.【答案】(1)由题意知,可设()0120y a kx x k -=≤≤,<,即y a kx =+.依题意,当12x =时,55y =-,所以5512a k -=+,解得5512a k +=-.所以当012x ≤≤时,()()5501212x y a a x =-+≤≤.又当12x >时,55y =-.所以所求的函数关系式为()55012125512.x a a x y x ì-+ï=íï-î,≤≤,,>(2)当293a x ==,时,()3295529812y =-+=,即3km 上空的温度为8℃.21.【答案】(1)任取[]121211x x x x Î-,,,<,()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-g 由已知得()()()12120f x f x x x +-+->,所以()()120f x f x -<,所以()f x 在[]11-,上单调递增,原不等式等价于112211121121x x x x ì+-ïïï-+íï--ïïî<,≤≤≤,所以106x ≤<,原不等式的解集为106öé÷êëø,.(2)由(1)知()()11f x f =≤,即2211m am -+≥,即220m am -≥,对[]11a Î-,恒成立.设()22g a ma m =-+,若0m =,显然成立;若0m ¹,则()()1010g g -ìïíïî≥≥,即2m -≤或2m ≥,故2m -≤或2m ≥或0m =.22.【答案】(1)由分段函数的画法可得()f x 的图象.(2)单调区间:[]10-,,[]02,,[]24,,()f x 在[]10-,,[]24,上递增,在[]02,上递减.(3)函数()y a f x =-有两个不同的零点,即为()f x a =有两个实根,由图象可得,当11a -<≤或23a ≤<时,()y f x =与y a =有两个交点,则a 的范围是(][)1123-U ,,.。
(北师大版2019课标)高中数学必修第一册 第六章综合测试(含答案)
第六章综合测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2:3:2:4,则该样本中D 类产品的数量为( )A.22B .33C .40D .552.在抽查产品尺寸的过程中,将其尺寸分成若干组,[]a b ,是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则a b -等于( ) A.mhB .h mC .m hD .m h +3.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h )如下表:则上、下班时间行驶时速的中位数分别为( ) A .28与28.5B .29与28.5C .28与27.5D .29与27.54.下列数据的70%分位数为( )20,14,26,18,28,30,24,26,33,12,35,22. A .14B .20C .28D .305.下列说法:①一组数据不可能有两个众数; ②一组数据的方差必须是正数;③将一组数据中的每一个数据都加上或减去同一常数后,方差不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率.其中错误的个数为( ) A .0B .1C .2D .36.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg ),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[]4550,内适合跑步训练,体重在[)5055,内适合跳远训练,体重在[]5560,内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为( )A .4:3:1B .5:3:1C .5:3:2D .3:2:17.设有两组数据1x ,2x ,…,n x 与1y ,2y ,…,n y ,它们的平均数分别是x 和y ,则新的一组数据11231x y -+,22231x y -+,…,231n n x y -+的平均数是( )A .23x y -B .231x y -+C .49x y -D .491x y -+8.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a ,最大频率为0.32,则a 的值为( )A .64B .54C .48D .27二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,三者关系不可能是( ) A .123p p p =<B .231p p p =<C .132p p p =<D .123p p p ==10.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 抽样方法不合理的是( ) A .①抽签法,②分层随机抽样 B .①随机数法,②分层随机抽样C .①随机数法,②抽签法D .①抽签法,②随机数法11.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下四种说法中正确的是( )甲乙①甲的成绩的平均数等于乙的成绩的平均数 ②甲的成绩的中位数大于乙的成绩的中位数 ③甲的成绩的方差小于乙的成绩的方差 ④甲的成绩的极差等于乙的成绩的极差 A .①B .②C .③D .④12.某台机床加工的1 000只产品中次品数的频率分布如下表:次品数 0 1 2 3 4 频率0.50.20.050.20.05则次品数的众数、平均数不可能为( ) A .0,1.1B .0,1C .4,1D .0.5,2三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为________.14.