初中数学:《概率初步》单元测试(含答案)
数学九年级上册《概率初步》单元测试题附答案
100
150
200
500
800
1 000
摸到白球 次数m
28
34
48
130
197
251
摸到白球的频率
0.28
0.23
0.24
0.26
0.246
0.251
(1)请估计:当n很大时,摸到白球的频率将会接近(精确到0.01);
(2)试估算口袋中白种颜色的球有多少只?
(3)请根据估算的结果思考从口袋中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?画出树状图(或列表)表示所有可能的结果,并计算概率.
【答案】A
【解析】
试题解析:红红和娜娜玩”石头、剪刀、布”游戏,所有可能出现的结果列表如下:
红红
娜娜
石头
剪刀
布
石头
(石头,石头)
(石头,剪刀)
(石头,布)
剪刀
(剪刀,石头)
(剪刀,剪刀)
(剪刀,布)
布
(布,石头)
(布,剪刀)
(布,布)
由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
16.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,视为无效,重新转动一次转盘),此过程称为一次操作.请用树状图或列表法,求事件”两次操作过程中,第一次操作得到的数与第二次操作得到的数的绝对值相等”发生的概率.
3.某电视台举行的歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题供选手随机抽取作答.在某场比赛中,前两位选手已分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )
人教版九年级数学《概率初步》单元测试题(含答案)
人教版九年级数学《概率初步》单元测试题一、选择题(每题3分,共18分):1.已知事件A :小明刚到教室,上课铃就响了;事件B :掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是( )A.只有事件A 是随机事件B.只有事件B 是随机事件C.都是随机事件D.都是确定性事件2.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个黄球,4个蓝球.若随机摸出一个球是蓝球的概率为13,则随机摸出一个球是红球的概率是( )A.14B.13C.512D.123.下列说法正确的是( )A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天降雨的概率为40%”,表示明天有40%的时间都在下雨C.“篮球队队员在罚球线上投篮一次,投中”为随机事件D.“0a a ³是实数,”是不可能事件4.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率是( )A.310B.110C.19D.185.一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1、2、3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是( )A.13B.49C.12D.596.如图,ABC 是一块绿化带,将阴影部分修建为花圃.已知15,9,12,AB AC BC ===阴影部分是ABC 的内切圆.一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.6p C.8pD.5p二、填空题(每题3分,共18分):7.“任意画一个四边形,其内角和是360度”是 事件(填随机、必然或不可能).8.投掷一个骰子(六个面上分别标有数字1、2、3、4、5、6)一次,得到正面向上的数字为奇数的概率是 .9.同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是 . 10.在一个不透明的盒子中装有n 个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有球摇匀,然后随机摸出一个球后放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是 .11.020192,(1)---.把卡片背面朝上洗匀后,先随机抽取一张记下数字后放回,洗匀后再抽取一张,则两次抽到的数字互为相反数的概率是 .12.如图,随机地闭合开关12345S S S S S 、、、、中的三个,能够使21L 、L 两个小灯泡同时发光的概率是 .三、解答题(每题10分,共60分):13. 九(1)班从三名男生(含小明)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n 名.(1)当n 为何值时,男生小明被选中参加比赛是必然事件? (2)当n 为何值时,男生小明被选中参加比赛是不可能事件? (3)当n 为何值时,男生小明被选中参加比赛是随机事件?14.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.15.某市今年中考的理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A 、B 、C 表示)和三个化学实验(用纸签D 、E 、F 表示)中各抽取一个进行考试.小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B 和化学实验F (记作事件m )的概率是多少?16.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A .(2)先从袋子中取出m 个红球,再放入个一样的黑球并摇匀,随机摸出1个球是黑球的概率等于45,求m 的值.17.如图,有大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A 1,A 2),(B 1,B 2)].(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两只,利用树形(状)图或表格列举出所有可能出现的结果,并求恰好匹配成相同颜色的一双拖鞋的概率.18.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢,请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.五、解答题(每题12分,共24分):19.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.20.甲、乙两人利用扑克牌玩“10点”游戏.游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现....甲、乙的“最终点数”,并求乙获胜的概率.人教版九年级数学《概率初步》单元测试题(参考答案)一、选择题(每题3分,共18分):1.A2.A3.C4.B5.D6.B二、填空题(每题3分,共18分):7. 必然8.12 9.12 10. 10011. 1412. 15三、解答题(每题10分,共60分)13. (1)当n 为1时,男生小强参加是必然事件.(2)当n 为4时,男生小强参加是不可能事件.(3)当n 为2或3时,男生小强参加是随机事件.14. 1. 解:(1)解法一:画树状图如下:所有出现的等可能结果共有12种,其中满足条件的结果有2种. ∴P(恰好选中甲、乙两位同学)=212=16.(2)P(恰好选中乙同学)=13.15.解:(1)将100米、50米、引体向上、立定跳远分别用A ,B ,C ,D 表示,画树状图如解图:可得所有等可能选择的结果有四种,分别为:AC ,AD ,BC ,BD ;∴两人所选项目完全相同的概率为:P =416=14.16. 解:(1)(2)依题意,得6+m 10=45,解得m =2.17.(1)若先从两只左脚拖鞋中取出一只,再从两只右脚拖鞋任取出一只,有A 1A 2,A 1B 2,B 1B 2,B 1A 2四种情况,恰好匹配的有A 1A 2,B 1B 2两种情况,∴P(恰好匹配)=24=12;(2)画树状图如下:所有可能的结果:A 1A 2,A 1B 1,A 1B 2;A 2A 1,A 2B 1,A 2B 2;B 1A 1,B 1A 2,B 1B 2;B 2A 1,B 2A 2,B 2B 1, 可见,从这四只拖鞋中随机地取出两只,共有12种等可能的情况,其中恰好匹配的有4种,分别是A 1A 2,A 2A 1,B 1B 2,B 2B 1,∴P(恰好匹配)=412=13.18.解:(1)∵在标号为1,2,3,4,5,6的六个小球中,标号数字为奇数的球有3个,∴摸到标号数字为奇数的小球的概率为:36=12;(2)画树状图如解图:如图,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,∴P(甲赢)=1836=12,P (乙赢)=1836=12,∴这个游戏对甲、乙两人是公平的.三、解答题(每题12分,共24分)19.(1)所有可能的两位数用列表法列举如下表:(2)由(1)知,所有可能的两位数共有16个,即16种等可能结果,其中算术平方根大于4且小于7,即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.20.(1)12;(2)解法一:(3)由树状图可以得出,所有可能出现的结果共有12种,他们的“最终点数”如下表所示:(6分)比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.解法二:比较甲、乙两人的“最终点数”,可得P(乙获胜)=512.。
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。
概率初步单元测试卷含答案
单元测试(五)概率初步 (时间:100分钟满分:120分)、选择题(每小题分,共分)下列各小题均有四个答案,其中只有一个正确的 题号 1 2 3 4 5 6 7 8 9 10 答案BDCCDBACDA1 .一个口袋内装有大小和形状都相同的一个红球和一个黄球,那么“从中任意摸出一个球,得到黄球”这个事件是(B )A.必然事件B.随机事件C.不可能事件 D .无法判断2 .下列事件中是必然发生的事件是 (D ) A.打开电视机,正播放新闻为数学家C.从一副扑克牌中任意抽取一张牌,花色是红桃 3 .如图,一个圆形转盘被分成 6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是(C )4 .四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图的情况下,5 .不透明的黑袋子里放有 3个黑球和若干个白球(除颜色不同外其他都相同),老师将全班学生分成10个小组,进行摸球试验,经过大量重复摸球试验,统计显示,从中摸出白球的 频率稳定在0.4附近,则袋子里白球的个数为(D )B.通过长期努力学习,你会成D.将油滴入水中,油会浮在水A. 一B.一3A. 5B.4 C. 3D. 2从中任意抽出一张,则抽出的卡片上的图形是轴对称图形的概率是(C争边一角形6 .小芳和小丽是乒乓球运动员,在一次比赛中,每人只允许报“双打”或“单打”中的一项,那么一人报“单打”,另一人报“双打”的概率是(B ) 1113 A.4B.2C.3D.47 .从长度为2 cm, 2 cm, 4 cm, 4 cm 的四条线段中任意选一条线段,则剩余三条线段能组成等腰三角形的概率是(A )8 .甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是(C )3, 4, 5的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任意抽取一张,记下数字后将卡片背面朝上放回, 又洗匀后再抽取一张,则两次抽的卡片上的数字的差的绝对值大于1的概率是(D )10 .点P 的坐标是(x , y ),从—3, —2, 0, 2, 3这五个数中任取一个数作为x 的值,再从y 的值,则点P (x, y )在平面直角坐标系中第四象限内的概率是(A )二、填空题(每小题3分,共15分)11 .学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题8个,有关“诗句作者”的试题7个,有关“诗句默写”的试题5个,小杰从中任选一个试题作答, .......................... —一 1他选中有关“诗句默写”的试题的概率是=.412 .在4张完全相同的卡片上分别画有等边三角形、平行四边形、正方形和圆,从中随机摸1 A.21 B.3 1 C.4 1 D.63个扇形)做游戏.游戏1 A.34 B.99.有三张正面分别标有数字1 A.41 B.32 D.9余下的四个数中任取一个数作为 1 A.5 1 B.4 1 C.3 2 D.511 2,n 个小球,其中5个黑球.从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出 球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数464872 5065 00824 99650 007根据列表,可以估计出 n 的值是10.14 .如图所示的电路图上有四个开关 A, B, C, D 和一个小灯泡,闭合开关 D 或同时闭合开关A, B, C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是15 .小明把如图所示的矩形纸板 ABCES 在墙上,E 为AD 中点,并用它玩飞镖游戏 (每次飞, ............. . (1)镖均落在纸板上),则击中阴影区域的概率是8三、解答题(本大题共8个小题,满分75分)16. (8分)指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.①如果a, b 都是实数,那么a+b=b + a;②从分别标有1, 2, 3, 4, 5, 6的6张号签中任取一张,得到 4号签; ③没有水分的种籽发芽;④某电话总机在 60秒内接到至少15次呼唤; ⑤在标准大气压下,水的温度达到 50 C 时,沸腾;⑥同性电荷,相互排斥. 解:①⑥为必然事件. ③⑤为不可能事件. ②④为随机事件.出两张,这两张卡片上的图形都是中心对称图形的概率是13.在一个不透明的袋中装有除颜色外其余均相同的17.(9分)一个正方体骰子,其中一个面上标有“1”,两个面上标有“2”,三个面上标有“3”,将这个骰子掷出后,求:(1) “2”朝上的概率;(2)朝上概率最大的数;(3)若规定朝上的数为1或2时甲胜;朝上数字为3时乙胜,则甲、乙谁获胜的机会大?解:(1)P( “2" 朝上)=| =:.6 3(2)朝上概率最大的数是3.3 1 ......... 3 1(3)•••P(朝上的数为1或2) =6=2,P(朝上的数字为3) =6=2,,甲、乙二人获胜的概率相同.18.(9分)在同样条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表.⑴计算表中a, b的值;(2)估计该麦种的发芽概率;(3)若该麦种发芽后,只有87%勺麦芽可以成活,现有100 kg麦种,则有多少千克的麦种可以成活为秧苗?解:(1)计算表中a= 1 900 +2 000 =0.95, b = 2 850 +3 000 =0.95.(2)观察发现:随着大量重复试验,发芽频率逐渐稳定到常数0.95附近,所以该麦种的发芽概率约为0.95.(3)100 X 0.95 X 87%= 82.65(kg).答:有82.65 kg的麦种可以成活为秧苗.19.(9分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮).(1)将4个开关都闭合时,教室里所有灯都亮起的概率是0;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排和第三排的概率.解:画树状图:但一次I 2 3 4/N ZK zTx第二次 2 3 4 I 3 4 L 2 4 I 2 3共有12种等可能的结果,其中恰好关掉第一排和第三排灯有2种情况,……,,,…… 2 1••• P(恰好关掉第一排和第三排灯)=在=6.20.(9分)为了宣传普及交通安全常识,学校随机调查了部分学生来校上学的交通方式,并将结果统计后制成如图所示的不完整的统计图.(1)这次被调查学生共有100名,“父母接送”上学的学生在扇形统计图中所占的圆心角为54(2)请把条形图补充完整;(3)该校有1 500名学生,要在“走路”的学生中,选取一名学生代表为交通安全义务宣传员,如果你是一名“走路”同学,那么你被选取的概率是多少?解:(2)走路的人数为100 —40— 25— 15= 20(人),如图.. ....... .................. 20 -(3)该校“走路”白^学生约有 1 500 X荷=300(名),1,被选取的概率P .30021.(10分)3月5日是学雷锋日,也是中国青年志愿者服务日.今年3月5日,某中学组织全体学生参加了“青年志愿者”活动,活动分为“打扫街道(记为A)”“去敬老院服务(记为B)”“到社区文艺演出(记为C)”和“法制宣传(记为D)”四项.(1)九(1)班计划在3月5日这天随机完成“青年志愿者”活动中的一项,求九(1)班完成的恰好是“打扫街道”的概率;(2)九(3)班计划在3月5日这天随机完成“青年志愿者”活动中的两项,请用列表或画树状图法求九(3)班完成的恰好是“打扫街道”和“去敬老院服务”的概率.1解:(1)P(九(1)班完成的恰好是打扫街道)=4.(2)画树状图如下:由树状图可知,共有12种等可能的结果,其中恰好是“打扫街道”和“去敬老院服务”的结果有2种,2 1所以P(恰好是“打扫街道”和“去敬老院服务”)=122 =熹22.(10分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A 转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线上时,重新转动一次,直到指针指向一个区域内为止),然后将两次记录的数据相乘.(1)请利用画树状图或列表的方法,求出乘积为负数的概率;(2)如果乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?解:(1)列表如下:……2 1•••P (获得一等奖)=12= 6.23. (11分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对 A,B, C, D 四个厂家生产的同种型号的零件共 2 000件进行合格率检测,通过检测得出 C 厂家 的合格率为95%并根据检测数据绘制了如图所示两幅不完整的统计图.(1)抽查D 厂家的零件为500件,扇形统计图中 D 厂家对应的圆心角为 90 (2)抽查C 厂家的合格零件为 380件,并将条形统计图补充完整;(3)通过计算说明合格率排在前面的各是哪两个厂家; (4)若从A, B, C, D 四个厂家中,随机选取两个厂家参加德国工业产品博览会,请用树状图法或列表法求出(3)中两个厂家同时被选中的概率. 解:(2)补全条形统计图如图.⑶A 厂家合格率为 630+(2 000 X 35%)= 90%. B 厂家合格率为 370+(2 000 X 20%)= 92.5%. C 厂家合格率为95%.D 厂家合格率为 470 + 500=94%.・♦.合格率排在前两名的是 C, D 两个厂家.(4)树状图略.P(C, D 两家同时被选中)= 1.6由表可知所有可能结果共有4种,…41•1- P (积为负数)=12=(2)二•积为无理数的结果有12种,且每种结果发生的可能性相同,其中积为负数的结果有2种,。
数学九年级上册《概率初步》单元测试题(附答案)
二、填空题(每题3分,共24分)
11.从分别标有1,2,3,…,50的50张卡片中抽出2的倍数的卡片的可能性________抽出4的倍数的卡片的可能性(填”大于”“小于”或”等于”).
