关于磁控溅射发展历程的综述

合集下载

磁控溅射镀膜技术综合介绍

磁控溅射镀膜技术综合介绍

一.磁控溅射电镀上世纪80年代开始, 磁控溅射技术得到迅猛的发展, 其应用领域得到了极大的推广。

现在磁控溅射技术已经在镀膜领域占有举足轻重的地位, 在工业生产和科学领域发挥着极大的作用。

正是近来市场上各方面对高质量薄膜日益增长的需要使磁控溅射不断的发展。

在许多方面, 磁控溅射薄膜的表现都比物理蒸发沉积制成的要好;并且在同样的功能下采用磁控溅射技术制得的可以比采用其他技术制得的要厚。

因此, 磁控溅射技术在许多应用领域涉及制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要是影响。

磁控溅射技术得以广泛的应用,是由该技术有别于其它镀膜方法的特点所决定的。

其特点可归纳为:可制备成靶材的各种材料均可作为薄膜材料,涉及各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷等物质,特别适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,容易获得均匀的高精度的膜厚,且反复性好;溅射粒子几乎不受重力影响,靶材与基片位置可自由安排;基片与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时高能量使基片只要较低的温度即可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。

1.磁控溅射工作原理:磁控溅射属于辉光放电范畴, 运用阴极溅射原理进行镀膜。

膜层粒子来源于辉光放电中, 氩离子对阴极靶材产生的阴极溅射作用。

氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。

磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹, 使得电子在正交电磁场中变成了摆线运动, 因而大大增长了与气体分子碰撞的几率。

用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶), 使固体原子(分子)从表面射出的现象称为溅射。

磁控溅射技术及其发展

磁控溅射技术及其发展
n mi , 现 了“ 速” 射【 m/ n 实 高 溅 1 川。
度 , 改善膜 层 的结 构 和 性 能 , 来 但在 很 多 的情 况 下 ,
工 件材 料本 身不 能 承受 所需 的高 温 , 就需 要 继 续 这
溅 射镀 膜 的产业 化 , 随后 便 出现 了三 级 溅射 和磁 控
溅射。 3 1 平衡磁 控溅 射技 术 .
磁控 溅射 最典 型 的特点 就是 在溅 射过 程 中基 板 温升 低 和能实 现“ 高速 ” 溅射 。溅 射产 生二 次 电子被
加速 为 高能 电子后 , 在正 交磁 场作 用下 作摆 线运 动 ,
不断 与气 体分 子发 生碰 撞 , 能量 传递 给气 体分 子 , 把 本身 变 为低 能 粒 子 , 就 不 会 使 基 板 过 热 [ 还 有 也 1 妇;
平 衡 磁控 溅 射 即传 统 的 磁控 溅 射 , 在 直 流二 是 级 溅射 的基 础上 发展起 来 的 。在 阴极 靶材 背后 放置 永 磁体 或 电磁线 圈 , 靶 材 表 面形 成 与 电场方 向垂 在
m a ne r n s ut e i g t o p t rng
摘要 : 控溅射技术可制备超硬膜 、 腐蚀摩擦 薄膜 、 导 薄膜 、 性 薄膜 、 学 薄膜 , 及各种 具有 特殊功 能的薄膜 , 磁 耐 超 磁 光 以 在 工 业 薄 膜 制 备 领 域 的应 用 非 常 广 泛 。本 文 着 重 介 绍 了磁 控 溅 射 技 术原 理 、 点 、 控 溅 射 技 术 的发 展 史 及 其 发 展 趋 势 。 特 磁 关 键 词 : 膜 制 备 ; 控 溅 射 ; 衡 磁 控 溅 射 ; 平 衡 磁 控 溅 射 薄 磁 平 非
因E3 1 。溅 射速 率高 是 因为二 次 电子 作 摆 线运 动 , 2 要 经过 上百 米 的飞行 才最 终 被 阳极 吸 收[ 而气 压 为 1 ,

磁控溅射技术研究进展

磁控溅射技术研究进展

磁控溅射技术研究进展薄膜技术不仅可改变工件表面性能,提高工件的耐磨损、抗氧化、耐腐蚀等性能,延长工件使用寿命,还能满足特殊使用条件和功能对新材料的要求。

磁控溅射技术具有溅射率高、基片温升低、膜基结合力好、装置性能稳定、操作控制方便等优点,因此,被认为是镀膜技术中最具发展前景的一项新技术,同时也成为镀膜工业应用领域(特别是建筑镀膜玻璃、透明导电膜玻璃、柔性基材卷绕镀等对大面积的均匀性有特别苛刻要求的连续镀膜场合)的首选方案[1-8]。

1 磁控溅射技术原理溅射是指具有一定能量的粒子轰击固体表面,使得固体分子或原子离开固体从表面射出的现象。

溅射镀膜是指利用粒子轰击靶材产生的溅射效应,使得靶材原子或分子从固体表面射出,在基片上沉积形成薄膜的过程。

磁控溅射是在辉光放电的两极之间引入磁场,电子受电场加速作用的同时受到磁场的束缚作用,运动轨迹成摆线增加了电子和带电粒子以及气体分子相碰撞的几率,提高了气体的离化率,降低了工作气压。