一个样本a ,3,5,7的平均数是b ,且a ,b 是方程2540x x ++=的两根,则这个样本的方差是________. 15.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查结果如下:甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12.三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲________,乙________,丙________.16.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲108999乙1010799如果甲、乙两人中只有1人入选,则入选的最佳人选应是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产总计老年40404080200中年80120160240600青年40160280720 1 200总计160320480 1 040 2 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?18.(本小题满分12分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?19.(本小题满分12分)为了更好地进行精准扶贫,在某地区经过分层随机抽样得到本地区贫困人口收入的平均数(单位:万元/户)和标准差,如下表:求所抽样本的这30户贫困人口收入的平均数和方差.20.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们的培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)指出甲、乙两位学生成绩的中位数;(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由.21.(本小题满分12分)某电视台为宣传本省,随机对本省内15~65岁的人群抽取了n人,回答问题“本省内著名旅游景点有哪些”.统计结果如下图表所示.组号 分组回答正确的人数回答正确的人数占本组的频率第1组 [)1525,a0.5第2组 [)2535, 18x第3组 [)3545,b0.9 第4组 [)4555, 9 0.36第5组[]5565,3y(1)分别求出a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层随机抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?22.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[)7585,[)8595,[)95105,[)105115,[]115125,频数62638228(1)在相应位置上作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表).第六章综合测试答案解析一、 1.【答案】C【解析】根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为4110402324⨯=+++.2.【答案】C【解析】在频率分布直方图中小长方形的高等于频率组距,所以m h a b =-,ma b h-=,故选C.3.【答案】D【解析】上班时间行驶速度的中位数是2830292+=,下班时间行驶速度的中位数是272827.52+=. 4.【答案】C【解析】把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35, 因为有12个数据,所以1270%8.4⨯=,不是整数,所以数据的70%分位数为第9个数28. 5.【答案】C【解析】①错,众数可以有多个;②错,方差可以为0. 6.【答案】B【解析】体重在[)4550,内的频率为0.150.5⨯=,体重在[)5055,内的频率为0.0650.3⨯=,体重在[]5560,内的频率为0.0250.1⨯=,0.5:0.3:0.15:3:1=∵,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5:3:1,故选B. 7.【答案】B【解析】设()23112i i i z x y i n =-+=,,…,,则 ()()()121212123111231m n n z z z z x x x y y y x y n n n n +++⎛⎫=+++=+++-++++=-+ ⎪⎝⎭…………. 8.【答案】B【解析】前两组中的频数为()1000.050.1116⨯+=.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为381622-=.又最大频率为0.32,故第四组频数为0.3210032⨯=.所以223254a =+=.故选B. 二、9.【答案】ABC【解析】在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN,所以123p p p ==.10.【答案】BCD【解析】①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样. 11.【答案】ABCD【解析】()15556965x =⨯++++=乙,()14567865x =⨯++++=甲,故甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数为6,乙的成绩的中位数为5,故甲大于乙;甲的成绩的方差为()221221225⨯⨯+⨯=,乙的成绩的方差为()2211331 2.45⨯⨯+⨯=;③正确,甲的成绩的极差为4,乙的成绩的极差等于4,④正确. 12.