12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为______(精确到0.1).
(5,4)
(5,5)
(5,6)
6
(6,1)
(6,2)
(6,3)
(6,4)
(6,5)
(6,6)
6.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是( )
A. B. C. D.
【答案】C
20.如图所示的转盘,分成三个相同的扇形,指针位置固定转动转到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).
(1)求事件”转动一次,得到的数恰好是0”发生的概率;
(2)写出此情景下一个不可能发生的事件.
(3)用树状图或列表法,求事件”转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.
【详解】设需要在这个口袋中再放入x个绿球,得: ,
解得:x=2.
所以需要在这个口袋中再放入2个绿球.故选C.
【点睛】本题考查了概率的知识点,解题的关键是熟练掌握求概率的公式:概率=所求情况数与总情况是之比.
9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
15.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.
人教版数学九年级上学期《概率初步》单元测试含答案
九年级上册数学《概率初步》单元测试卷(满分120分,考试用时120分钟)一、单选题1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A .310B .15C .12D .7102.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC的()A .三边中垂线的交点B .三边中线的交点C .三条角平分线的交点D .三边上高的交点3.投掷硬币m次,正面向上n次,其频率p=nm,则下列说法正确的是()A .p一定等于1 2B .p一定不等于1 2C .多投一次,p更接近1 2D .投掷次数逐步增加,p稳定在12附近4.在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是()A .12B .16C .20D .305.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是()A .1100B .11000C .110000D .111100006.做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为()A .0.22B .0.42C .0.50D .0.587.任意掷一枚骰子,下列情况出现的可能性比较大的是( )A .面朝上的点数是3B .面朝上的点数是奇数C .面朝上的点数小于2D .面朝上的点数不小于38.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是()A .13B .14C .27D .239.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( )A .14B .13C .12D .110.下列事件中,必然事件是()A .任意掷一枚均匀的硬币,正面朝上B .打开电视正在播放甲型H1N1流感的相关知识C .某射击运动员射击一次,命中靶心D .在只装有5个红球的袋中摸出1球,是红球11.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是()A .116B .316C .14D .51612.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A .16B .18C .20D .22二、填空题13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有A 个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则A 的值约为_____.14.已知长度为2?3?4?5?㎝,㎝,㎝,㎝的四条线段,从中任取三条线段能组成三角形的概率是________. 15.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为____.16.一只不透明的袋子中装有1个白球,2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录下颜色后放回到袋中并搅匀,再从中任意摸出1个球,两次都摸出红球的概率是__.三、解答题17.现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.18.学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有6、8、10三张扑克牌,乙手中有5、8、9三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜.(1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.19.口袋A 中有2个相同的小球,分别写有数字3,6,口袋B 中有4个相同的小球,分别写有数字3,4,5,6,在口袋B 中随机地抽出一个小球放入口袋A 中.求以口袋A 中的3个小球上的数字为边能构成等腰三角形的可能性大小.20.盒子里放着一个黑球和一个红球,它们除了颜色外,其余都相同.甲、乙两人规定每人摸出一球,摸出后再放回,摸到红球甲赢,摸到黑球乙赢,如果甲先摸,乙后摸,那么这个游戏?(“公平”或“不公平”).21.2018年9月,振华中学举行了迎国庆中华传统文化节活动.本次文化节共有五个活动:A ﹣书法比赛;B ﹣国画竞技;C ﹣诗歌朗诵;D ﹣汉字大赛;E﹣古典乐器演奏.活动结束后,某班数学兴趣小组开展了“我最喜爱的活动”的抽样调查(每人只选一项),根据收集的数据绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:(1)此次随机抽取的初三学生共人,m=,并补全条形统计图;(2)初三年级准备在五名优秀的书法比赛选手中任意选择两人参加学校的最终决赛,这五名选手中有三名男生和两名女生,用树状图或列表法求选出的两名选手正好是一男一女的概率是多少.22.如图,均匀的正四面体的各面依次标有1,2,3,4四个数.(1)同时抛掷两个这样的四面体,它们着地一面的数字相同的概率是多少?(2)现在有一张周杰伦演唱会的门票,小敏和小亮用抛掷这两个四面体的方式来决定谁获得门票,规则是:同时抛掷这两个四面体,如果着地一面的数字之积为奇数小敏胜;如果着地一面的数字之积为偶数小亮胜(胜方获得门票),如果是你,你愿意充当小敏还是小亮,说明理由.23.在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为______;(3)试估算盒子里黑、白两种颜色的球各有多少只?24.判断下列事件为必然事件,随机事件,还是不可能事件?一个昏庸的国王,总是用抽卡片的方式决定他的臣民的生与死.如果抽到卡片上写着生,国王就让臣民活下去,如果抽到卡片上写着死,国王就杀死臣民,每次国王都准备两张卡片.()1若两张卡片均为死,该臣民最终活着;()2若两张卡片均为死,该臣民被杀死;()3若两张卡片上分别写着一“生”一“死”,该臣民最终活着.25.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.()1利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);()2若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.26.如图,假设可以随机在图中取点.(1)这个点取在阴影部分的概率是.(2)在保留原阴影部分情况下,请你重新设计图案(直接在图上涂阴影),使得这个点取在阴影部分的概率为37.参考答案一、单选题1.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .B .C .D . [答案]A[解析][分析]让黄球的个数除以球的总个数即为所求的概率.[详解]解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是. 故选:A .[点评]本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比. 2.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在的( )A .三边中垂线的交点B .三边中线的交点C .三条角平分线的交点D .三边上高的交点[答案]A[解析][分析]为使游戏公平,则凳子到三个人的距离相等,根据线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.[详解]解:∵三角形的三条边的垂直平分线的交点到三角形三个顶点距离相等, 3101512710310ABC∴凳子应放在△A B C 的三边中垂线的交点.故选:A .[点评]本题主要考查了线段垂直平分线的性质的应用,利用所学的数学知识解决实际问题是一种能力,要注意培养.3.投掷硬币m 次,正面向上n 次,其频率p =,则下列说法正确的是( ) A .p 一定等于 B .p 一定不等于 C .多投一次,p 更接近 D .投掷次数逐步增加,p 稳定在附近 [答案]D[解析][分析]大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.[详解]投掷硬币m 次,正面向上n 次,投掷次数逐步增加,p 稳定在附近. 故选:D .[点评]考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生. 4.在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是( )A .12B .16C .20D .30n m1212121212[答案]A[解析][分析]一共摸了40次,其中有10次摸到黑球,由此可估计口袋中黑球和白球个数之比为1:3;即可计算出白球数.[详解]∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球,∴摸到黑球与摸到白球的次数之比为1:3,∴口袋中黑球和白球个数之比为1:3,4÷=12(个),故选A .[点评]本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.某商店举办有奖储蓄活动,购货满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物满100元,那么他中一等奖的概率是( )A .B .C .D . [答案]B[解析][分析]抽一张奖券总共有10000种可能,其中中一等奖有10种可能.利用概率公式进行求解即可.[详解]共10000张奖券,其中一等奖10个,所以中一等奖的概率是, 故选B .1311001100011000011110000101100001000[点评]本题考查了简单的概率计算,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=. 6.做重复试验:抛掷一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A .0.22B .0.42C .0.50D .0.58[答案]B[解析][分析]在试验次数不多的情况下,“凸面向上”出现的频率约等于概率.[详解]∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次, ∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.42, 故选:B .[点评]本题考察概率的相关知识.在试验次数不多的情况下,“凸面向上”出现的频率约等于概率. 7.任意掷一枚骰子,下列情况出现的可能性比较大的是( )A .面朝上的点数是3B .面朝上的点数是奇数C .面朝上的点数小于2D .面朝上的点数不小于3 [答案]D[解析][分析]分别求出各选项的事件的概率,再比较各个概率的大小,就可得出可能性较大的事件的概率.[详解]A .掷一枚骰子面朝上的点数是3的概率为;B .掷一枚骰子面朝上的点数是奇数有1,3,5三个数,此事件的概率为:; m n4201000163162C .掷一枚骰子面朝上的点数小于2的只有1,此事件的概率为:;D .掷一枚骰子面朝上的点数不小于3数有3、4、5、6,此事件的概率为:; ∴. 故选D .[点评]本题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=. 8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,并且选择每条路径的可能性相等,则它获得食物的概率是( )A .B .C .D . [答案]A[解析][分析]由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.[详解]解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径, ∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是: 164263=11126623=<<mn131427232163=故选A .[点评]此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 9.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( )A .B .C .D .1[答案]A[解析][分析]根据概率是指某件事发生的可能性为多少解答即可.[详解]解:此事件发生的概率 故选A .[点评]本题考查了概率的意义,正确理解概率的含义是解决本题的关键.10.下列事件中,必然事件是( )A .任意掷一枚均匀的硬币,正面朝上B .打开电视正在播放甲型H1N1流感的相关知识C .某射击运动员射击一次,命中靶心D .在只装有5个红球的袋中摸出1球,是红球[答案]D[解析]分析:找到一定会发生的事件的选项即可.解答:解:A 、任意掷一枚均匀的硬币,可能正面朝上,也可能反面朝上,是随机事件;B 、打开电视,可能正在播放甲型H1N1流感的相关知识,也可能正在播放其它内容,是随机事件; 14131214C 、某射击运动员射击一次,可能命中靶心,也可能脱靶,是随机事件;D 、在只装有5个红球的袋中摸出1球,是红球,是必然事件.故选D .11.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A .B .C .D . [答案]C[解析]画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号相同的有4种情况,∴两次摸出的小球的标号相同的概率是:. 12.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是( )A .16B .18C .20D .22[答案]A[解析]根据题意,通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,可知摸到盒子中黑色球的概率为1-45%-15%=40%,由此可求得盒子中黑色球的个数为40×40%=16. 故选A . 1163161451641=164点睛:此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到盒子中黑色球的概率,然后就可以求出盒子中黑色球的个数.二、填空题13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有A 个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则A 的值约为_____.[答案]12[解析][分析]在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到红球的频率稳定在20%左右得到比例关系,列出方程求解即可.[详解]由题意可得,×100%=20%, 解得A =12.经检验:A =12是原分式方程的解,所以A 的值约为12,故答案为:12.