而Ar+离子在高压电场加速作用下与靶材撞击,并释放能量使靶材表面的靶原子逸出靶材,飞向基板并沉积在基板上形成薄膜。

图1所示为平面圆形靶磁控溅射原理。

磁控溅射技术得以广泛的应用是由该技术的特点所决定的。

可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料、以及绝缘的氧化物陶瓷、聚合物等物质。

磁控溅射可制备多种薄膜不同功能的薄膜,还可沉积组分混合的混合物化合物薄膜。

在溅射过程中基板温升低和能实现高速溅射,溅射产生二次电子被加速为高能电子后,在正交磁场作用下作摆线运动,不断与气体分子发生碰撞,把能量传递给气体分子本身变为低能粒子也就不会使基板过热。

随着磁控溅射技术的发展,发展起了反应磁控溅射,非平衡磁控溅射,高功率脉冲磁控溅射等新技术,下面将一一介绍。

2 磁控溅射技术发展2.1 反应磁控溅射随着表面技术的发展化合物薄膜得到了广泛的应用,反应磁控溅射技术是沉积化合物薄膜的主要方式之一(沉积多元成分的化合物薄膜)。

磁控溅射镀膜技术的研究进展

磁控溅射镀膜技术的研究进展

磁控溅射镀膜技术的研究进展磁控溅射镀膜技术是一种常见的表面处理技术,它可以在各种基材表面制备出具有特殊性能的薄膜层。

随着技术的不断发展,在材料的选择、制备工艺、表面状态分析等方面都有所进步,使得磁控溅射镀膜技术在科学研究和实际应用中发挥着重要作用。

一、磁控溅射镀膜技术的基本原理磁控溅射镀膜技术基于靶材发射金属离子的原理,通过高能离子轰击固体靶材表面,使得金属离子从靶材表面脱离并沉积在基材表面上,从而形成具有一定厚度和化学组成的功能性膜层。

这种技术的独特之处在于可以通过控制靶材的化学成分和溅射工艺参数来调控薄膜层的结构和性能。

其中,靶材的化学成分直接影响薄膜层的组成,而溅射工艺参数如气压、功率、溅射气体种类和气体流量等则直接影响溅射速率和膜层的质量。

二、材料选择与制备工艺磁控溅射镀膜技术广泛用于各种材料的制备,包括金属、合金、氧化物、硅类材料以及半导体材料等。

对于不同的材料,其制备工艺也有所不同。

金属材料通常采用单一金属靶材或合金靶材进行制备,而合金靶材的组成比例可以通过调整靶材的制备工艺来实现。

氧化物材料则需要先将靶材还原成金属或合金形态,然后利用气氛调节技术调节气氛中氧气含量来制备氧化物膜层。

在制备工艺方面,需要进行适当的气氛调节和工艺优化。

例如,在制备合金材料时,需要考虑合金靶材的制备过程中的变形问题,找到合适的制备参数来保证靶材的均匀溅射和膜层的均匀沉积。

三、表面状态分析磁控溅射镀膜技术制备出的膜层常常需要通过表面状态分析来控制其性能,最常用的分析方法是X射线衍射和扫描电镜技术。

X射线衍射技术可以用于分析膜层的结晶性、晶格参数和晶胞结构等信息,从而定量描述膜层的结构和性能。

而扫描电镜技术则可以提供更丰富和直观的表面形貌信息,包括表面粗糙度、形貌变化和结构特征等。

此外,还有一些其他的表面分析技术如原子力显微镜、能量散射光谱和X射线光电子能谱等,可以用于全面分析膜层的属性和性能。

四、应用前景磁控溅射镀膜技术在各种领域都得到了广泛应用,在新能源、医疗、航空航天等高科技产业中有着重要的地位。

磁控溅射技术进展及应用-下

磁控溅射技术进展及应用-下

3硅基发光研究项目得到国家自然科学基金委员会光电重大计划重点项目90201037资助磁控溅射技术进展及应用(下)3徐万劲(北京大学物理学院 北京 100871)摘 要 近年来磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。

随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。

本文将介绍磁控溅射技术的发展,以及闭合磁场非平衡溅射、高速率溅射及自溅射、中频及脉冲溅射等各种新技术及特点,阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。

关键词 磁控管 溅射率 非平衡磁控溅射 闭合场非平衡磁控溅射 自溅射213 直流溅射(DC Magnetron Sputtering )、射频溅射(RF Magnetron Sputtering )、脉冲溅射(Pulsed Magnetron Sputtering )和中频溅射(Medium Fre 2quency Magnetron Sputtering )直流溅射和射频溅射(f =13156MH z )是很早就开始应用的溅射技术,在二极溅射系统中已经被采用,直流溅射方法用于被溅射材料为导电材料的溅射和反应溅射镀膜中,其工艺设备简单,有较高的溅射速率。