【答案】BCD【解析】数据i x 出现的频率为()12i p i n =,,…,,则1x ,2x ,…,n x 的平均数为1122n n x p x p x p +++….因此次品数的平均数为00.510.220.0530.240.05 1.1⨯+⨯+⨯+⨯+⨯=.由频率知,次品数的众数为0. 三、13.【答案】0.5【解析】小李这5天的平均投篮命中率0.40.50.60.60.40.55y ++++==.14.【答案】5【解析】2540x x ++=的两根是1,4. 当1a =时,a ,3,5,7的平均数是4, 当4b =时,a ,3,5,7的平均数不是1.1a =∴,4b =.则方差()()()()2222211434547454s ⎡⎤=⨯-+-+-+-=⎣⎦.15.【答案】众数 平均数 中位数【解析】甲、乙、丙三个厂家从不同角度描述了一组数据的特征.甲:该组数据8出现的次数最多;乙:该组数据的平均数46389121388x +⨯++++==;丙:该组数据的中位数是7982+=.16.【答案】甲【解析】9x =甲,9x =乙,212255s =⨯=甲,216655s ⨯=乙,甲的方差较小,故甲入选. 四、17.【答案】(1)解:不同年龄段的人的身体状况有所差异,所以应该按年龄段用分层随机抽样的方法来调查该单位的职工的身体状况,老年、中年、青年所占的比例分别为2001200010=,6003200010=,1200320005=,所以在抽取40人的样本中,老年人抽140410⨯=人,中年人抽3401210⨯=人,青年人抽取340245⨯=人;(2)解:因为不同部门的人对单位的发展及薪金要求有所差异,所以应该按部门用分层随机抽样的方法来确定参加座谈会的人员,管理、技术开发、营销、生产人数分别占的比例为1602200025=,3204200025=,4806200025=,104013200025=,所以在抽取25人出席座谈会中,管理人员抽225225⨯=人,技术开发人员抽425425⨯=人,营销人员抽625625⨯=人,生产人员抽13251325⨯=人.18.【答案】(1)解:依题意知第三组的频率为412346415=+++++,又因为第三组的频数为12,∴本次活动的参评作品数为126015=(件). (2)解:根据频率分布直方图,可以看出第四组上交的作品数量最多,共有66018234641⨯=+++++(件). (3)第四组的获奖率是105189=,第六组上交的作品数量为1603234641⨯=+++++(件),∴第六组的获奖率为2639=,显然第六组的获奖率高. 19.【答案】解:由表可知所抽样本的这30户贫困人口收入的平均数为101081.222.4 1.84303030⨯+⨯+⨯=(万元),这30户贫困人口收入的方差为()()()222222101281 1.2 1.8442 1.844 2.4 1.8411.2304303030⎡⎤⎡⎤⎡⎤+-++-++-=⎣⎦⎣⎦⎣⎦.20.【答案】(1)解:甲的中位数是83,乙的中位数是84.(2)解:派甲,理由是:甲的平均数是85,乙的平均数是85,甲的方差是35.5,乙的方差是41,甲成绩更稳定.21.【答案】(1)解:由频率表中第4组数据可知,第4组总人数为9250.36=, 再结合频率分布直方图可知251000.02510n ==⨯,1000.01100.55a =⨯⨯⨯=∴, 1000.03100.927b =⨯⨯⨯=,180.920x ==,30.215y ==. (2)解:第2,3,4组回答正确的共有54人,∴利用分层随机抽样在54人中抽取6人,每组分别抽取的人数为:第2组:186254⨯=(人),第3组:276354⨯=(人),第4组:96154⨯=(人). 22.【答案】(1)解:频率分布直方图如图:高中数学 必修第一册 11 / 11(2)解:质量指标值的样本平均数为800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=. 质量指标值的样本方差为()()22222200.06100.2600.38100.22200.08104s =-⨯+-⨯+⨯+⨯+⨯=. 所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.。
(新课标)北师大版高中数学必修一综合测试题及解析
22. 解:(1)因 f (x) 2 x a 是奇函数,所以 f (x) f (x) 0 , 2x a
2x a 2x a
即
0 ,化简得 a2 1 , a 1.
2x a 2x a
当 a 1时, f (x) 2x 1 , f (1) 1 1 ,不符合题意;当 a 1 时, f (x) 2x 1 ,
A.a≥-3
B.a≤-3
C.a≤5
D.a≥5
7.
在下列四图中,二次函数
y=ax2+bx
与指数函数
b y=( )x
的图象只可为(
)
a
8.设
a>1,函数
f(x)=log x a
在区间[a,2a]上的最大值与最小值之差为12,则
a
等于(
)
A. 2
B.2
C.2 2
D.4
9.要得到
1 y=3×( )x
的图象,只需将函数
20.解:(1)当 a 1 时, f (x) log x 在[2,3]上是单调增函数,
a
所以 log 3 log 2 1,解得 a 3 ;
a
a
2
当 0 a 1 时,函数 f (x) log x 在[2,3]上是单调减函数, a
所以 log 2 log 3 1,解得 a 2 .
B.[1,4]
C.[1,2)
D.(1,2]
4. 函数 f(x)=2x-1+x-5 的零点所在区间为( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