[点评]本题考查用大量试验得到的频率可以估计事件的概率,关键是根据红球的频率得到相应的等量关系. 14.已知长度为的四条线段,从中任取三条线段能组成三角形的概率是________. [答案] [解析]四条线段组成三角形三边有四种情况: (2㎝,3㎝,4㎝),(2㎝,3㎝,5㎝),(2㎝,4㎝,5㎝),(3㎝,4㎝,5㎝).其中不能组成三角形,所以从中任取三条线段能组成三角形的概率是. 33a +2? 3? 4? 5?㎝,㎝,㎝,㎝342? 3? 4? 5?㎝,㎝,㎝,㎝()235㎝,㎝,㎝3415.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为____.[答案] [解析][分析]根据题意画出树状图,然后由树状图求得所有等可能的结果与两球恰好是一个黄球和一个红球的情况,再利用概率公式即可求得答案.[详解]画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况,∴两球恰好是一个黄球和一个红球的为:. 故答案为:. [点评]此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比 16.一只不透明的袋子中装有1个白球,2个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录下颜色后放回到袋中并搅匀,再从中任意摸出1个球,两次都摸出红球的概率是__.[答案] [解析][分析]根据题意画出树状图,得到所有9种等可能的结果数,再找出两次都摸出红球的结果数,然后根据概率公式求解即可.[详解]画树状图为:1261122 1249共有9种等可能的结果数,其中两次都摸出红球的结果数为4,∴两次都摸出红球的概率是. 故答案为 [点评]本题考查了列表法与树状图法求概率,利用列表法或树状图法展示所有等可能的结果数n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算出事件A 或B 的概率.三、解答题17.现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.[答案](1) ;(2) . [解析][分析](1)共四种垃圾,厨余垃圾一种,所以甲拿了一袋垃圾恰好厨余垃圾的概率为:;(2)直接画出树状图,利用树状图解题即可[详解]解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A ,B ,C ,D ,∵垃圾要按A ,B ,C 、D 类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B 类:厨余垃圾的概率为:; (2)画树状图如下:494914341414由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为 [点评]本题考查概率的计算以及树状图算概率,掌握树状图法是解题关键18.学生甲与乙学习概率初步知识后设计了如下游戏:甲手中有 、、 三张扑克牌,乙手中有 、、 三张扑克牌,每局比赛时,两人从各自手中随机取一张牌进行比较,数字大的则本局获胜. (1)若每人随机取出手中的一张牌进行比较,请列举出所有情况;(2)求学生乙一局比赛获胜的概率.[答案](1)详见解析;(2). [解析][分析](1)根据题意可以写出所有的可能性;(2)根据(1)中的结果可以得到乙本局获胜的可能性,从而可以解答本题.[详解]解:(1)由题意可得,每人随机取出手中的一张牌进行比较的所有情况是:,,,,,,,,.(2)由()知共有9种等可能的情况,学生乙获胜的情况有:,,,所以学生乙一局比赛获胜的概率是:. 故答案为(1)见解析;(2). [点评]本题考查了列表法与树状图法,概率=所求情况数与总情况数之比.123164=681058913()6,5()6,8()6,9()8,5()8,8()8,9()10,5()10,8()10,91()6,8()6,9()8,93193=1319.口袋A 中有2个相同的小球,分别写有数字3,6,口袋B 中有4个相同的小球,分别写有数字3,4,5,6,在口袋B 中随机地抽出一个小球放入口袋A 中.求以口袋A 中的3个小球上的数字为边能构成等腰三角形的可能性大小.[答案] [解析][分析]根据题意得出所有的可能,进而求出答案.[详解]由题意可得:3,3,6无法构成三角形,3,6,4不是等腰三角形;3,6,5不是等腰三角形;3,6,6是等腰三角形,故能构成等腰三角形的概率为: . [点评]此题主要考查了可能性大小,正确求出事件发生的概率是解题关键.20.盒子里放着一个黑球和一个红球,它们除了颜色外,其余都相同.甲、乙两人规定每人摸出一球,摸出后再放回,摸到红球甲赢,摸到黑球乙赢,如果甲先摸,乙后摸,那么这个游戏?(“公平”或“不公平”).[答案]公平[解析][分析]分别求出摸到红球的概率,摸到黑球的概率即可解决问题.[详解]解:∵摸到红球的概率=,摸到黑球的概率= ∴摸到红球的概率=摸到黑球的概率,∴摸到红球甲赢,摸到黑球乙赢这个游戏公平.故答案为公平.14141212[点评]本题考查游戏的公平性、概率等知识,解题的关键是求出概率判断公平性,概率相同游戏是公平的,属于中考常考题型.21.2018年9月,振华中学举行了迎国庆中华传统文化节活动.本次文化节共有五个活动:A ﹣书法比赛;B ﹣国画竞技;C ﹣诗歌朗诵;D ﹣汉字大赛;E ﹣古典乐器演奏.活动结束后,某班数学兴趣小组开展了“我最喜爱的活动”的抽样调查(每人只选一项),根据收集的数据绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:(1)此次随机抽取的初三学生共 人,m = ,并补全条形统计图;(2)初三年级准备在五名优秀的书法比赛选手中任意选择两人参加学校的最终决赛,这五名选手中有三名男生和两名女生,用树状图或列表法求选出的两名选手正好是一男一女的概率是多少.[答案](1)100,10,图形见解析;(2). [解析][分析](1)根据A 的人数与所占百分比即可得到抽取总人数,用选择E 类的人数除以总人数求得m 的值,再用总人数减去选择A 、C 、D 、E 的人数得到选择B 类的学生人数,然后补全条形图即可; (2)根据题意画出树状图,然后利用概率公式求解即可.[详解]解:(1)根据扇形统计图可知,选A 的学生所占百分比为:, 则抽取的学生总数为:25÷25%=100人, 选择E 的学生所占百分比为:, 选择B 的学生人数为:100﹣25﹣30﹣20﹣10=15人,3590100%25%360︒⨯=︒10100%10%100⨯=故答案为100,10;条形图如下:(2)树状图如下:∵有20种可能等结果,其中符合条件的有12种,∴选出的两名选手正好是一男一女的概率是:. [点评]本题主要考查条形统计图,扇形统计图,利用树状图或列表法求概率,熟练掌握其知识点是解此题的关键.22.如图,均匀的正四面体的各面依次标有1,2,3,4四个数.(1)同时抛掷两个这样的四面体,它们着地一面的数字相同的概率是多少?(2)现在有一张周杰伦演唱会的门票,小敏和小亮用抛掷这两个四面体的方式来决定 谁获得门票,规则是:同时抛掷这两个四面体,如果着地一面的数字之积为奇数小敏胜;如果着地一面的数字之积为偶数小亮胜(胜方获得门票),如果是你, 你愿意充当小敏还是小亮,说明理由.123205。
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案
人教版九年级数学上册《第二十五章概率初步》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列事件中,必然事件是()A.随机抛掷一颗骰子,朝上的点数是6B.今天考试小明能得满分C.明天气温会升高D.早晨的太阳从东方升起2.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是().A.13B.19C.29D.4273.在抛硬币的游戏中,若抛了10000 次,则出现正面的频率恰好是50%,这是() A.很可能的B.必然的C.不可能的D.不太可能的4.甲、乙、丙、丁四位同学去看电影,还剩下如图所示座位,乙正好坐在甲旁边的概率是()A.25B.35C.12D.345.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是()A.35B.25C.45D.156.甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是A.1B.12C.13D.147.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.12B.34C.14D.18.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6B.5C.4D.39.如图,湖边建有A,B,C,D共4座凉亭,从入口处进,先经过凉亭A(已经参观过的凉亭,再次经过时不作停留),则最后一次参观的凉亭为凉亭D的概率为()A.14B.13C.12D.2310.某同学想向班主任发短信拜年,可一时记不清班主任手机号码后三位数的顺序,只记得是1,6,9三个数字,则该同学一次发短信成功的概率是()A.16B.13C.19D.12二、填空题11.下列成语描述的事件:①水中捞月①水涨船高①守株待兔①瓮中捉鳖①拔苗助长,属于必然事件的是(填序号).12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的概率是.13.小明的爸爸妈妈各有两把钥匙,可以分别打开单元门和家门,小明随机从爸爸和妈妈的包里各拿出一把钥匙,恰好能打开单元门和家门的概率 .14.我市某校举行“喜迎二十大、永远跟党走、奋进新征程”主题教育活动,校团委为了让同学们进一步了解中国科技的发展,请同学们从选出的以下五个内容中任选两个内容进行手抄报的制作:“北斗卫星”“5G时代”“智轨快运系统”“东风快递”“神舟十三号”.其中恰好选择“北斗卫星”“5G时代”的概率是.15.现有如图所示“2022·北京冬梦之约”的四枚邮票,背面完全相同.将这四枚邮票背面朝上,洗匀放好,小萱从中随机抽取一枚不放回,再从中随机抽取一枚,则小萱抽到的两枚邮票恰好是冰墩墩和雪容融的概率是.16.下列事件:①打开电视机,它正在播放广告;①从一只装有红球的口袋中,任意摸出一个球,恰是白球;①两次抛掷正方体骰子,掷得的数字之和小于13;①抛掷硬币1000次,第1000次正面向上,其中为随机事件的是.17.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球,那么袋中的红球有个.是黑球的概率为14三、解答题18.为进一步挖掘全国春茶优质产品,2023年第七届中国昆明(国际)春茶周于4月28日如约开启.云南省111个著名山头和125个村寨春茶都在本次活动中展示,其中就包括著名的班章、冰岛、昔归、易武等著名山头品牌,小芸和小楠参加了本次活动,并打算分别从A:班章,B:冰岛,C:昔归,D:易武四个著名山头品牌茶叶中选择一个了解相关山头品牌茶文化知识.(1)小芸选择“冰岛”著名山头品牌茶叶的概率是______;(2)用列表法或画树状图法中的一种方法,求小芸和小楠恰好选择到同一著名山头品牌茶叶了解相关茶文化知识的概率.19.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是1,那么x的值可以取4吗?请用列表法或画树状图法说3明理由;如果x的值不可以取4,请写出一个符合要求的x的值.20.有两个信封,每个信封内各装有四张完全相同的卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写有5,6,7,8四个数.甲,乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于16,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?21.有五张形状、大小和质地相同的卡片A、B、C、D、E,正面分别写有一个正多边形(所有正多边形的边长相等),把五张卡片洗匀后正面朝下放在桌面上(1)若从中随机抽取一张(不放回),接着再随机抽取一张.请你用画树形图或列表的方法列举出可能出现的所有结果;(2)从这5张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?22.手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;①乙抢到金额为4元的红包①甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;①若甲没抢到红包A,则乙能抢到红包A的概率又是多少?参考答案1.D2.B3.D 4.A 5.A 6.D 7.A 8.D 9.C 10.A 11.②④ 12.57 13.1214.110 15.16 16.①④ 17.918.(1)14 (2)1419.(1)0.33 (2)不可以取4,x =6 20.(1)P (甲)=716,(2)不公平 21.31022.(1)事件①,①是不确定事件,事件①是确定事件;(2)①13;①12.。
人教版数学九年级上册《概率初步》单元测试卷(附答案)
人教版数学九年级上学期《概率初步》单元测试【考试时间:90分钟分数:120分】一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 13.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 310.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.16.有些事情我们事先能肯定它一定不会发生叫________事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?23.不透明的口袋里装有红、白、蓝三种颜色的小球(大小、形状都相同),其中红球有个,蓝球有个,小王通过大量的反复实验(每次取一个球,放回搅匀后再取第二个),发现取出红球的频率稳定在左右.(1)请你估计袋中白球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个球,请用画树状图或列表法求两次都是蓝球的概率.24.小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?25.有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4 .这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.26.(阅读解答题)阅读下面的解题过程:妈妈给小明一串钥匙,共有把,小明决定先试试哪把是防盗门的钥匙.如果不开门,你能说明他第一次试开就成功的概率有多大吗?写出用计算器或其他替代物模拟试验的方法.解:方法一:可以用一枚正四面体骰子,掷得点为试开成功;方法二:可以用张扑克,红桃,黑桃,方块,梅花各一张,摸到红桃为试开成功;方法三:可用计算器模拟,在之间产生一个随机数,若产生的是,则表示试开成功.你认为上述解法对吗?为什么?27.一个盒子中装有两个红色球,两个白色和一个蓝色球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.利用画树状图或列表的方法求摸到的两个球的颜色能配成紫色的概率(红色和蓝色可以配成紫色);若将题干中的“记下颜色后放回”改为“记下颜色后不放回”,请直接写出摸到的两个球的颜色能配成紫色的概率.28. 端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.答案与解析一、选择题1.下列事件属于不可能事件的是()A. 抛一次骰子,向上的一面是点B. 打开电视机,正在转播足球比赛C. 地球上,向上抛的篮球会下落D. 从只有红球的袋子中,摸出个白球【答案】D【解析】【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】A、掷一次骰子,向上的一面是6点是随机事件,故A错误;B、打开电视机,正在转播足球比赛是随机事件,故B错误;C、地球上,向上抛的篮球会下落是必然事件,故C错误;D、从只有红球的袋子中,摸出1个白球是不可能事件,故D正确;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.甲、乙、丙、丁四名选手参加米决赛,赛场共设,,,四条跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到第道的概率是()A. 0B.C.D. 1【答案】B【解析】【分析】由赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.