而对陶瓷等介质材料靶,则只能采用射频磁控溅射方法沉积薄膜,射频磁控溅射方法能对任何材料包括各种导体、半导体和绝缘介质进行溅射镀膜。

直流反应溅射则可以使用导体及高掺杂半导体材料作为靶材,沉积介质薄膜,有较高的溅射速率。

但是反应溅射沉积介质薄膜过程中,通常会出现阳极消失、阴极中毒、放电打弧问题,破坏了等离子体的稳定性,使沉积速率发生变化,导致溅射过程难以控制,限制直流反应磁控溅射技术在介质膜的应用。

近几年来发展起来的脉冲溅射和中频溅射技术可以在反应溅射绝缘介质薄膜的过程中,释放靶表面积累的电荷、防止放电打弧的现象,并具有溅射速率快、沉积速率高等优点。

脉冲磁控溅射(10~350kH z )已经成为公认的作为绝缘材料沉积的优选的工艺过程2,33,该技术使用的脉冲电源输出电压波形是非对称的双极性脉冲(见图8),脉冲电源的正向脉冲对于释放靶表面的积聚的电荷、防止打弧是有效的,脉冲工作方式在沉积中提供稳定无弧的工作状态。

磁控溅射相关

磁控溅射相关
未来磁控溅射技术的发展需要 跨学科的合作与交叉创新,涉 及物理、化学、材料科学、机 械工程等多个领域,需要加强 学科间的交流与合作。
THANKS
感谢观看
靶材性能对溅射效果影响
靶材纯度
高纯度靶材可以减少薄膜中的杂质含 量,提高薄膜性能。
靶材致密度
高致密度靶材可以提高溅射速率和薄 膜质量。
靶材晶粒大小
细小晶粒的靶材可以提高薄膜的均匀 性和附着力。
靶材成分与组织
不同成分和组织的靶材会影响溅射过 程中粒子的能量和角度分布,从而影 响薄膜的结构和性能。
04
多功能化和智能化
未来的磁控溅射设备将实现多功能化和智能化,具备自动调节、远程监控、数据分析等 功能,提高设备的易用性和生产效率。
环保和可持续发展
环保和可持续发展是未来磁控溅射技术发展的重要方向,将采用更环保的材料和工艺, 降低能耗和废弃物排放。
未来研究方向和挑战
新材料和新工艺的探索
未来需要探索新的靶材、基材 以及工艺参数,以适应不同领 域和应用的需求,并提高磁控 溅射技术的性能。
关键技术参数与性能指标
溅射速率
单位时间内溅射到基片上的物 质质量或厚度,与靶材成分、 电源功率、真空度等因素相关

薄膜均匀性
基片上薄膜厚度的均匀程度, 受磁场分布、基片位置、溅射 角度等因素影响。
靶材利用率
靶材被有效利用的比例,与靶 材形状、磁场设计、溅射方式 等因素有关。
设备稳定性与可靠性
设备在长时间运行过程中的稳 定性和故障率,是评价设备性
06
磁控溅射技术应用实例分析
在微电子领域应用案例
薄膜晶体管(TFT)制造
利用磁控溅射技术,在玻璃或塑料基板上沉积薄膜,用于制造TFT显示器,如液晶显示屏 (LCD)和有机发光二极管(OLED)显示屏。

磁 控 溅 射 简 介

磁 控 溅 射 简 介

CdS薄膜的 薄膜的SEM分析 薄膜的 分析
CdCl2处理后退火的CdS薄 膜与没有任何处理的相比, 晶粒显著增大,表面也变得 非常光滑
谢 谢
溅射示意图
溅射后的现象
二次电子 基本离子 背散射颗粒 气体解吸
溅射颗粒
非晶层
化合物形成 冲撞链 震动波 点缺陷 热链 1kev的离子能量下,溅射出的中性粒子,二次电子和二次离子之比约为1000:10: 1kev的离子能量下,溅射出的中性粒子,二次电子和二次离子之比约为1000:10:1 的离子能量下 1000 注入原子
真空溅射原理
原理: 原理: 真空镀膜是借助高能粒子轰击所产生的动量交换, 真空镀膜是借助高能粒子轰击所产生的动量交换, 把镀膜材料的原子从固体( 表面撞出并放射出来。 把镀膜材料的原子从固体(靶)表面撞出并放射出来。 放在靶前面的基材拦截溅射出来的原子流, 放在靶前面的基材拦截溅射出来的原子流,后者凝聚并 形成镀层。 形成镀层。 阴极发射电子在电场的作用下加速飞向基片的过程 中与溅射气体原子发生碰撞, 中与溅射气体原子发生碰撞,电离出大量的正离子和电 电子飞向基片, 子, 电子飞向基片, 正离子在电场的作用下加速轰击 靶材,溅射出大量的靶材原子,呈中性的靶原子( 靶材,溅射出大量的靶材原子,呈中性的靶原子(或分 沉积在基片上成膜。 子)沉积在基片上成膜。
混合真空计