5.已知奇函数 y f (x) ,当 x 0 时, f (x) x3 x2 ,则当 x 0 时, f (x) ( )
A. x3 x 2 B. x 3 x 2 C. x3 x 2 D. x 3 x 2 6.若 f(x)=-x2+2(a-1)x+2 在(-∞,4]上单调递增,则实数 a 的取值范围是( )
北师大版高中数学必修1检测题及答案
必修1检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分,考试时间90分钟.第Ⅰ卷(选择题,共48分)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6.7},A={2,4,6},B={1,3,5,7}.则A(C B)等于UA.{2,4,6}B.{1,3,5}C.{2,4,5}D.{2,5}2.已知集合A={x|x2-1=0},则下列式子表示正确的有()()①1∈A A.1个②{-1}∈AB.2个③φ⊆AC.3个④{1,-1}⊆AD.4个3.若f:A→B能构成映射,下列说法正确的有()(1)A中的任一元素在B中必须有像且唯一;(2)A中的多个元素可以在B中有相同的像;(3)B中的多个元素可以在A中有相同的原像;(4)像的集合就是集合B.A、1个B、2个C、3个D、4个4、如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上单调递减,那么实数a的取值范围是()A、a≤-3B、a≥-3C、a≤5D、a≥55、下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1。
A、①②B、①③C、③④D、①④6.根据表格中的数据,可以断定方程e x-x-2=0的一个根所在的区间是()7.若lg x-lg y=a,则l g()3-lg()3=()A.3a B.a C.a D.a≥b ,则函数f(x)=log x⊕log x的值域是(⎧2B.2x-10123 ex0.371 2.727.3920.09x+212345A.(-1,0)B.(0,1)C.(1,2)D.(2,3)x y22 32a 28、若定义运算a⊕b=⎨b⎩a a<b212)A[0,+∞)B(0,1]C[1,+∞)D R9.函数y=a x在[0,1]上的最大值与最小值的和为3,则a=()A.1C.4D.1410.下列函数中,在(0,2)上为增函数的是()A、y=log(x+1)B、y=log122x2-1C、y=log12xD、y=log(x2-4x+5)1211.下表显示出函数值y随自变量x变化的一组数据,判断它最可能的函数模型是()x45678910y15171921232527A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型12、下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)
第一章综合测试一、单选题(每小题5分,共40分)1.已知集合{}{}31A x x x Z B x x x Z =∈=∈<,,>,,则A B =( )A .∅B .){3223--,,,C .{}202-,,D .{}22-,2.命题“()01x x e x ∀∈+∞+,,≥”的否定是( ) A .()01x x e x ∃∈+∞+,,≥B .()01x x e x ∀∈+∞+,,< C .()01x x e x ∃∈+∞+,,<D .()01x x e x ∀∈-∞+,,≥ 3.若集合{}0A x x =<,且B A ⊆,则集合B 可能是( ) A .{}1x x ->B .RC .{}23--,D .{}3101--,,, 4.若a b c R ∈,,且a b >,则下列不等式成立的是( ) A .22a b >B .11a b<C .a c b c >D .2211a bc c ++>5.已知a b R ∈,,则“20a b +=”是“2ab=-”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.某市原来居民用电价为0.52元/kW h ,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW h ,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW h .对于一个平均每月用电量为200kW h 的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( ) A .110kW hB .114kW hC .118kW hD .120kW h7.已知210a +<,则关于x 的不等式22450x ax a -->的解集是( ) A .{5x x a <或}x a -> B .{5x x a >或}x a -< C .{}5x a x a -<<D .{}5x a x a -<<8.若102x <<,则函数y = )A .1B .12C .14D .18二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知集合[)()25A B a ==+∞,,,.若A B ⊆,则实数a 的值可能是( ) A .3-B .1C .2D .510.下列不等式不一定正确的是( )A .12x x+≥B .222x y xy+≥C .222x y xy +>D .2x y+≥ 11.已知2323x y <<,<<,则( )A .2x y +的取值范围为()69,B .2x y -的取值范围为()23,C .x y -的取值范围为()11-,D .xy 的取值范围为()49,12.23520x x +->的充分不必要条件是( )A .132x -<<B .102x -<<C .12x <<D .16x -<<三、填空题(每小题5分,共20分)13.