【详解】∵赛场共设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:;故选:B.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.3.小刚掷一枚均匀的硬币,一连次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是()A. 0B. 1C.D.【答案】C【解析】小刚掷一枚硬币,他第十次掷硬币,出现正面朝上还是反而朝上,与前面九次没有任何联系,这十次掷硬币,是十个相互独立的事件,每一次正面朝上与反面朝上,都是概率相同的.故选C.4.在一个不透明的口袋中,装有个除颜色不同其余都相同的球,如果口袋中装有个红球且摸到红球的概率为,那么等于()A. 10个B. 12个C. 16个D. 20个【答案】A【解析】根据概率的定义,,解得n=10.考点:概率的计算点评:此题主要考查了求概率的问题,用到的知识点为:概率=所求情况与总情况数之比,得到所求的情况数是解决本题的关键.5.有两组扑克牌各三张,牌面数字均为,,,随意从每组牌中各抽一张,数字之和等于的概率是()A. B. C. D.【答案】B【解析】【分析】列举出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】列表得:1 2 31 1+1=2 2+1=3 3+1=42 1+2=3 2+2=4 3+2=53 1+3=4 2+3=5 3+3=6∴一共存在9种情况,数字之和等于4的有3种情况,∴随意从每组牌中各抽一张,数字之和等于4的概率是,故选:B.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.袋中有个球,其中个是红球,个是白球,任意取出个球,这个球都是红球的概率是()A. B. C. D.【答案】B【解析】【分析】可以认为分三次取球,第一次有10种可以选择,因而有10种情况,第二次剩余9个球,则第二次有9种情况可以选择,第三次有8种情况,因而可以得到三次取球得到的取法的种数,同理求得三次都是红球的取法,利用概率公式即可求解.【详解】任意取出3个球的情况有:10×9×8=720种;第一次取到红球的情况有7种,则取第二次,两次都是红球的情况有7×6种,第三次取球,三次都是红球的情况有7×6×5=210种.则这3个球都是红球的概率是.故选:B.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.掷两个骰子,下列说法错误的是()A. 点数之和为的可能性最大B. 点数之和为或者的可能性最小C. 点数之和为的概率为D. 点数之和不可能为【答案】C【解析】【分析】列举出所有情况,再把各选项事件的概率计算出来,加以比较即可.【详解】共有36种情况.1 2 3 4 5 61 (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表可知:点数之和为11的概率为,而不是,所以选项C不正确,故选:C.【点睛】本题考查了可能性大小以及概率求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.【答案】B【解析】将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,画树状图得:∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,∴该组能够翻译上述两种语言的概率为:=.9.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为红蓝,如果要使两人获胜机会相等,那么第颗骰子上蓝色的面数是()A. 6B. 5C. 4D. 3【答案】D【解析】试题分析:据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.10.下列说法错误的是()A. 在一定条件下必出现的现象叫必然事件B. 不可能事件发生的概率为C. 在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值D. 某种彩票中奖的概率是,买张该种彩票一定会中奖【答案】D【解析】【分析】根据必然事件,随机事件,概率的定义进行判断.【详解】A、在一定条件下必出现的现象叫必然事件,说法正确,故本选项错误;B、不可能事件发生的概率为0,说法正确,故本选项错误;C、在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,说法正确,故本选项错误;D、某种彩票中是随机事件,买100张该种彩票不一定会中奖,说法错误,故本选项正确.故选:D.【点睛】本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.二、填空题11.在个不透明的口袋里装了个红球和个白球,每个球除颜色外都相同,将球摇匀.据此,请你设计一个摸球的随机事件:________.【答案】从中任意摸出一个球是红球【解析】【分析】根据随机事件的概率是大于0小于1来设计即可.【详解】一种不透明的袋子中装有2个红球和3个白球,从中任意摸出一个球是红球;故答案为:从中任意摸出一个球是红球.【点睛】此题考查了模拟实验,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是个红球,个白球和个黑球,搅匀之后,每次摸出一只小球不放回.在连续次摸出的都是黑球的情况下,第次摸出黑球的概率是________.【答案】【解析】【分析】让剩余黑球的个数除以剩余球的总数即为所求的概率.【详解】袋中有2个红球,3个白球和5个黑球,共10球,则每次摸出一只小球不放回,在连续2次摸出的都是黑球的情况下,第3次摸出黑球的概率是:.故答案为:.【点睛】本题考查了随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.天阴了就会下雨是________事件,其发生的可能性在________到________之间.【答案】(1). 随机(2). 0(3). 1【解析】【分析】天阴了就会下雨是________事件,其发生的可能性在________到________之间.【详解】天阴了就会下雨是随机0事件,其发生的可能性在0到1之间.故答案是:随机;0;1.【点睛】本题考查了随机事件的定义,掌握随机事件就是可能发生也可能不发生的事件.14.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【答案】.【解析】试题分析:画树状图如下:∴P(两次摸到同一个小球)==.故答案为:.考点:列表法与树状图法;概率公式.15.九年级有一个诗歌朗诵小组,其中男生人,女生人,先从中随机抽取一名同学参加表演,抽到男生的概率是________.【答案】.【解析】试题分析:根据概率的求法,求出总人数17人,再求出男生的人数与总人数的比值就是其发生的概率.故答案是.考点:概率.106144216.有些事情我们事先能肯定它一定不会发生叫________事件.【答案】不可能【解析】【分析】根据不可能事件的定义直接解答即可.【详解】有些事情我们事先能肯定它一定不会发生叫不可能事件,故答案为:不可能.【点睛】本题考查了不可能事件的定义:不可能事件是指在一定条件下,一定不发生的事件.17.据永嘉气象预报,明天下雨的概率为,后天下雨的概率为,你校准备在这两天里选择一天举行运动会,应选择________天(仅从天气角度考虑).【答案】后【解析】【分析】根据相应概率判断即可.【详解】明天下雨的概率为80%大于后天下雨的概率为30%,运动会应选在下雨概率小的日子.故答案为:后.【点睛】本题考查了概率,解题的关键是理解概率是反映事件的可能性大小的量.18.某机构发行福利彩票,在万张彩票中,中奖率是,那么下述推断①买万张彩票一定不中奖;②买万张彩票一定中奖;③买万张彩票一定不中奖;④买万张彩票可能会中奖.正确的是________.(只填序号)【答案】④【解析】【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】概率值只是反映了事件发生的机会的大小,不是会一定发生,也不是一定不会发生.根据题意可知:①买10万张彩票一定不中奖,错误;②买30万张彩票一定中奖,错误;③买30万张彩票一定不中奖,错误;④买30万张彩票可能会中奖,正确.故答案为④.【点睛】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.19.已知一个不透明的布袋里装有个红球和个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出个球,是红球的概率为,则等于________.【答案】【解析】【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解分式方程即可求得答案.【详解】根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.从某鱼塘捕鱼条后做好标记放回,隔一段时间再捕条鱼,发现其中带标记的有条,那么鱼塘中约有________条鱼.【答案】2000【解析】【分析】带标记鱼的频率近似等于概率.利用概率求出鱼塘中鱼的总数即可.【详解】设池中有x条鱼,带标记的鱼的概率近似等于,解得x=2000,故鱼塘中约有2000条鱼.故答案为:2000【点睛】本题考查利用频率估算概率,得到带标记的鱼的概率是解题关键.三、解答题21.周日在家里,小明和爸爸、妈妈都想使用电脑上网,可是家里只有一台电脑,为了公平,小明设计了下面的游戏规则,确定谁使用电脑上网.游戏规则:任意投掷两枚质地均匀的硬币,若两枚正面都朝上,则爸爸使用电脑;若两枚反面都朝上,则妈妈使用电脑;若一枚正面朝上一枚反面朝上,则小明使用电脑.你认为这个游戏规则对谁更有利,并说明理由.【答案】此游戏对小明有利.【解析】【分析】利用树状图法得出所有的可能,进而分别求出获胜的概率即可.【详解】如图所示:,所有的可能为;(正,正),(正,反),(反,正),(反,反),故爸爸获胜的概率为:,妈妈获胜的概率为:,小明获胜的概率为:,故此游戏对小明有利.【点睛】本题考查了游戏公平性,正确利用树状图法求概率是解题的关键.22. 为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?【答案】解:(1)画树状图得:∵共有12种等可能结果,甲得1分的情况有6种,∴P(甲得1分)。
人教版九年级上册数学《概率初步》单元测试卷(含答案)
人教版九年级上册数学《概率初步》单元测试卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,是二等品的概率等于()A.112 B.16C.14D.7122.学校从5位骨干教师中(含有甲)抽调3人组成,则甲一定抽调到的概率是()A.35 B.25C.45D.153.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类。
其中必测项目为耐力类,抽测项目为:速度类有50米、100米、50米×2往返跑三项,力量类有原地掷实心球、立定跳远,引体向上(男)或仰卧起坐(女)三项。
市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.13B.23C.16D.194.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A.16 B.13C.12D.235.下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上6.如下图,大厅中铺了3种地砖(除了颜色外无其他差别),一种宠物在地板上自由地走来走去,它最后停留在哪种地砖上的概率较大?()A、砖 B 、砖 C 砖 D 、砖或砖. 7.下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 8.下列事件是必然事件的是( )A .抛掷一枚硬币,四次中有两次正面朝上 B.打开电视体育频道,正在播放NBA 球赛 C.射击运动员射击一次,命中十环 D.若a 是实数,则0a 9.下列说法正确的是( )A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C .“彩票中奖的概率是1%”表示买100张彩票一定会中奖D .“抛一枚正方体骰子朝正面的数为奇数的概率是0.5”表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是( )A .425 B .525 C .625 D .925二 、填空题(本大题共5小题,每小题3分,共15分)11.为迎接2024年奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球,则摸到印有奥运五环图案的球的概率是 .987655432112.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是.13.从1-,1,2三个数中任取一个,作为一次函数3=+的k值,则所得一次函数y kx中y随x的增大而增大的概率是。
九年级上册数学《概率初步》单元检测题(含答案)
人教版数学九年级上学期《概率初步》单元测试(满分120分,考试用时120分钟)一、选择题(每小题只有一个正确答案)1.1.若某个班级内有40名学生,抽10名学生去参加某项活动,每个学生被抽到的概率为,则下列解释正确的是( )A. 4个人中,必有1个被抽到B. 每个人被抽到的可能性为C. 由于有被抽到与不被抽到两种情况,故不被抽到的概率为D. 以上说法都不正确2. 在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( )A. B. C. D.3.3.下面关于投针试验的说法正确的是()A. 针与平行线相交的概率受两平行线间距离的影响B. 针与平行线相交的概率与针的长度是没有关系的C. 试验次数越多,估算的针与平行线相交的概率越精确D. 针与平行线相交和不相交的概率是相同的4.4.下列事件中是必然事件的是()A. 明天太阳从西边升起B. 篮球队员在罚球线上投篮一次,未投中C. 实心铁球投入水中会沉入水底D. 抛出一枚硬币,落地后正面朝上5.5.某商店举办有奖销售活动,活动内容如下:每购买满100元的物品就获奖券一张,多购多得. 商场在100000张奖券中,设特等奖一个,一等奖10个,二等奖100个,那么一张奖券中一等奖的概率是( )A. B. C. D.6.6.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( )A. B. C. D.7.7.下列事件:(1)向上抛掷一枚均匀的硬币,出现正面朝上和反面朝上的可能性;(2)掷一枚图钉,尖端朝地和尖端朝上的可能性;(3)从一副扑克牌中任抽一张,抽到红桃和黑桃的可能性;(4)有两个人用抓阄的方法定胜负,先抓获胜与后抓获胜的可能性.其中可能性相等的有( )A. 1个B. 2个C. 3个D. 4个8.8.做重复试验:抛掷同一枚啤酒瓶盖1 000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )A. 0.22B. 0.44C. 0.50D. 0.569. 下列说法正确的是( )A “明天降雨的概率是80%”表示明天有80%的时间降雨B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C “彩票中奖的概率是1%”表示买100张彩票一定会中奖D“抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数10.10.下列说法中,正确的是( )A. 生活中,如果一个事件不是不可能事件,那么它就必然发生B. 生活中,如果一个事件可能发生,那么它就是必然事件C. 生活中,如果一个事件发生的可能性很大,那么它也可能不发生D. 生活中,如果一个事件不是必然事件,那么它就不可能发生11.11.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )A. 3B. 5C. 8D. 1012.12.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为( )A. B. C. D.二、填空题13.13.与一个同学合作,均写出0~9中的一个数字,用试验的方法估计,两人所写的数字相同的概率为.14.14.