真空腔内压强
物质流量控制计

气体溅射流量
溅射的温度控制
基板温度
最大电压
温度
溅射的电压电流监控
功率
电流 电压
磁控溅射法制备CdS薄膜 薄膜 磁控溅射法制备
射频磁控溅射系统
– – – –
本实验采用射频磁控溅射方法制备CdS薄膜; 本实验采用射频磁控溅射方法制备CdS薄膜; CdS薄膜 CdS(99.99% ,直径为 直径为76mm ,厚度为 厚度为3.2 mm; 靶材为高纯 CdS(99.99%) ,直径为76mm ,厚度为3.2 mm; 衬底为已经清洗过的导电玻璃; 衬底为已经清洗过的导电玻璃; (99.9%)为溅射气体 为溅射气体。 在实验过程中引入高纯 Ar (99.9%)为溅射气体

磁控溅射技术的原理与发展

磁控溅射技术的原理与发展

磁控溅射技术的原理与发展磁控溅射技术因为其自身所具有的显著优点,已经被越来越广泛的运用于各个领域,其中以工业镀膜方面的应用最为广泛,相应的其生产技术也得到了很大的改进。

文章着重讲述磁控技溅射技术的原理,特点以及磁控溅射技术的发展趋势。

标签:镀膜技术;磁控溅射;平衡磁控溅射;非平衡磁控溅射自1852年,格洛夫发现阴极溅射现象,对于溅射技术的运用便逐步发展起来,从上世纪80年代至今,磁控溅射技术在表面工程领域占据举足轻重的地位。

磁控溅射技术可制备超硬膜、耐腐蚀摩擦薄膜、超导薄膜、磁性薄膜、光学薄膜,以及各种具有特殊功能的薄膜,是一种十分有效的薄膜沉积方法。

1 溅射镀膜的原理溅射技术是指用有一定能量的粒子轰击固体表面,使该固体表面的原子或者分子离开其表面,溅射出去的技术,该固体被称为靶材,飞溅而出的原子或分子落于另一固体表面形成镀膜,被镀膜的固体称之为基片。

电子在外加电场作用下,加速向外飞出,与Ar原子发生碰撞,使Ar原子电离成Ar离子和二次电子,并将其大部分能量传递给Ar离子,Ar离子获得能量后以高速轰击靶材,使其上原子或分子脱离靶材表面飞溅出去,这些获得能量的原子或分子落于基片表面并沉淀下来形成镀膜。

但由于发生了多次的能量传递,导致电子无法轰击电离靶材,而是直接落于基片之上。

磁控溅射是在外加电场的两极之间引入一个磁场,电子受电场力加速作用的同时受到洛伦兹磁力的束缚作用,从而使其运动轨迹由原来的直线变成摆线,从而增加了高速电子与氩气分子相碰撞的几率,能大大提高氩气分子的电离程度,因此便可降低了工作气压,而Ar离子在高压电场加速作用下,轰击靶材表面,使靶材表面更多的原子或分子脱离原晶格而溅出靶材飞向基片,高速撞击沉淀于基片上形成薄膜,由于二次电子残余的能量较低,落于基片后引起的温度变化并不明显,于是磁控溅射镀膜技术拥有“高速低温”的特点。

2 磁控溅射镀膜技术与传统的镀膜技术相比的优点可制备成靶材的材料很多,选材面较广,几乎所有金属,合金和陶瓷材料都可以被用来制作靶材;在一定条件下通过多个靶材共同溅射方式,可在基片表面镀上一层比例精确的合金膜;通过精确地控制磁场与电场的大小可以获得高质量且较为均匀的膜厚;由于是通过离子溅射从而使得靶材物质由固态直接转变为高速离子态,而且溅射靶的安装是不受限制的,使之十分适合大容积多靶装置的设计;此外,在溅射的放电气氛中加入氧、氮或其它活性气体,可以是靶材与这些气体发生反应形成化合物膜层沉淀在基片的表面;同时,磁控溅射技术形成镀膜具有速度快,膜层致密均匀精度高附着性好等特点,从而此项技术十分适合大批量的工业化生产,并具有极高的生产率与生产效率。

反应磁控溅射技术的发展情况及趋势

反应磁控溅射技术的发展情况及趋势

书山有路勤为径,学海无涯苦作舟
反应磁控溅射技术的发展情况及趋势
综述了反应磁控溅射技术的发展情况。

分析了模拟反应磁控溅射的Berg 经典模型;详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理及过程;分析了消除迟滞效应和打火现象的各种方法并提出个人的观点;展望了反应磁控溅射技术的发展趋势。

反应磁控溅射是具有一定能量的离子(Ar+)溅射金属或合金靶表面,被溅射出的金属原子和反应气体发生化学反应在基体上形成化合物薄膜。

反应磁控溅射技术是目前科研和生产中制备化合物薄膜最常用的方法,能沉积不同种类的化合物,如:氧化物、氮化物、碳化物、氟化物和砷化物等。

反应磁控溅射技术的优点是:借助精密的监控设备能快速沉积所需化学配比的化合物薄膜;金靶容易提纯和加工,因此靶材的成本低且所得薄膜的纯度高;金属靶具有良好的热传导性,因此靶的冷却效果较好,即靶能承受较高功率的溅射;反应磁控溅射沉积薄膜时,基体的温度较低(小于3e)。