已知集合{}2114M m m =++,,,如果5M ∈,那么m =________.14.二次函数()2y ax bx c x R =++∈的部分对应值如表:则a =________;不等式20ax bx c ++>的解集为________.15.已知{}{}2212210A x x B x x ax a ==-+-<<,<,若A B ⊆,则a 的取值范围是________. 16.若正数a b ,满足1a b +=,则113232a b +++的最小值为________. 四、解答题(共70分)17.(10分)判断下列命题是全称量词命题还是存在量词命题. (1)任何一个实数除以1,仍等于这个数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)()210x R x ∀∈+,≥;(4)22x R x ∃∈,<.18.(12分)已知集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x U R =>,.(1)求()UA B AB ,;(2)若{}2131C x m x m =-+<≤,且B C U =,求m 的取值范围.19.(12分)(1)已知集合{}{2124A a B ==,,,,,且A B B =,求实数a 的取值范围;(2)已知:20:40P x q ax -->,>,其中a R ∈,若p 是q 的必要不充分条件,求实数a 的取值范围.20.(12分)“绿水青山就是金山银山”.随着经济的发展,我国更加重视对生态环境的保护,2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x 元、y 元(单位:kg );甲、乙两人的购买方式不同:甲每周购买3kg 鸡蛋,乙每周购买10元钱鸡蛋.(1)若810x y ==,,求甲、乙两周购买鸡蛋的平均价格.(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由.21.(12分)解关于x 的不等式()22340x ax a a R +-∈<.22.(12分)为了缓解市民吃肉难的生活问题,某生猪养殖公司欲将一批猪肉用冷藏汽车从甲地运往相距120千米的乙地,运费为每小时60元,装卸费为1 000元,猪肉在运输途中的损耗费(单位:元)是汽车速度(km /h )值的2倍.(说明:运输的总费用=运费+装卸费+损耗费) (1)若汽车的速度为每小时50千米,试求运输的总费用.(2)为使运输的总费用不超过1 260元,求汽车行驶速度的范围.(3)若要使运输的总费用最小,汽车应以每小时多少千米的速度行驶?第一章综合测试答案解析一、 1.【答案】D【解析】选D .因为{}{}321012A x x x Z =∈=--<,,,,,,{}{11B x x x Z x x =∈=>,>或}1x x Z -∈<,,所以{}22AB =-,.2.【答案】C【解析】选C .命题为全称量词命题,则命题“()01x x e x ∀∈+∞+,,≥”的否定是“()01xx e x ∃∈+∞+,,<”. 3.【答案】C【解析】选C .因为23A A -∈-∈,,所以{}23A --⊆,. 4.【答案】D【解析】选D .选项A :01a b ==-,,符合a b >,但不等式22a b >不成立,故本选项是错误的;选项B :当01a b ==-,符合已知条件,但零没有倒数,故11a b<不成立,故本选项是错误的;选项C :当0c =时,a c b c >不成立,故本选项是错误的; 选项D :因为210c +>,所以根据不等式的性质,由a b >能推出2211a bc c ++>. 5.【答案】B【解析】选B .220aa b b=-⇒+=,反之不成立. 所以“20a b +=”是“2ab=-”成立的必要不充分条件.6.【答案】C【解析】选C .设每月峰时段的平均用电量为kW h x , 则谷时段的用电量为()200kW h x -;根据题意,得:()()()0.520.550.520.352002000.5210%x x -+--⨯⨯≥,解得118x ≤. 所以这个家庭每月峰时段的平均用电量至多为118kW h . 7.【答案】A【解析】选A .方程22450x ax a --=的两根为5a a -,. 因为210a +<,所以12a -<, 所以5a a ->.结合二次函数2245y x ax a =--的图象,得原不等式的解集为{5x x a <或}x a ->,故选A . 8.【答案】C【解析】选C .因为102x <<,所以2140x ->,所以2211414122224x x +-⨯⨯=≤,当且仅当2x =4x =. 二、9.【答案】AB【解析】选AB .因为A B ⊆,所以2a <,结合选项可知,实数a 的值可能是3-和1. 10.【答案】BCD 【解析】选BCD .因为x 与1x同号, 所以112x x x x+=+≥,A 正确; 当x y ,异号时,B 不正确;当x y =时,222x y xy +=,C 不正确;当11x y ==-,时,D 不正确.11.【答案】ACD【解析】选ACD .因为2323x y <<,<<, 所以49426xy x <<,<<, 所以629x y +<<,而32y ---<<,所以12411x y x y ---<<,<<. 12.【答案】BC【解析】选BC .由不等式23520x x +->,可得22530x x --<,解得132x -<<,由此可得:选项A ,132x -<<是不等式23520x x +->成立的充要条件;选项B ,102x -<<是不等式23520x x +->成立的充分不必要条件;选项C ,12x <<是不等式23520x x +->成立的充分不必要条件; 选项D ,16x -<<是不等式23520x x +->成立的必要不充分条件. 三、13.