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是________.15.15.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、、、-2、.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________16.16.围棋有黑、白两种棋子,混合在一起后,随意从中摸出3个棋子,正好颜色相同,这是事件(填“必然”、“不可能”或“不确定”)17.17.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数是1的结果18次,则出现1点的频率是.其中正确命题有________.三、解答题18.某书店参加某校读书活动,并为每班准备了A,B两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班决定采用游戏方式发放,其规则如下:将三张除了数字2,5,6不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A名著;若牌面数字之和为奇数,则乙获得A名著,你认为此规则合理吗?为什么?19.19.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.20.20.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.21.21.毕业晚会上有一个“砸蛋”节目,讲台桌上放了三枚形状、大小、颜色完全相同的彩蛋,其中两枚会砸出“金花四溅”.现从甲、乙、丙三位幸运同学中随机挑选一位砸蛋,且只能砸一次.求甲被选中且第一次能砸出“金花四溅”的概率.(用列表法或树状图法求解,能砸出“金花四溅”的彩蛋记为“金”,不能砸出“金花四溅”的彩蛋记为“空”)22.22.某学校课程安排中,各班每天下午只安排三节课.(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都由同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率.23.23.某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是,你赞成他的观点吗?请用列表法或画树形图法分析说明.参考答案一、选择题(每小题只有一个正确答案)1.1.若某个班级内有40名学生,抽10名学生去参加某项活动,每个学生被抽到的概率为,则下列解释正确的是( )A. 4个人中,必有1个被抽到B. 每个人被抽到的可能性为C. 由于有被抽到与不被抽到两种情况,故不被抽到的概率为D. 以上说法都不正确【答案】B【解析】由概率的意义可知每个人被抽到的可能性都为.故选B2. 在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( )A. B. C. D.【答案】B【解析】试题分析:画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=.故选B.考点:列表法与树状图法.3.3.下面关于投针试验的说法正确的是()A. 针与平行线相交的概率受两平行线间距离的影响B. 针与平行线相交的概率与针的长度是没有关系的C. 试验次数越多,估算的针与平行线相交的概率越精确D. 针与平行线相交和不相交的概率是相同的【答案】C【解析】【分析】根据模拟实验的特点分析即可.【详解】实验次数越大,估算针与平行线相交的概率越精确.故选:.【点睛】考查了概率的影响因素,主要还是应用概率的求法来具体判断.4.4.下列事件中是必然事件的是()A. 明天太阳从西边升起B. 篮球队员在罚球线上投篮一次,未投中C. 实心铁球投入水中会沉入水底D. 抛出一枚硬币,落地后正面朝上【答案】C【解析】试题分析:必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.试题解析:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.考点:随机事件.视频5.5.某商店举办有奖销售活动,活动内容如下:每购买满100元的物品就获奖券一张,多购多得. 商场在100000张奖券中,设特等奖一个,一等奖10个,二等奖100个,那么一张奖券中一等奖的概率是( )A. B. C. D.【答案】B【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率的大小.【详解】中一等奖的概率是:.故选:.【点睛】本题主要考查了概率的求法,一般方法为:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率为.6.6.从﹣,0,,π,3.5这五个数中,随机抽取一个,则抽到无理数的概率是( )A. B. C. D.【答案】B【解析】∵−、π是无理数,∴从−、0、、π、3.5这五个数中,随机抽取一个,则抽到无理数的概率是:.故选:B.7.7.下列事件:(1)向上抛掷一枚均匀的硬币,出现正面朝上和反面朝上的可能性;(2)掷一枚图钉,尖端朝地和尖端朝上的可能性;(3)从一副扑克牌中任抽一张,抽到红桃和黑桃的可能性;(4)有两个人用抓阄的方法定胜负,先抓获胜与后抓获胜的可能性.其中可能性相等的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查的是可能性大小的判断,解决这类题目要注意结合百分比具体情况具体对待.【详解】(1)可能发生的情况有正面朝上和反面朝上,概率都是(不考虑特殊的立起来的情况);(2)图钉质地不均匀,尖端朝地和尖端朝上的可能性不同;(3)随意抽取一张牌,是红桃和黑桃的概率相等,都是(考虑扑克牌无大小王);(4)抓阄,两个人获胜的概率都一样,跟先抓后抓无关系;所以可能性相同的是(1)、(3)、(4),共3个.故选:.【点睛】根据百分比的大小和相应事件匹配即可.8.8.做重复试验:抛掷同一枚啤酒瓶盖1 000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )A. 0.22B. 0.44C. 0.50D. 0.56【答案】D【解析】因为瓶盖只有两面,”凸面向上”频率约为0.44,所以,”凹面向上”的概率约为1-0.44=0.56,故选D.9. 下列说法正确的是( )A “明天降雨的概率是80%”表示明天有80%的时间降雨B “抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C “彩票中奖的概率是1%”表示买100张彩票一定会中奖D“抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数【答案】D【解析】本题考查对概率概念的理解.“明天降雨的概率是80%”表示明天有80%的可能性降雨,“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次平均可能有1次出现正面朝上,“彩票中奖的概率是1%”表示买100张彩票可能会有一张中奖.10.10.下列说法中,正确的是( )A. 生活中,如果一个事件不是不可能事件,那么它就必然发生B. 生活中,如果一个事件可能发生,那么它就是必然事件C. 生活中,如果一个事件发生的可能性很大,那么它也可能不发生D. 生活中,如果一个事件不是必然事件,那么它就不可能发生【答案】C【解析】【分析】根据事件的分类对各选项进行逐一分析即可.【详解】、生活中,如果一个事件不是不可能事件,那么它就可能发生,故本选项错误;、生活中,如果一个事件可能发生,那么它是随机事件,故本选项错误;、生活中,如果一个事件发生的可能性很大,那么它也可能不发生,故本选项正确;、生活中,如果一个事件不是必然发生,那么它就可能发生也可能不发生,故本选项错误.故选:.【点睛】本题考查的是可能性的大小,熟知事件的分类是解答此题的关键.11.11.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )A. 3B. 5C. 8D. 10【答案】C【解析】试题分析:在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,而其概率为,因此可得=,解得n=8.故选:B.考点:概率的求法12.12.在如图所示的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为( )A. B. C. D.【答案】A【解析】根据正方形的性质易证正方形的对角线把正方形分成的四个三角形均为同底等高的三角形,故其面积相等,故阴影部分的面积占一份,故针头扎在阴影区域的概率为.二、填空题13.13.与一个同学合作,均写出0~9中的一个数字,用试验的方法估计,两人所写的数字相同的概率为.【答案】【解析】【分析】根据利用频率估计概率的实验进行即可.【详解】两个人所写数字可能性总共有:种,相同数字:种,所以两人所写数字相同的概率为.故答案为:.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.14.14.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是________.【答案】【解析】试题解析:画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:.考点:列表法与树状图法.15.15.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、、、-2、.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________【答案】.【解析】试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.试题解析:根据题意可知,共有5张卡片,比3小的数有无理数有2个和一个负数,总共有3个.故抽到正面的数比3小的概率为.考点:1.概率公式;2.估算无理数的大小.16.16.围棋有黑、白两种棋子,混合在一起后,随意从中摸出3个棋子,正好颜色相同,这是事件(填“必然”、“不可能”或“不确定”)【答案】不确定【解析】【分析】因为共有黑白两种颜色,所以随意从中摸出3个棋子,正好颜色相同,可能发生也可能不发生,这是不确定事件.【详解】围棋有黑、白两种棋子,混合在一起后,随意从中摸出3个棋子,正好颜色相同,可能发生也可能不发生,这是不确定事件.故答案为:不确定.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件;必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.17.17.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数是1的结果18次,则出现1点的频率是.其中正确命题有________.【答案】④【解析】【分析】通过概率、频率的定义,即概率指的是在无穷次试验中,出现的某种事件的频率总在一个固定的值的附近波动,这个固定的值就是概率.对选项一一判断真假即可.【详解】概率指的是在无穷次试验中,出现的某种事件的频率总在一个固定的值的附近波动,这个固定的值就是概率.①通过定义可以分析出,出现的事件是在一个固定值波动,并不是一个确定的值,第一问应该是在10件次品左右波动,期望为10,而并不是一定出现10次,故①错误;②100次并不是无穷多次,出现的频率也并非就是概率本身,事实上硬币只有两个面,每个面出现的概率是相等的,它的正面的概率为,故②错误;③根据定义随机事件的频率只是概率的近似值,它并不等于概率,故③错误;④频率就是重复试验时,出现的次数与重复试验的次数的比值,故出现1的频率为,故④正确.故答案为:④.【点睛】分清概率和频率的定义,概率是一个固定的值,是不受试验次数的影响的值,而频率是一个试验所测得的值,是一个波动的的值.三、解答题18. 某书店参加某校读书活动,并为每班准备了A,B两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班决定采用游戏方式发放,其规则如下:将三张除了数字2,5,6不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A名著;若牌面数字之和为奇数,则乙获得A名著,你认为此规则合理吗?为什么?【答案】这个游戏规则对甲、乙双方不公平【解析】分析:首先根据题意画出树状图或列表,由图表求得所有等可能的结果与数字之和为奇数与偶数情况,利用概率公式求出二者的概率,概率相等规则合理,否则不合理.:画树状图得:∵共有6种等可能的结果,两数之和是偶数的有2种情况,是奇数的有4种情况,∴甲获胜的概率:P(甲获胜)=,乙获胜的概率:P(乙获胜)=,∵P(甲)≠P(乙),∴这个游戏规则对甲、乙双方不公平.19.19.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.【答案】(1)(2)【解析】试题分析:(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为=.考点:列表法与树状图法;概率公式.视频20.20.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【答案】.【解析】【分析】依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【详解】解:根据题意,画表格:由表格可知,共有16种等可能的结果,而且它们出现的可能性相等;其中是4的倍数的有4种:12,24,32,44.所以(4的倍数).【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.21.毕业晚会上有一个“砸蛋”节目,讲台桌上放了三枚形状、大小、颜色完全相同的彩蛋,其中两枚会砸出“金花四溅”.现从甲、乙、丙三位幸运同学中随机挑选一位砸蛋,且只能砸一次.求甲被选中且第一次能砸出“金花四溅”的概率.(用列表法或树状图法求解,能砸出“金花四溅”的彩蛋记为“金”,不能砸出“金花四溅”的彩蛋记为“空”)【答案】.【解析】【分析】根据题意列出树状图,注意列举出所有可能,不能漏解.【详解】解:画出树状图如图所示:由树状图可知一共有9种结果,每种结果出现的可能性相同,而甲被选中且第一次能砸出“金花四溅”的可能性有两种,分别是(甲、金),(甲、金),因此甲被选中且第一次能砸出“金花四溅”的概率为.【点睛】此题主要考查了列表法或树状图求概率,根据题意列出树状图是解决问题的关键.22.22.某学校课程安排中,各班每天下午只安排三节课.(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都由同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率.【答案】(1);(2).【解析】树状图法,概率.【分析】(1)画出树状图,然后根据概率公式列式计算即可得解.(2)画树状图,然后根据概率公式列式计算即可得解:画树状图如下:所有等可能情况共有6×6=36种.初二(1)班的6种情况,在对应初二(2)班的6种情况时,有2种情况数学课冲突,其余4种情况不冲突.例如,初二(1)班(数学,物理,政治)对应初二(2)班的6种情况时,与初二(2)班的(数学,语文,地理)和(数学,地理,语文)冲突.初二(1)班(物理,数学,政治)对应初二(2)班的6种情况时,与初二(2)班的(语文,数学,地理)和(地理,数学,语文)冲突.∴不冲突的情况有4×6=24.∴两个班数学课不相冲突的概率为.23.23.某校举行以“助人为乐,乐在其中”为主题的演讲比赛,比赛设一个第一名,一个第二名,两个并列第三名.前四名中七、八年级各有一名同学,九年级有两名同学,小蒙同学认为前两名是九年级同学的概率是,你赞成他的观点吗?请用列表法或画树形图法分析说明.【答案】不赞同,.【解析】解:不赞成小蒙同学的观点.··················· 1分记七、八年级两名同学为A,B,九年级两名同学为C,D.画树形图分析如下:···································· 5分由上图可知所有的结果有12种,它们出现的可能性相等,满足前两名是九年级同学的结果有2种,所以前两名是九年级同学的概率为.9分首先记七、八年级两名同学为A,B,九年级两名同学为C,D,然后根据题意画出树状图,由树状图求得所有等可能的结果与前两名是九年级同学的情况,再利用概率公式即可求得答案.。
人教版九年级上册数学《概率初步》单元测试(含答案)