理想的反应溅射应该是在基体上沉积化合物,但是在实际溅射过程中,不仅在基体上沉积了化合物薄膜,同时靶材表面也会和反应气体发生化合反应形成化合物覆盖层,即所说的靶中毒。

如反应溅射过程中的不稳定性是较复杂的非线性关系,为了预知和减少前期工艺优化的工作量,于1987 年由Berg 带头的课题组提出了一个依反应气体平衡为依据的模拟反应溅射过程的模型。

该模型简单可靠,后来Berg 课题组还有其他国家的研究人员对该模型进行了深入的研究和发展,使模拟结果更趋近于实际的溅射过程。

本文详述了反应磁控溅射过程中迟滞效应和打火现象的产生原理,分析了消除迟滞效应和打火现象的各种方法并提出个人的观点,分析了Berg 模型,展望了反应磁控溅射技术的发展趋势。

磁控溅射介绍

磁控溅射介绍

在玻璃上贴膜,这种膜的透光性非常高,以至于 看不出有任何改变,就能达到夏季隔热、冬季保 温、居住安全的目的。

在光学存储领域,光盘存储自推出以来技术不断更新, 磁控溅射也从镀制CD2ROM的Al及CD2R的Au或Ag 的光反射层,到CD2RW中镀制ZnS2SiO2/GeSbTe(或 AgInSbTe)/ZnS2SiO2/Al多层结构光记录媒介膜。 目前随着对光存储的需求大幅度的增加,磁控溅射在 光学存储领域将发挥更大的作用
磁控溅射镀膜技术 的发展和应用
刘永
随着材料科学的发展,近年来薄膜材料作为一种重 要的分支从过去体材料一统天下的局面脱颖而出。如 过去需要纵多体材料组合才能实现的功能,现在仅需 几块电路板或一块集成电路板就能完成。薄膜技术将 各种不同的材料灵活的复合在一起,具有异特性的复 杂材料体系,发挥每种材料各自的优势,避免优单一 材料局限性。薄膜的应用越来越广,因此薄膜的制备 研究非常重要。 薄膜的制备方法有物理、化学法。物理法指在真空 下,采用各种物理方法将固态镀膜材料转化为原子、 分子或离子的气相物质后再沉积于基体表面,从而形 成固体薄膜的一类薄膜制备方法。由于粒子发射可以 采用不同的方式,因而物理气相沉积技术可以呈现出 不同的形式,主要有 真空蒸发镀膜、溅射镀膜、离子 镀膜,束流沉积等几种形式。
磁控溅射::
磁控溅射的优点 :
a)
b)
c)
d)
由于电子运动路径大大延长,显著提高阴极位降区 的电子密度,所以使溅射气压降低,且降低了薄膜 污染的可能性; 电子运动路径变长,Ar原子电离率增大,溅射速率 高 电子只有能量耗尽时才运动到基片,基片温度升高 不大,可以减少衬底损伤,降低沉积温度; 易实现在塑料等衬底上的薄膜低温沉积射和自溅射技术因其具 备很大的潜力而被业界所重视。究其原因就是高速 率溅射和自溅射中,其溅射材料具有较高的离化率; 溅射材料的大量电离可以减少,甚至消除对惰性气 体的需求,从而大大改善了沉积膜层的结构:可以 大大缩短薄膜形成的时间,从而提高工业应用的效 率。 在高速率溅射系统中如果不存在惰性气体,就 称为自溅射。自溅射过程中由于没有惰性气体的参 与,在 很大程度上影响了膜层的生长过程以及其结 构成分;并且在制取合金或混 合物薄膜时,自溅射 还可以促进溅射 粒子化学反应的进行。

磁控溅射镀膜技术的发展

磁控溅射镀膜技术的发展

磁控溅射镀膜技术的发展一、本文概述随着科技的飞速发展,镀膜技术在多个领域,如电子、光学、航空航天等,都扮演着至关重要的角色。

其中,磁控溅射镀膜技术凭借其独特的优势,如镀膜质量高、适用范围广、工艺稳定等,逐渐成为镀膜领域的研究热点。

本文将对磁控溅射镀膜技术的发展历程进行详细的梳理,分析其技术原理、应用领域及发展趋势,旨在为读者提供一个全面而深入的了解,并为该技术的进一步研究和应用提供参考。

文章首先回顾了磁控溅射镀膜技术的起源和发展历程,介绍了其从最初的实验室研究到如今的广泛应用所经历的演变。

接着,文章将深入探讨磁控溅射镀膜技术的基本原理,包括磁控溅射的基本原理、镀膜过程中的关键因素以及镀膜质量的控制等。

文章还将详细介绍磁控溅射镀膜技术在各个领域的应用情况,如电子器件、光学元件、太阳能电池等,以及在这些领域中所取得的成果和面临的挑战。

文章将展望磁控溅射镀膜技术的未来发展趋势,分析其在新材料、新工艺等方面的潜在应用,并探讨如何进一步提高镀膜质量、降低成本、拓宽应用领域等问题。

通过本文的阐述,读者可以对磁控溅射镀膜技术的发展有一个清晰的认识,并为其未来的研究和应用提供有益的启示。

二、磁控溅射镀膜技术的基本原理磁控溅射镀膜技术是一种物理气相沉积(PVD)方法,其基本原理是利用高能离子轰击靶材表面,使靶材表面的原子或分子被溅射出来,并在基材表面沉积形成薄膜。