【答案】4或1或1-【解析】①当15m +=时,4m =,此时集合{}1520M =,,,符合题意, ②当245m +=时,1m =或1-,若1m =,集合{}125M =,,,符合题意,若1m =-,集合{}105M =,,,符合题意, 综上所求,m 的值为4或1或1-. 14.【答案】1 {2x x -<或}3x >【解析】由表知2x =-时03y x ==,时,0y =, 所以二次函数2y ax bx c =++可化为()()23y a x x =+-.又因为1x =时,6y =-,所以1a =,图象开口向上,结合二次函数的图象可得不等式20ax bx c ++>的解集为{2x x -<或}3x >. 15.【答案】12a ≤≤【解析】方程22210x ax a -+-=的两根为11a a +-,,且11a a +->, 所以{}11B x a x a =-+<<.因为A B ⊆,所以1112a a -⎧⎨+⎩≤≥,解得12a ≤≤.16.【答案】47【解析】由1a b +=,知()()113232732323232910b a a b a b ab ++++==+++++, 又2124a b ab +⎫⎛= ⎪⎝⎭≤(当且仅当12a b ==时等号成立), 所以499104ab +≤,所以749107ab +≥. 四、17.【答案】(1)命题中含有全称量词“任何一个”,故是全称量词命题. (2)命题中含有存在量词“至少有一个”,是存在量词命题. (3)命题中含有全称量词“∀”,是全称量词命题. (4)命题中含有存在量词“∃”,是存在量词命题.18.【答案】(1)因为集合{3512A x x B x x ⎧⎫=-=⎨⎬⎩⎭<≤,<或}2x >,所以32AB x x ⎧⎫=⎨⎬⎩⎭≤或}2x >,因为{1U R B x x ==,<或}2x >,所以{}U12B x x =≤≤.所以()U 312AB x x ⎧⎫=⎨⎬⎩⎭≤≤.(2)依题意得:2131211312m m m m -+⎧⎪-⎨⎪+⎩<,<,≥,即2113m m m ⎧⎪-⎪⎨⎪⎪⎩>,<,≥,所以113m ≤<.19.【答案】(1)由题知BA ⊆.2=时,4a =,检验当4a =时,{}{}1241612A B ==,,,,,符合题意. 4=时,16a =,检验当16a =时,{}{}12425614A B ==,,,,,符合题意. 2a 时,0a =或1,检验当0a =时,{}{}124010A B ==,,,,,符合题意. 当1a =时,{}1241A =,,,,由于元素的互异性,所以舍去. 综上:4a =或16a =或0a =.(2)设{}{}240A x x B x ax ==->,>, 因为p 是q 的必要不充分条件,所以BA .①当0a >时,42a>,所以02a <<.②当0a <时,不满足题意.③当0a =时,:40q ->,即B ≠∅,符合题意. 综上:02a ≤<.20.【答案】(1)因为810x y ==,,所以甲两周购买鸡蛋的平均价格为()3831096⨯+⨯=元,乙两周购买鸡蛋的平均价格为()208010109810=+元. (2)甲两周购买鸡蛋的平均价格为3362x y x y++=, 乙两周购买鸡蛋的平均价格为2021010xyx y x y=++, 由(1)知,当810x y ==,时,乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.证法一(比较法):依题意0x y ,>,且x y ≠,因为()()()()22420222x y xy x y x y xy x y x y x y +--+-==+++>, 所以22x y xyx y++>, 所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 证法二(分析法):依题意0x y ,>,且x y ≠, 要证:22x y xyx y++>, 只需证:()24x y xy +>只需证:222x y xy +>, 只需证:x y ≠(已知).所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠. 21.【答案】由于()22340x ax a a R +-∈<可化为()()40x a x a -+<,且方程()()40x a x a -+=的两个根分别是a 和4a -.当4a a =-,即0a =时,不等式的解集为∅; 当4a a ->,即0a >时,解不等式得4a x a -<<; 当4a a -<,即0a <时,解不等式得4a x a -<<.综上所述,当0a =时,不等式的解集为∅;当0a >时,不等式的解集为{}4x a x a -<<;当0a <时,不等式的解集为{}4x a x a -<<.22.【答案】(1)当汽车的速度为每小时50千米时,运输的总费用为:()120601000250124450⨯++⨯=元. (2)设汽车行驶的速度为km /h x , 由题意可得:12060100021260x x⨯++≤, 化简得213036000x x -+≤, 解得4090x ≤≤,故为使运输的总费用不超过1260元,汽车行驶速度不低于40km /h 时,不高于90km /h . (3)设汽车行驶的速度为km /h x ,则运输的总费用为12072006010002100010001240x x x ⨯++++=≥, 当72002x x=,即60x =时取得等号, 故若要使运输的总费用最小,汽车应以每小时60千米的速度行驶.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修一模块综合检测 数 学 试 题一、 选择题(本大题共10小题,每小题5分,共50分,在每小题给的四个选项中,只一个是符合题目要求的).1.