A. B. C. D.
3.下列说法中正确的是()
A.不确定事件发生的概率是不确定的
B.事件发生的概率可以是任何小于 的正数
C.事件发生的概率可以等于事件不发生的概率
C,必然事件是一定会发生的事件,则对于选项C很明显不一定能发生,故此选项错误;
D,此试卷确实共24小题,所以是必然事件,故此选项正确.
故选D.
2.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为
A. B. C. D.
4.在“红桃 、红桃 、红桃 ”这三张扑克牌中任取一张,抽到“红桃 ”的概率是()
A.
B.
C.
D.
【答案】B
【解析】
【分析】
根据题意,共3张扑克牌,其中有1张为“红桃7”,根据概率的计算公式计算可得答案.
【详解】解:根据题意,共3张扑克牌,其中有1张为“红桃7”,则抽到“红桃7”的概率是 ,
故选B.
0.074
0.069
0.069
0.071
0 070
0.069
根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).
12.在用模拟试验估计50名同学中有两个是同一天生日 概率中,将小球每次搅匀的目的是_________.
13.一个布袋里面装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是_______.
14.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.
初三数学概率初步单元测试题及答案
概率初步单元测评(时间:100分钟,满分:120分)班级: 姓名: 学号: 得分:一、选择题(每题3分,共36分)1.下列事件中是必然事件的是( )A .小菊上学一定乘坐公共汽车B .某种彩票中奖率为1%,买10000张该种票一定会中奖C .一年中,大、小月份数刚好一样多D .将豆油滴入水中,豆油会浮在水面上2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A. B. C. D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B. C. D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A. B. C. D.7.连掷两次骰子,它们的点数都是4的概率是( ) A.61 B.41 C.161 D.3618.如图4,一小鸟受伤后,落在阴影部分的概率为( ) A .21 B .31 C .41 D .1 图49.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A. B. C. D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A. B. C. D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A. B. C. D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A. B. C. D.二、填空题(每题4分,共24分)13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题(共60分)19.(8分)一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.(8分)一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.(10分)你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22. (10分)23、在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复。
人教版九年级数学上第25章概率初步单元测试题含答案
人教版九年级数学上册第25章概率初步单元测试题(含答案)一.选择题(共10小题)1.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零2.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是()A.摸出的2个球都是白球B.摸出的2个球有一个是白球C.摸出的2个球都是黑球D.摸出的2个球有一个黑球3.必然事件的概率是()A.﹣1 B.0C.0.5 D.14.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.(4题图)(10题图)5.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()A.B.C.D.6.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲B.此规则有利于小丽C.此规则对两人是公平的D.无法判断7.在一个不透明的袋子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球的个数约为()A.4 B.6C.8D.128.一只不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外都相同,将球搅匀,从中任意摸出一个球.如果想使摸到这三种颜色的球的概率相等,下列做法正确的是()A.向袋子里分别投放1个白球,1个黄球,1个红球B.向袋子里分别投放3个白球,2个黄球,1个红球C.向袋子里分别投放2个白球,1个黄球D.向袋子里投放2个白球9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.10.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是()A.B.C.D.二.填空题(共10小题)11.小明同学参加“献爱心”活动,买了2元一注的爱心福利彩票5注,则“小明中奖”的事件为事件(填“必然”或“不可能”或“随机”).12.“打开电视机,它正在播广告”这个事件是事件(填“确定”或“随机”).13.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为.14.从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.15.甲乙两人用2两张红心和1两张黑桃做游戏,规则是:甲乙各抽取一张,如果两张同一花色,甲胜;若两张花色不同,乙胜;请问:这个游戏是否公平?答:.16.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是的.(填“公平”或“不公平”)17.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.18.一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.19.设计一个摸球游戏,在一个袋子里装有一些颜色的球,使得摸到红球的机会为0.4,摸到黄球的机会为0.2,摸到白球的机会为0.4,则至少要有个黄球.20.同时掷二枚普通的骰子,数字和为1的概率为,数字和为7的概率为,数字和为2的概率为.三.解答题(共5小题)21.在一个不透明的袋中装有2个黄球,3个黑球和5个红球,它们除颜色外其他都相同.(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.23.一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到红球的概率是(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.24.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲乙双方是否公平?并说明理由.25.王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.摸球的次数n 100 150 200 500 800 1000摸到黑球的次数m 23 31 60 130 203 2510.23 0.21 0.30 0.26 0.253摸到黑球的频率(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计算他两次都摸出白球的概率.人教版九年级数学上册第25章概率初步单元测试题参考答案一.选择题(共10小题)1.D 2.A 3.D 4.C 5.C 6.C 7.C 8.B 9.B 10.A二.填空题(共10小题)11.随机 12.随机13.14.15.不公平16.公平17.1418.12 19.1 20.0三.解答题(共5小题)21.解:(1)∵共10个球,有2个黄球,∴P(黄球)==;(2)设有x个红球,根据题意得:=,解得:x=5.故后来放入袋中的红球有5个.22.解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)==;(2)转盘1能获得的优惠为:=25元,转盘2能获得的优惠为:40×=20元,所以选择转动转盘1更优惠.23.解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.24.解:(1)列表如下:1 2 31 (1,1)(2,1)(3,1)2 (1,2)(2,2)(3,2)3 (1,3)(2,3)(3,3)所有等可能的情况有9种,分别为(1,1);(1,2);(1,3);(2,1);(2,2);(2,3);(3,1);(3,2);(3,3),则甲乙两人抽得的数字之积所有可能出现的情况有1,2,3,2,4,6,3,6,9,共9种;(2)该游戏对甲乙双方不公平,理由为:其中积为奇数的情况有4种,偶数有5种,∴P(甲)<P(乙),则该游戏对甲乙双方不公平.25.解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,=0.25,x=3.答:估计袋中有3个白球.(3)用B代表一个黑球,W1、W2、W3 代表白球,将摸球情况列表如下:总共有16种等可能的结果,其中两个球都是白球的结果有9种,所以摸到两个球都是白球的概率为.。
人教版九年级上册数学《概率初步》单元检测卷(带答案)
A. B. C. D.
【答案】C
【解析】
【分析】
先求出阴影方砖在整个方砖中所占面积的比值,再根据其比值即可得出结论.
【详解】∵图中共有15个方砖,其中阴影方砖3个,
∴阴影方砖在整个方砖中所占面积的比值= = ,
∴最终停在阴影方砖上的概率为 ,
A 0.4B.0.45C.0.5D.0.55
3.如果 是随机投掷一枚骰子所得的数字(1,2,3,4,5,6),则关于 的一元二次方程 有两个不等实数根的概率P= ( )
A. B. C. D.
4.如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次, 当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()
A. B. C. D.
【答案】C
【解析】
【分析】
认真审题,仔细观察和分析题干中的已知条件和所给的图形.根据概率的应用,据此计算后选择求解.
【详解】解: 转盘被等分成红、白二个扇形,且红色区域的圆心角为 ,
指针落在红色区域的概率是P= =
故选C.
【点睛】解决这个问题的关键之处在于认真审题,仔细观察和分析题干中的已知条件和所给的图形.根据概率的定义和公式的运用,据此计算后求解.
【答案】D
【解析】
【分析】
根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.
【详解】∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,
∴D选项说法正确.
故选D.
【点睛】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.