在这个过程中,磁场起着至关重要的作用。

在真空溅射室中,靶材被放置在阴极,而基材(待镀物体)则被放置在阳极。

溅射室内充入惰性气体(如氩气),并通过电场使气体电离产生正离子和电子。

正离子在电场的作用下加速飞向靶材表面,与靶材原子发生碰撞,将靶材原子从表面溅射出来。

溅射出的靶材原子在飞行过程中与气体原子发生碰撞,失去部分能量后到达基材表面。

在靶材附近设置磁场,磁场的方向与电场方向垂直。

当溅射出的靶材原子经过磁场时,它们会受到洛伦兹力的作用,在磁场中做圆周运动。

磁控溅射技术及其发展_李芬

磁控溅射技术及其发展_李芬

: , , A b s t r a c t M a n e t r o n s u t t e r i n c o u l d b e u s e d i n d e o s i t i o n o f h a r d w e a r r e s i s t a n t c o a t i n s l o w f r i c - - g p g p g , , , , , t i o n c o a t i n sc o r r o s i o n r e s i s t a n t c o a t i n ss u e r c o n d u c t i n c o a t i n s m a n e t i c c o a t i n so t i c a l c o a t i n s g g p g g g g p g a n d c o a t i n s w i t h o t h e r s e c i a l f u n c t i o n s .M a n e t r o n s u t t e r i n h a s b e c o m e w i d e l u s e d t o f a b r i c a t e t h i n g p g p g y , f i l m i n i n d u s t r .T h e r i n c i l e a n d t h e c h a r a c t e r i s t i c s o f m a n e t r o n s u t t e r i n t e c h n o l o a s w e l l a s t h g p e y p p g g y d e v e l o m e n t h i s t o r a n d t h e d e v e l o m e n t t r e n d s o f m a n e t r o n s u t t e r i n a r e i n t r o d u c e d i n t h i s a e r . p y p g p g p p : , , , K e w o r d s T h i n f i l m f a b r i c a t i o n M a n e t r o n s u t t e r i n B a l a n c e d m a n e t r o n s u t t e r i n U n b a l a n c e d g p g g p g y s u t t e r i n m a n e t r o n p g g

国外磁控溅射技术发展现状

国外磁控溅射技术发展现状

国外磁控溅射技术发展现状
磁控溅射是一种物理气相沉积(PVD)技术,主要应用在薄膜制备领域。

其发展现状如下:20世纪70年代,磁控溅射技术被开发问世,由于是一种高速、低温、低损伤镀膜技术,其应用领域快速扩大。

磁控溅射包括直流磁控溅射、射频磁控溅射两种方法,其主要特点包括:成膜速率高,膜制备速度快;衬底温度要求低,可对不耐高温衬底进行镀膜;膜附着能力强,可大面积镀膜;保持源材料成分,薄膜均匀性好、致密性高;设备简单,易于控制;对环境无污染等。

磁控溅射可用来制备具有吸收、透射、反射、折射、偏光等功能的薄膜,用于光电子器件领域;可利用金属氧化物、半导体、绝缘体等材料制备薄膜,用于微电子器件、超导体领域;可制备超硬膜、自润滑膜、功能膜等产品,用作表面涂层,应用在机械加工领域。

在全球范围内,磁控溅射镀膜设备相关生产商主要有日本JX日矿日石金属、日本东曹、日本日立金属、日本三井金属、比利时优美科Umicore等。

日本磁控溅射镀膜设备生产实力强,在全球市场中处于主导地位。

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述1.引言溅射技术属于PVD (物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。

它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。

磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。

磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。

2.溅射技术的发展1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。

采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70 年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。

这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在Ipa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。

在1974 年,由J.Chapin 发现了平衡磁控溅射后,使高速、低温溅射成为现溅射技术先后经历了二级、三级和高频溅射。

二极溅射是最早采用,并且是目前最简单的基本溅射方法。

二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。

为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。

然而像这种传统的溅射技术都有明显的缺点:1).溅射压强高、污染严重、薄膜纯度差2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低3).灯丝寿命低,也存在灯丝对薄膜的污染问题3.磁控溅射的原理:磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。

磁控溅射技术原理、现状、发展及应用实例

磁控溅射技术原理、现状、发展及应用实例

磁控溅射技术原理、现状、发展及应用实例(薄膜物理大作业论文)班级:1035101班学号:1101900508姓名:孙静一、前言镀膜玻璃是一种在玻璃表面上镀一层或多层金属氧化物薄膜,使其具有一种或多种功能的玻璃深加工产品。