已知集合M ={0,1,2,3,4},N={1,3,5},P=M∩N,则P 的子集共有 ( ) A.2个 B.4个 C .6个 D .8个2.函数()lg3f x x =-的定义域是( ) A.(0,2)B .[0,2] C.[0,2)ﻩ D.(0,2]3.下列函数中,值域是(0,)+∞的是( )A . xy -=131)( B. 12-=x y C. xy -=215D x y 21-=4.若偶函数)(x f 在),0(+∞上是减函数,则下列关系式中成立的是( )A .)43()32()21(f f f >-> B.)32()43()21(f f f >->C .)32()21()43(f f f >-> ﻩD .)21()32()43(f f f >>-5.设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =( ) A.3- B. 1- C. 1D.3 6.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ﻩ)A.0<a<b<1<d<c B.0<b<a <1<c <d C.0<d <c<1<a<b ﻩD.0<c<d <1<a <b7.函数2()1(0,1)x f x aa a -=+>≠ 的图象恒过定点( )A. (0,1) B. (0,2) C . (2,1) D . (2,2)8.已知log (1)()(3) 1 (1)a x x f x a x x ≥⎧=⎨--<⎩ 是定义在R 求a的取值范围是( ) A.[2,3) B .(1,3) C.(1,)+∞ D .(1,2] x ( )xA.(0,1)ﻩ B .(1,2)ﻩ C.(,)23 ﻩﻩ D.(,)3410.设函数()log (01)a f x x a =<<的定义域为[,](m n m <)n ,值域为[0,1],若n m -的最小值为13,则实数a的值为( ) A. 14 B. 14或23C .23ﻩD . 23或34二、填空题(本大题共5小题,每小题5分,共25分).11.计算= .12.若a x f x++=131)(是奇函数,则实数=a 13.若定义域为R 的偶函数f(x )在[0,+∞)上是增函数, 且f (21)=0,则满足不等式 f(log 4x)>0的x的集合是 . 14.已知函数()xf ex =,则()2f =15.函数()x f 的定义域为A ,若A x x ∈21,且()()21x f x f =时总有21x x =,则称()x f 为单函 数.例如,函数()()R ∈+=x x x f 1是单函数.下列命题:①函数()()R ∈-=x x x x f 22是单函数;②函数()⎩⎨⎧<-≥=2,2,2,log 2x x x x x f 是单函数;③若()x f 为单函数,A x x ∈21,且21x x ≠,则()()21x f x f ≠;④函数()x f 在定义域内某个区间D 上具有单调性,则()x f 一定是单函数.其中的真命题是 (写出所有真命题的编号).三、解答题(本大题共6小题,解答应写出必要的文字说明、证明过程及演算步骤;共75分).16.(本小题12分)已知集合A ={x|a -1<x<2a+1},B ={x|0<x<1},若A∩B=φ,求实数a 的取值范围.17.(本小题12分)设函数2,(0)()3,(0)x bx c x f x x x ⎧++<=⎨-+≥⎩,若,1)2(),0()4(-=-=-f f f (I)求函数)(x f 的解析式;(II)画出函数)(x f 的图象,并说出函数)(x f 的单调区间. 18.(本小题12分)已知函数()f x 定义域为(0,+∞)且单调递增,满足f (4)=1,()()()f xy f x f y =+ (I)求f (1)的值;探究用()f x 和n 表示f (nx )的表达式(n ∈N *); (II )若()f x + f (x -3)≤1,求x 的取值范围.19.(本小题12分)设当1≤x 时,函数1422x x y +=-+的值域为D ,且当x D ∈时,恒有2()54fx x k x x=++≤,求实数k 的取值范围.20.(本小题13分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年). (I )当020x <≤时,求函数()v x 的表达式;(II)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.21.(本小题14分)已知1()log 1ax f x x +=-(10≠>a a 且). (I )判断函数)(x f 的奇偶性,并证明; (II)讨论()x f 的单调性;(III )是否存在实数a ,使得()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m --,若存在,求出实数a 的取值范围;若不存在,则说明理由.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案BDAAADDACD二、填空题(5×5=25分) 11. 6 12.21-13.1(2,)(0,)2+∞ 14. ln 2 15. ③ 三、解答题(本大题共6小题,解答应写出必要的文字说明、证明过程及演算步骤;共75分)16.(本小题12分)已知集合A ={x|a -1<x<2a +1},B={x|0<x<1},若A∩B=φ,求实数a 的取值范围.解:∵A∩B=Ø,当A=Ø时,有2a+1≤a -1∴a≤-2;当A≠Ø时,有2a+1>a-1∴a>-2.又∵A∩B=Ø,则有2a +1≤0或a-1≥1∴a≤- 12或a≥2, ∴-2<a≤-12或a≥2,综上可知:a≤- 12或a≥2.17.(本小题12分)设函数2,(0)()3,(0)x bx c x f x x x ⎧++<=⎨-+≥⎩,若,1)2(),0()4(-=-=-f f f(I)求函数)(x f 的解析式;(I I)画出函数)(x f 的图象,并说出函数)(x f 的单调区间. 