人教版数学九年级上册《概率初步》单元测试卷含答案
人教版数学九年级上学期《概率初步》单元测试(满分120分,考试用时120分钟)一、单选题1.随机闭合开关123S S S 、、中的两个,能让灯泡发光的概率是( )A .34B .23C .12D .132.如图,随机闭合开关1S ,2S ,3S 中的两个,则能让两盏灯泡同时发光的概率为( )A .23B .12C .13D .163.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“1”“2”“3”“4”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是( )A .34 B .14 C .12 D .564.在一个不透明的袋子中有4个标号分别为1,2,3,4的完全相同的小球,摸出一个球后不放回,再摸出一个球,两次摸到的球标号都是偶数的概率是()A.16B.14C.13D.125.抛掷三枚硬币,则出现一枚正面向上、两枚正面向下的概率是()A.12B.14C.38D.586.将一颗骰子(正方体)连掷两次,得到的点数都是4的概率是()A.B.14C.116D.7.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①某次实验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.①②B.②③C.①③D.①②③8.正方形ABCD内,有一个内切圆⊙O.电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,电脑自动统计正方形内的点数a个,⊙O内的点数b个(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是()A.π≈abB.π≈4baC.π≈baD.π≈4ab9.小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,7这7个数中任意选择一个数字,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;若两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.若你是游戏者,为了获胜,你会选择数()A.7 B.6 C.5 D.410.一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球. A.30 B.15 C.20 D.1211.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B.12C.14D.1512.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y=x-2图象上的概率是()A.12B.13C.14D.16二、填空题13.班里有18名男生,15名女生,从中任意抽取a人打扫卫生,若女生被抽到是必然事件,则a的取值范围是_____.14.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是_____.15.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC和BD的菱形,使不规则区域落在菱形内,其中AC=8m,BD=4m,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m2.16.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n的值大约是_______.三、解答题17.在一个不透明的盒子里,装有四个分别写有数字1、2、3、4的乒乓球(形状、大小一样),先从盒子里随机摸出一个乒乓球,记下数字后放回盒子,摇匀后再随机摸出一个乒乓球,记下数字.()1请用树形图或列表法求两次摸出乒乓球上的数字相同的概率;()2若再向盒子里放入n个写有数字1的乒乓球,使得从盒子里随机摸出一个乒乓球,摸到写有数字1的乒乓球的概率为34,求n的值.18.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.()1请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;()2小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.19.一透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同.(1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)如果一次摸两个球,用树状图或列表法求出摸到的两个球标有的数字的积为奇数的概率;(3)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大,谁获胜.请你用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.21.游戏者同时转动如图的两个转盘进行“配紫色游戏”,若要使游戏者获胜的概率为110,转盘B不动,转盘A应该如何设计?并写出解答过程说明理由.22.两个自由转动的转盘如图所示,一个分为3等份,分别标有数字1,2,3,另一个分为4等份,分别标有数字4, 5,6,7.转盘上有固定指针,同时转动两个转盘,当转盘停止转动后,指针指向的数字即为转出的数字.甲、乙两人制定游戏规则如下:一人先猜数,然后另一人再转动转盘,若猜出的数字与转出的两个数字之和相等,则猜数的人获胜,否则转动转盘的人获胜.猜数者可从下面A,B两种方案中选一种:方案A:猜“奇数”或猜“偶数”其中的一种;方案B:猜“是3的整数倍”或猜“不是3的整数倍”其中的一种.()1如果你是猜数的游戏者,为了尽可能获胜,你将选择哪种方案,猜该种方案中的哪一种情况?请说明理由;()2为了保证参与游戏双方的公平性,你应选择哪种猜数的方案?为什么?23.为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.24.小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的4个扇形区域,且分别标有数字1,2,3,4.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.25.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:(1)求a的值;(2)若用扇形图来描述,求分数在6≤m<7内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).26.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:(1)请直接写出a,b的值;(2)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;(3)如果做这种实验2 000次,那么“兵”字面朝上的次数大约是多少?参考答案一、单选题1.随机闭合开关中的两个,能让灯泡发光的概率是( )A .B .C .D . 【答案】B【解析】【分析】分析题意,回想一下利用列表法求概率的一般步骤;首先根据题意列出表格,再由表格求得所有可能的结果与小灯泡发光的情况,即可解答.【详解】根据题意列出所有可能的情况,如下:共有6种情况,必须闭合开关灯炮才发光,即能让灯泡发光的概率是. 故选B. 【点评】此题考查列表法与树状图法,解题关键在于列出所有结果的表格.2.如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为( ) 123S S S 、、342312133S 42=631S 2S 3SA .B .C .D . 【答案】C【解析】【分析】画出树状图,找出所有等可能的结果,计算即可.【详解】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴,故选C. 【点评】本题考查了列表法与树状图法,正确的画出树状图是解决此题的关键.3.如图是两个完全相同的转盘,每个转盘被分成了面积相等的四个区域,每个区域内分别填上数字“”“”“”“”.甲、乙两学生玩转盘游戏,规则如下:固定指针,同时转动两个转盘,任其自由转动,当转盘停止时,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜.那么在该游戏中乙获胜的概率是( )23121316()21=63P 两盏灯泡同时发光1234A .B .C .D . 【答案】A 【解析】【分析】举出所有情况,求出两指针所指的数字的积为奇数的情况占总情况的比值即可.【详解】解:如表所示:所有出现的情况如下,共有16种情况,积为奇数的有4种情况,所以在该游戏中乙获胜的概率是:. 故选A.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.求概率公式为:概率=所求情况数与总情况数之比.4.在一个不透明的袋子中有个标号分别为,,,的完全相同的小球,摸出一个球后不放回,再摸出一个球,两次摸到的球标号都是偶数的概率是( )A .B .C .D . 【答案】A 3 41 41 256123164412341 61 41 31 2【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到的球标号都是偶数的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,两次摸到的球标号都是偶数的有2种情况,∴两次摸到的球标号都是偶数的概率是:. 故选A.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.求概率公式为:概率=所求情况数与总情况数之比.5.抛掷三枚硬币,则出现一枚正面向上、两枚正面向下的概率是( )A .B .C .D . 【答案】C【解析】【分析】先求得将一枚硬币向上连续抛掷三次共有的情况;再根据其中出现一枚正面向上、两枚正面向下的情况数,计算即可.【详解】解:画树状图得: 21126 1 21 43 85 8将一枚硬币向上连续抛掷三次,共有8种情况,其中出现一枚正面向上、两枚正面向下有3种,所以其概率=. 故选C.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.求概率公式为:概率=所求情况数与总情况数之比.6.将一颗骰子(正方体)连掷两次,得到的点数都是4的概率是( )A . B. C . D .【答案】D【解析】连掷两次骰子出现的点数情况,共36种:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).3814116而点数都是4的只有(4,4)一种,所以得到的点数都是4的概率是,故选D. 7.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①某次实验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A .①②B .②③C .①③D .①②③【答案】A 【解析】【分析】根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.【详解】当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以这次“钉尖向上”的概率是:308÷500=0.616,故①正确.随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选A.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答. 8.正方形ABCD 内,有一个内切圆⊙O .电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,136电脑自动统计正方形内的点数a 个,⊙O 内的点数b 个(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是( )A .π≈B .π≈C .π≈D .π≈ 【答案】B【解析】【分析】根据圆的面积与正方形的面积的比等于落在相应位置的点数的比,列式求解即可.【详解】设圆的半径为r,则正方形的边长为2r,根据题意得:≈, 则π≈. 故选B .【点评】本题考查了利用频率估计概率的知识,解题的关键是能够了解落在圆内的概率约等于圆与正方形的面积的比,难度不大.9.小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,7这7个数中任意选择一个数字,然后两人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;若两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.若你是游戏者,为了获胜,你会选择数( )A .7B .6C .5D .4【答案】A【解析】【分析】利用列表法找到点数之和为几的次数最多,选择那个数获胜的纪律就越大. a b 4b a b a 4a b224r r b a4b a【详解】根据题意列表如下:两人抛掷骰子各一次,共有36种等可能的结果,点数之和为7的有6种,最多,故选择7获胜的可能性大.故选A.【点评】本题考查用列表法或画树状图求概率,解此题的关键在于熟练掌握其知识点.10.一个口袋中装有10个红球和若干个黄球,在不允许将求倒出来数的前提下,为估计袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程20次,得到红球与10的比值的平均数为0.4,根据上述数据,估计口袋中大约有()个黄球. A.30 B.15 C.20 D.12【答案】B【解析】解:∵小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.4,设黄球有x 个,∴0.4(x +10)=10,解得x =15.故选B .11.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A .1B .C .D . 【答案】B 【解析】【分析】直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是, 故选B .【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.12.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数y =x -2图象上的概率是()A .B .C .D . 【答案】D【解析】画树状图如下:共有6种等可能的结果,其中只有(1,-1)在一次函数y=x-2图象上,所以点在一次函数y=x-2图象上的概率=. 故选:D .点睛:本题考查了利用列表法或树状图法求概率:先列表或画树状图展示所有等可能的结果,再找出某事件所占有的可能数,然后根据概率的概念求这个事件的概率.也考查了点在一次函数图形上,则点的横纵坐标满121415121213141616足一次函数的解析式.二、填空题13.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.【答案】18<a <33【解析】【分析】利用随机事件的定义进而得出答案.【详解】∵班里有18个男生15个女生,从中任意抽取a 人打扫卫生,女生被抽到的是必然事件,∴18<a <33.【点评】本题考查的知识点是随机事件的定义,解题关键是正确把握定义.14.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是_____.【答案】 【解析】【分析】根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.【详解】总面积为20,∵阴影区域的边长为2,15=∴面积为2×2=4;故飞镖落在阴影区域的概率为,故答案为 【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率;关键是得到两个正方形的边长.15.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC 和BD 的菱形,使不规则区域落在菱形内,其中AC=8m,BD=4m,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是_____m 2.【答案】4.【解析】【分析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.【详解】∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%附近,∴小石子落在不规则区域的概率为0.25,∵AC=8m,BD=4m,∴面积为×8×4=16m 2, 设不规则部分的面积为s,则=0.25, 41205 151216s解得:s=4,故答案为:4.【点评】考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.16.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 的值大约是_______.【答案】10【解析】由题意可得,可得概率为:,解得,n=10,故估计n 大约有10个. 故答案为:10.三、解答题 17.在一个不透明的盒子里,装有四个分别写有数字、、、的乒乓球(形状、大小一样),先从盒子里随机摸出一个乒乓球,记下数字后放回盒子,摇匀后再随机摸出一个乒乓球,记下数字.请用树形图或列表法求两次摸出乒乓球上的数字相同的概率;若再向盒子里放入个写有数字的乒乓球,使得从盒子里随机摸出一个乒乓球,摸到写有数字的乒乓球的概率为,求的值. 【答案】(1);(2). 【解析】【分析】(1)首先根据题意画出树状图,然后根据表格求得所有等可能的情况与两次摸出乒乓球上的数字相同的情况,再利用概率公式即可求得答案;(2)首先根据概率公式可得:,解此方程组即可求得答案. 【详解】解:画树状图得:40.4n=1234()1()2n 1134n 148n =3344n n +=+()1∵共有种等可能的结果,两次摸出乒乓球上的数字相同的有种情况,∴两次摸出乒乓球上的数字相同的概率为:; 根据题意得:, 解得:. 经检验:是原分式方程的解.【点评】考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.如图是两个可以自由转动的转盘,甲转盘被等分成个扇形,乙转盘被等分成个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于的概率;小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于,小颖获胜;指针所指区域内的数字之和等于,为平局;指针所指区域内的数字之和大于,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1).(2)所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢. 【解析】【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出16441164=()21344n n +=+8n =8n =34()110()210101013。
人教版数学九年级上学期《概率初步》单元综合测试题(附答案)
共有12种等可能的结果数,其中两次摸出的小球的标号的和为奇数的结果数为8,
所以两次摸出的小球的标号的和为奇数的概率为 ,
故选B.
[点睛]本题考查了列表法与树状图法求概率:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
B. 任意抛掷一枚均匀的骰子,骰子停止转动后,朝上的一面的点数为1
C. 在只装着白球和黑球的袋中摸球,摸出红球
D. 在一张纸上随意画两个直角三角形,这两个直角三角形相似
9.桌面上有A,B两球及5个指定的点,若将B球分别射向这5个点,则B球一次反弹后击中A球的概率为( )
A. B. C. D.
10.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是( )
23.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.
(1)请用列表法或树状图表示出所有可能出现的游戏结果;
(2)求张华胜出的概率.
参考答案
一、选择题
1.下列事件是必然事件的为( )
A.明天早上会下雨
B.任意一个三角形,它的内角和等于180°
C.掷一枚硬币,正面朝上
17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率记为P1,指针指向的数为偶数的概率记为P2,请比较P1、P2的大小:P1_______P2(填“>”、“<”或者“=”)
三、解答题
18.如图,将圆形转盘三等分,分别标上1、2、3三个数字,代表鸡、猴、鼠三种生肖邮票(每种邮票各两枚,鸡年邮票面值“0.80元”,其它邮票都是面值“1.20元”),转动转盘后,指针每落在某个数字所在扇形一次就表示获得该种邮票一枚.
九年级上册数学《概率初步》单元检测卷(附答案)
[解析]
试题解析:根据题意,知最后冠军一定是中国选手.故为必然事件的是冠军属于中国选手.
故选A.
考点:随机事件.
2.随机闭合开关 中的两个,能让灯泡发光的概率是()
A. B. C. D.
[答案]B
[解析]
[分析]
分析题意,回想一下利用列表法求概率的一般步骤;首先根据题意列出表格,再由表格求得所有可能的结果与小灯泡发光的情况,即可解答.
A.1B. C. D.
[答案]C
[解析]
[分析]
先根据轴对称图形和中心对称图形的定义得到圆和菱形既是轴对称图形又是中心对称图形,然后根据概率公式求解.
[详解]解:投掷一次,向下一面有四种可能,其中圆、菱形既是轴对称图形又是中心对称图形,有两种可能,故概率为 ;
故选C.
[点睛]本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形和中心对称图形.
九年级上册数学《概率初步》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(每小题3分,共30分)
1.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()
A.冠军属于中国选手B.冠军属于外国选手
C 冠军属于中国选手甲D.冠军属于中国选手乙
2.随机闭合开关 中的两个,能让灯泡发光的概率是()
[详解]根据题意列出所有可能的情况,如下:
共有6种情况,必须闭合开关 灯炮才发光,即能让灯泡发光的概率是 .
故选B.
[点睛]此题考查列表法与树状图法,解题关键在于列出所有结果的表格.