自七十年代开始,在世界发达国家和地区,传统的单一采光材料—普通建气琳璃,已逐步为具有节能、控光、调温、改变墙体结构以及具有艺术装饰效果的多功能玻璃新产品所替代,如茶色玻璃、中空玻璃、镀膜玻璃等,其中又以镀膜玻璃尤汐引人注目,发展也颇为迅速,如欧洲共同体国家在1985年建筑玻璃总量的三分之二用的是镀膜玻璃,美国镀膜玻璃的市场在八十年代就已达5000万平方米/年,在香港、新加坡、台湾等经济崛起的东南亚国家和地区,镀膜玻璃的使用也日渐盛行。

镀膜玻璃作为一种新型的建筑装饰材料已得到了人们普遍的肯定和喜爱。

目前生产镀膜玻璃所采用的方法大体上可分为浸渍法、化学气相沉积法、真空蒸发法、磁控溅射法以及在线镀膜等五种方法。

浸渍法是将玻璃浸人盛有金属有机化合物溶液的槽中,取出后送人炉中加热,去除有机物,从而形成了金属氧化物膜层。

由于浸渍法使玻璃两边涂膜,且低边部膜层较厚,同时可供水解盐类不多,因而在国内未得到很好推广。

化学气相沉积法是将金属化合物加热成蒸汽状,然后涂到加热后的玻璃表面上。

这种方法由于受到所镀物质的限制,且在大板上也难真空蒸发法是在真空条件下,通过电加热使镀膜材料蒸发,由固相转化为气相,从而沉积在玻璃表面上,形成稳定的薄膜。

此法的不足之处是所镀膜层不太均匀、有疵点、易脱落。

只能生产单层金属镀膜玻璃,颜色也难以控制。

磁控溅射法是在真空条件下电离惰性气休,气体离子在电场的作用下,轰击金属靶材使金属原子沉积到玻璃表面上。

在线镀膜一般是在浮法玻璃生产线上进行,如电浮法、热喷涂等方法,目前我国较少使用。

在这些方法中,磁控溅射镀膜法是七十年代末期发展起来的一种先进的工艺方法,它的膜层由多层金属或金属氧化层组成,允许任意调节能量通过率、能量反射率,具有良好的外观美学效果,它克服了其它几种生产方法存在的一些缺点,因而目前国际上广泛采用这一方法。

磁控溅射镀膜技术的发展及应用_马景灵

磁控溅射镀膜技术的发展及应用_马景灵

磁控溅射镀膜技术的发展及应用_马景灵溅射镀膜过程主要是将欲沉积成薄膜的材料制成靶材,固定在溅射沉积系统的阴极上,待沉积薄膜的基片放在正对靶面的阳极上。

溅射系统抽至高真空后充入氩气等,在阴极和阳极之间加几千伏的高压,阴阳极之间会产生低压辉光放电。

放电产生的等离子体中,氩气正离子在电场作用下向阴极移动,与靶材表面碰撞,受碰撞而从靶材表面溅射出的靶材原子称为溅射原子,溅射原子的能量一般在一至几十电子伏范围,溅射原子在基片表面沉积而后成膜。

溅射镀膜就是利用低气压辉光放电产生的氩气正离子在电场作用下高速轰击阴极靶材,把靶材中的原子或分子等粒子溅射出而沉积到基片或者工件表面,形成所需的薄膜层。

但是溅射镀膜过程中溅射出的粒子的能量很低,导致成膜速率不高。

磁控溅射技术是为了提高成膜速率在溅射镀膜基础上发展起来的,在靶材表面建立与电场正交的磁场,氩气电离率从0.3%~0.5%提高到了5%~6%,这样就解决了溅射镀膜沉积速率低的问题,是目前工业上精密镀膜的主要方法之一[1]。

可制备成磁控溅射阴极靶材的原料很广,几乎所有金属、合金以及陶瓷材料都可以制备成靶材。

磁控溅射镀膜在相互垂直的磁场和电场的双重作用下,沉积速度快,膜层致密且与基片附着性好,非常适合于大批量且高效率的工业化生产。

1磁控溅射的工艺流程在磁控溅射过程中,具体工艺过程对薄膜性能影响很大,主要工艺流程如下[2]:(1)基片清洗,主要是用异丙醇蒸汽清洗,随后用乙醇、丙酮浸泡基片后快速烘干,以去除表面油污;(2)抽真空,真空须控制在2×104Pa以上,以保证薄膜的纯度;(3)加热,为了除去基片表面水分,提高膜与基片的结合力,需要对基片进行加热,温度一般选择在150℃~200℃之间;(4)氩气分压,一般选择在0.0l~lPa范围内,以满足辉光放电的气压条件;(5)预溅射,预溅射是通过离子轰击以除去靶材表面氧化膜,以免影响薄膜质量;(6)溅射,氩气电离后形成的正离子在正交的磁场和电场的作用下,高速轰击靶材,使溅射出的靶材粒子到达基片表面沉积成膜;(7)退火,薄膜与基片的热膨胀系数有差异,结合力小,退火时薄膜与基片原子相互扩散可以有效提高粘着力。