解:(I ),1)2(),0()4(-=-=-f f f ∴3416=+-c b ,124-=+-c b 解得3,4==c b ∴⎩⎨⎧≥+-<++=0,30,34)(2x x x x x x f(II)图象略,由图象可知单调区间为: (]2,-∞-,(]0,2-,()+∞,0,其中增区间为(]0,2-,减区间为(]2,-∞-,().,0+∞18.(本小题12分)已知函数()f x 定义域为(0,+∞)且单调递增,满足f (4)=1,()()()f xy f x f y =+ (I )求f (1)的值;探究用()f x 和n 表示f (nx )的表达式(n ∈N*); (II )若()f x + f (x -3)≤1,求x 的取值范围;解:(I)令x =1,y =4,则f (4)=f (1×4)=f (1)+f (4)∴f (1)=0∵()()()f xy f x f y =+∴()()()n n f x f x x x x nf x =••••=个(II)()f x +f (x -3)=f [x (x -3)]≤1=f (4),又()f x 在(0,+∞)上单调递增∴ (3)414303430x x x x x x x -≤⎧-≤≤⎧⎪->⇒⇒<≤⎨⎨>⎩⎪>⎩∴ x ∈(3,4]19.(本小题12分)设当1≤x 时,函数1422x x y +=-+的值域为D ,且当x D ∈时,恒有2()54fx x k x x=++≤,求实数k 的取值范围. 解:令t=2x ,由x≤1,则t∈(0,2],则原函数y=t 2-2t+2=(t-1)2+1∈[1,2],即D=[1,2], 由题意:f(x )=x 2+kx+5≤4x ,法1:则x2+(k-4)x+5≤0当x ∈D 时恒成立21(4)502(4)250k k +-+≤⎧∴⎨+-+≤⎩212k k ≤-⎧⎪∴⎨≤-⎪⎩∴ k ≤-2. 法2:则在x D ∈时恒有5()4k x x≤-++成立,故m i n5()42k x x⎡⎤≤-++=-⎢⎥⎣⎦ 20. (本小题13分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年). (I )当020x <≤时,求函数()v x 的表达式;(I I)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.解:(I )由题意:当04x <≤时,()2v x =;当420x <≤时,设()b ax x v +=,显然()b ax x v +=在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩故函数()x v =**2,04,15,420,82x x N x x x N⎧<≤∈⎪⎨-+≤≤∈⎪⎩(II )依题意并由(I)可得()=x f *2*2,04,15,420,.82x x x N x x x x N ⎧<≤∈⎪⎨-+≤≤∈⎪⎩ 当04x ≤≤时,()x f 为增函数,故()max (4)f x f ==428⨯=;当420x ≤≤时,()22221511100(20)(10)82888f x x x x x x =-+=--=--+,()max (10)12.5f x f ==. 所以,当020x <≤时,()x f 的最大值为12.5.21.(本小题14分)已知1()log 1ax f x x +=-(10≠>a a 且). (I )判断函数)(x f 的奇偶性,并证明; (II)讨论()x f 的单调性;(III)是否存在实数a ,使得()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m --,若存在,求出实数a 的取值范围;若不存在,则说明理由. 解:(I)由101x x +>-得:1x <-或1x > .所以,函数()f x 的定义域为(,1)(1,)-∞-+∞. 又111()log log log ()111a a a x x x f x f x x x x -+-+-===-=---+-()f x ∴为奇函数.(II)任取12,(1,)x x ∈+∞,且12x x <,则120x x -<.因为12211212112()011(1)(1)x x x x x x x x ++--=>---- 所以12121111x x x x ++>--,当1a >时,所以121211log log 11a a x x x x ++>--,故12()()f x f x >,所以,函数()x f 在区间(1,)+∞上单调递减.,同理可证:当01a <<时,函数()x f 在区间(,1)-∞-上单调递增. (III )假设存在实数a 满足题目条件.由题意得:0,0m n >>,又[],(,1)(1,)m n ⊆-∞-+∞,1m n∴<<又1log 1log a a n m-<-,log log a a m n ∴>,1a ∴>.故由(II)得:函数()x f 在区间(1,)+∞上单调递减.所以,函数()x f 在区间[],m n 上单调递减.故()1log ()1log a a f m m f n n =-⎧⎨=-⎩,所以1log log 11log log1a a a am am m n a n n+⎧=⎪⎪-⎨+⎪=⎪-⎩,所以22(1)0(1)0m a m a n a n a ⎧+-+=⎨+-+=⎩,,m n ∴是方程2(1)0x a x a +-+=的两个不同的实根.故方程2(1)0x a x a +-+=在区间(1,)+∞上有两个不同的实根.则2(1)40112(1)0a a a f ⎧∆=-->⎪-⎪->⎨⎪>⎪⎩,解得:3a >+又1a >, 所以,3a >+,满足题目条件的实数a 存在,实数a的取值范围是(3)++∞.。