关于磁控溅射发展历程的综述

关于磁控溅射发展历程的综述

磁控溅射1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。

1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。

1974年,j.chapin发现了平衡磁控溅射。

这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。

磁控溅射的发展历程:溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。

溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下:(1)二级溅射:二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。

(2)传统磁控溅射(也叫平衡磁控溅射):平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。

但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。

(3)非平衡磁控溅射:B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。

并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。

溅射技术及其发展的历程

溅射技术及其发展的历程

溅射技术及其发展的历程1842年格洛夫(Grove)在实验室中发现了阴极溅射现象。

他在研究电子管阴极腐蚀问题时,发现阴极材料迁移到真空管壁上来了。

但是,真正应用于研究的溅射设备到1877年才初露端倪。

迄后70年中,由于实验条件的限制,对溅射机理的认同长期处于模糊不请状态,所以,在1950年之前有关溅射薄膜特性的技术资料,多数是不可*的。

19世纪中期,只是在化学活性极强的材料、贵金属材料、介质材料和难熔金属材料的薄膜制备工艺中,采用溅射技术。

1970年后出现了磁控溅射技术,1975年前后商品化的磁控溅射设备供应于世,大大地扩展了溅射技术应用的领域。

到了80年代,溅射技术才从实验室应用技术真正地进入工业化大量生产的应用领域。

最近15年来,进一步发展了一系列新的溅射技术,几乎到了目不暇接的程度。

在21世纪来临的时刻,回顾一下溅射技术发展的历程,寻找其中某些规律性的思路,看来是有一定意义的。

1.最初溅射技术改革的原动力主要是围绕着提高辉光等离子体的离化率,增强离化的措施包括:[1]热电子发射增强—由原始的二极溅射演变出三极溅射。

三极溅射应用的实际效果对离化率增强的幅度并不大,但是对溅射过程中,特别是在反应溅射过程中,工艺的可控性有明显地改善。

[2]电子束或电子弧柱增强—演变出四极溅射。

Balzers一直抓住这条线,形成有其特色的产品系列,最近几年推出在中心设置一个强流热电子弧柱,配合上下两个调制线圈,再加上8对孪生靶,组合成新型纳米涂层工具镀膜机。

是一个典型实例。

[3]磁控管模式的增强溅射—磁控溅射。

利用磁控管的原理,将等离子体中原来分散的电子约束在特定的轨道内运转,局部强化电离,导致靶材表面局部强化的溅射效果。

号称为“高速、低温”溅射技术。

磁控溅射得到广泛应用的原因,除了效果明显之外,结构不复杂是一个重要的因数,大面积的溅射镀膜工艺得到推广。

应该看到,靶面溅射不均匀导致靶材利用率低是其固有的缺点。

[4]最近有人推出离子束增强溅射模式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁控溅射
1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。

1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。

1974年,j.chapin发现了平衡磁控溅射。

这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。

磁控溅射的发展历程:
溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。

溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下:
(1)二级溅射:
二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。

(2)传统磁控溅射(也叫平衡磁控溅射):
平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。

但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。

(3)非平衡磁控溅射:
B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。

并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。

这样可以使磁控溅射技术更适合工业生产。

(4)脉冲磁控溅射:
由于在通过直流反应溅射来制得高密、无缺陷的绝缘膜(尤其是氧化物薄膜)时,经常存在不少的问题。

其结果会严重的影响膜的结构和性能。

但是通过脉冲磁控溅射可以与制得金属薄膜同样的效率来制得高质量的绝缘体薄膜。

近年来,随着脉冲中频电源的研发成功,使镀膜工艺技术又上了一个新的台阶;利用中频电源,采用中频对靶或者孪生靶,进行中频磁控溅射,有效地解决了靶中毒严重的现象,特别是在溅射绝缘材料的靶时,克服了溅射过程中,阳极消失的现象。

(5)磁控溅射技术新型应用:
磁控溅射技术的新型应用是指在以上基础上,再根据应用的需要,对磁控溅射系统进行改进而衍生出的多种多样的设备和装置。

这些改进主要是在系统内磁力线的分布上以及磁控溅射靶的设置和分布上。

关于磁控溅射发展历程的总结:
近年来,磁控溅射技术在固体靶表面的溅射机理,非平衡磁控溅射以及脉冲磁控溅射对沉积涂层的影响等方面的研究取得了重要的进展。

溅射沉积镀膜的核心是在低真空条件下产生等离子体,通过等离子体轰击将固体靶面原子击出,因此控制等离子体的能量分布与行为是研究磁控溅射工艺的关键。

尽管目前许多国内外研究者都在不遗余力的研究工艺参数对不同成分涂层的影响,并根据不同材料开发了一系列的沉积工艺的过程。

直流非平衡磁控溅射是直流磁控溅射技术中的重要里程碑,使得溅射技术直接过渡到离子镀阶段,而脉冲磁控溅射技术稳定沉积高质量的非导电涂层做出了重要的贡献。

这两项关键技术的核心是改变等离子体的密度分布和输送过程,因此控制离子流的行为状态则是磁控溅射研究的核心环节。

相关文档
最新文档