3.一个不透明的盒子中装有6个大小相同的乒乓球,其中4个是黄球,2个是白球.从该盒子中任意摸出一个球,摸到黄球的概率是()
九年级上册数学《概率初步》单元综合检测题附答案
九年级上册数学《概率初步》单元测试卷(满分120分,考试用时120分钟)一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A .B .C .D .2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A .B .C .D .3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A . 个B . 个C . 个D . 个4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A .B .C .D .5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A .B .C .D .6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A . 次B . 次C . 次D . 次7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A .B .C .D . 不能确定8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A .B .C .D .9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A . 游戏对小明有利B . 游戏对小白有利C . 这是一个公平游戏D . 不能判断对谁有利10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A .B .C .D .二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.13.事件A 发生的概率为0.05,大量重复做这种试验,事件A 平均每100次发生的次数是.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.学|科|网...学|科|网...学|科|网...23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.24.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有个,黄球有个,现从中任意摸出一个是白球的概率为.试求袋中蓝球的个数;第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25.,两个口袋中,都装有三个相同的小球,分别标有数字,,,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从袋中随机摸一个球,同时小丽从袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.这个游戏对双方公平吗?通过列表或画树状图加以说明.26.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:请估计:当很大时,摸到白球的频率将会接近于多少?摸球的次数摸到白球的次数摸到白球的概率假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?试估算口袋中黑、白两种颜色的球各有多少个?参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.甲乙两人下棋,甲获胜的概率为,和棋的概率为,那么乙不输的概率为()A .B .C .D .[答案]D[解析][分析]根据甲获胜的概率+和棋的概率+乙获胜的概率=1,求得乙获胜的概率,即可求得乙不输的概率.[详解]根据题意,乙获胜的概率是1-20%-40%=40%,∴乙不输的概率为::40%+40%=80%.故选D .[点睛]本题主要考查了概率的意义,根据“甲获胜的概率+和棋的概率+乙获胜的概率=1” 求得乙获胜的概率,是解决问题的关键.2. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A .B .C .D .[答案]D[解析]试题分析:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D .考点:概率公式.视频3.下列说法正确的有()①一事件发生的概率不可能大于;②大量试验中事件发生的频率就是事件发生的概率;③若一堆产品的合格率为,则从中任取件就一定有件合格品,件次品;④用列举法求概率时列举出来的所有可能的结果应该是等可能的A . 个B . 个C . 个D . 个[答案]B[解析][分析]根据概率的意义依次判断后即可解答.[详解]①一事件发生的概率不可能大于1,正确,②大量试验中事件发生的频率就是事件发生的概率;不正确,概率是多次实验数据下的结果,频率只可近似的看作概率;③若一堆产品的合格率为95%,则从中任取100件就一定有95件合格品,5件次品,③错误,④用列举法求概率时列举出来的所有可能的结果应该是等可能的,正确.正确的有2个,故选B .[点睛]概率是反映事件的可能性大小的量.概率是大量实验数据下的结果,在小数据条件下,概率就失去意义了.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A 为不确定事件,那么0<P(A )<1.4. 一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的概率是()A .B .C .D .[答案]B[解析]试题分析:偶数有2、4、6,则P(向上的一面的点数为偶数)=.考点:概率的计算5.有,两只不透明口袋,每只品袋里装有两只相同的球,袋中的两只球上分别写了“细”、“致”的字样,袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是()A . B . C . D .[答案]B[解析][分析]列举出所有情况,看刚好能组成“细心”的情况占总情况的多少即可.[详解]画树状图:学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...学.科.网...共有4种情况,刚好能组成“细心”字样的情况有一种,所以概率是,故选B .[点睛]如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A 的概率P(A )=,注意本题是不放回实验.6.小明有四双样式相同、大小相同的袜子,其中两双为蓝色,两双为白色.这八只袜子散放在一起,小明不看而取,一次取出一只,问至多取几次就能保证取得同样颜色的一双袜子()A . 次B . 次C . 次D . 次[答案]B[解析][分析]因为只有两种颜色,所以如果前两次取出的颜色不同,则第三次取出的一定与前两次中的某一次的颜色相同.[详解]若第一次取出的是蓝色,第二次取出的若与第一次的颜色不同,是白色,则第三次取出的若是蓝色,就与第一次取出的颜色相同,若是白色就与第二次取出的颜色相同.所以最多取3次就能保证取得同样颜色的一双袜子.故选B .[点睛]本题考查了概率的意义,利用只有蓝、白两种颜色,取出的两种颜色各占一半是解题的关键.7.利用计算机产生的随机数(整数),连续两次随机数相同的概率是()A .B .C .D . 不能确定[答案]A[解析][分析]列出图表,然后根据概率公式列式进行计算即可得解.[详解]列表如下:共有100种情况,连续两次随机数相同的有10种情况,所以,P(连续两次随机数相同)=.故选A .[点睛]本题考查概率的求法,熟知概率公式(概率=所求情况数与总情况数之比)是解决问题的关键.8.甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少()A .B .C .D .[答案]C[解析][分析]列举出所有情况,让甲的点数大于乙的情况数除以总情况数即为所求的概率.[详解]列表得:由表格可知,共有36种等可能的情况,甲的点数大于乙时,共有5+4+3+2+1=15种情况,甲获胜的机率是=.故选C .[点睛]本题考查了用列表法(或树状图法)求概率,列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果;当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.9. 小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A . 游戏对小明有利B . 游戏对小白有利C . 这是一个公平游戏D . 不能判断对谁有利[答案]C[解析]试题分析:根据游戏规则:总共结果有4种,分别是奇偶,偶奇,偶偶,奇奇,它们的和为奇,奇,偶,偶;由此可得:两人获胜的概率,进而得出答案.解:两人写得数字共有奇偶、偶奇、偶偶、奇奇四种情况,因此和为奇数或为偶数概率都为;所以这是一个公平游戏.故选:C .点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.视频10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在和,则口袋中白色球的个数可能是()A . B . C . D .[答案]C[解析][分析]由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数即可.[详解]∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是40×0.40=16个.故选C .[点睛]本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.解决本题的关键是根据频率之和为1计算出摸到白球的频率.二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的布带中装有黄色、白色乒乓球共个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在左右,则口袋中白色球可能有________个.[答案]32[解析][分析]已知小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,可得黄色球有40×20%=8个,而布袋中装有黄色、白色乒乓球共40个,所以口袋中白色球有40-8=32个.[详解]∵小明通过多次摸球试验后发现,其中摸到黄色球的频率稳定在20%左右,∴黄色球有40×20%=8个,∵布袋中装有黄色、白色乒乓球共40个,∴口袋中白色球可能有40-8=32个.故答案为:32.[点睛]本题考查了利用频率估计概率.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12.在抛掷一个图钉的试验中,着地时钉尖触地的概率约为.如果抛掷一个图钉次,则着地时钉尖没有触地约为________次.[答案]54[解析][分析]利用大量反复试验下频率稳定值即概率,由估计出部分数目=总体数目乘以相应概率求出即可.[详解]∵在抛掷一个图钉的试验中,着地时钉尖触地的概率约为0.46,∴没有触地的概率是1-0.46=0.54.∴如果抛掷一个图钉100次,则着地时钉尖没有触地约为:100×0.54=54次.故答案为:54.[点睛]本题主要考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.事件A 发生的概率为0.05,大量重复做这种试验,事件A 平均每100次发生的次数是.[答案]5.[解析]试题解析:事件A 发生的概率为0.05,大量重复做这种试验,则事件A 平均每100次发生的次数为:100×0.05=5.考点:概率的意义.14.某同学期中考试数学考了100分,则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)[答案]可能.[解析]试题解析:某同学期中考试数学考了100分,是随机事件,则他期末考试数学可能考100分,考点:随机事件.15.盒子中装有个红球,个黄球和个蓝球,每个球除颜色外没有其它的区别,从中任意摸出一个球,这个球不是红球的概率为________.[答案][解析][分析]从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,根据概率公式求解即可.[详解]∵从袋子中随机摸出一个球,共有10种情况,而摸到的球不是红球的情况有3种,∴摸到的球不是红球的概率为.故答案为:.[点睛]本题考查了简单事件的概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A 的概率P(A )=.16.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.[答案]2[解析][分析]根据概率的意义考虑出取得最后1粒的方法即可得解.[详解]根据游戏规则,先取的人第一次取2粒,然后保证第二次所取的粒数与另一人所取粒数之和为3即可取到最后1粒,从而使获胜的概率为1,所以,小明先取,要使小明获胜的概率为1,小明第一次应该取走2粒.故答案为:2.[点睛]本题考查了概率的意义,理解题目信息,判断出使两人所取的粒数之和是3是解题的关键.17.袋中有个红球,个白球,现从袋中任意摸出球,摸出白球的概率是________.[答案][解析][分析]根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数;二者的比值就是其发生的概率.[详解]根据题意分析可得:箱子里共有5个球,从箱子中任意摸出一个球是白球的概率是.故答案为:.[点睛]本题考查了简单事件概率的求法:①找出符合条件的情况数目;②找出全部情况的总数;二者的比值就是其发生的概率.18.有三张正面分别标有数字,,的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于的概率是________.[答案][解析][分析]根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽得卡片上数字的差的绝对值大于1的情况,再利用概率公式求解即可.[详解]画树状图得:∵共有9种等可能的结果,两次抽得卡片上数字的差的绝对值大于1的有2种情况,∴两次抽得卡片上数字的差的绝对值大于1的概率是:.故答案为:.[点睛]本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.19.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有个选项,第二道单选题有个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第________题使用“求助”.[答案]一[解析][分析]根据概率的求法,求出第一题使用“求助”小明顺利通关的概率及在第二题使用“求助”小明顺利通关的概率,再比较大小,即可判断出小明在第几题使用“求助”.[详解]第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.[点睛]本题主要考查了概率的意义和应用,解答本题的关键是分别求出第一题使用“求助”和第二题使用“求助”使小明顺利通关的概率.20.在同样条件下对某种小麦种子进行发芽实验,统计发芽种子数,获得如下频数分布表:实验种子(粒)发芽频数(粒)估计该麦种的发芽概率是________.[答案][解析][分析]根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.[详解]∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.[点睛]此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共6 小题,每小题10 分,共60 分)21.桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.请用列表或画树状图的方法求两数之和为的概率;若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?[答案](数字之和为);要使这个游戏对双方公平,乙胜一次得分应为分.[解析][分析](1)用树状图法求得所以等可能的结果,再求得两个数字和为5的结果,利用概率公式求解即可;(2)分别计算甲、乙二人获胜的概率,由此即可求解.[详解]共有种等可能的情况,和为的有,,共种情况,可得:(数字之和为);因为(甲胜),(乙胜),故甲胜一次得分,要使这个游戏对双方公平,乙胜一次得分应为:(分).[点睛]本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.甲、乙两人用如图的两个分格均匀的转盘、做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:用列表格或画树状图的方法表示游戏所有可能出现的结果.求甲、乙两人获胜的概率.[答案]所有可能出现的结果见表格;(甲获胜),(乙获胜).[解析][分析](1)根据题意列出表格,即可求得所有可能出现的结果;(2)根据表格可知:积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,根据概率公式求解即可.[详解]所有可能出现的结果如图:从上面的表格(或树状图)可以看出,所有可能出现的结果共有种,且每种结果出现的可能性相同,其中积是奇数的结果有种,即、、、,积是偶数的结果有种,即、、、、、、、,∴甲、乙两人获胜的概率分别为:(甲获胜),(乙获胜).[点睛]本题考查了用列表法(或树状图法)求概率:当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.23.某儿童娱乐场有一种游戏,规则是:在一个装有个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近的概率.[答案]参加一次这种游戏活动得到福娃玩具的概率是;估计袋中白球接近的概率为.[解析][分析](1)根据概率的频率定义进行计算即可;(2)设袋中共有x个球,根据摸到红球的概率列出方程,解方程求的x的值,再求袋中白球接近的概率即可.[详解]根据题意可得:参加这种游戏活动为人次,公园游戏场发放的福娃玩具为;故参加一次这种游戏活动得到福娃玩具的概率为,∴参加一次这种游戏活动得到福娃玩具的概率是;∵实验系数很大,大数次实验时,频率接近与理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率是,设袋中白球有个,根据题意得:,解得:,经检验,是方程的解.∴估计袋中白球接近个,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学:《概率初步》单元测试(含答案)
一、选择题
1.从编号为1到10的10张卡片中任取1张,所得编号是3的倍数的概率为( )
A .
110
B .
210
C .
310 D .15
2. 下列说法正确的是
(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上 (C)在一次抽奖活动中,“中奖的概率是
1
100
”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交
3.盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是( )
A .23
B .
15
C .
25
D .
35
4.同时抛掷两枚质地均匀的骰子,骰子的六个面分别刻有1到6的点数,朝上的面的点数中,一个点数能被另一个点数整除的概率是( )
A.
718 B.34 C.1118 D.2336
5. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为
A.
161 B.41 C.16
π
D.
4
π
6. 将1、2、3三个数字随机生成的点的坐标,列
成下表。
如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x 图象上的概率是
A .0.3
B .0.5
C .13
D .2
3
7. 下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )
A .13
B .
12 C .
34
D .
23
8.在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球各
一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球,
两次摸球所有可能的结果如图所示,则摸出的两个球中,一个是红球,一个是黑球的概率是( )
A .19
B .29
C .13
D .49
9.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域的概率是( ) A. 12 B. 14 C. 15 D. 1
10
10.下列事件是必然事件的是( )
A .直线b x y +=3经过第一象限;
B .方程
0222=-+-x
x
x 的解是2=x ;
C .方程34-=+x 有实数根;
D .当a 是一切实数时,a a =2 二、填空
1. 布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..
的概率是 . 2. 不透明的口袋中有质地、大小、重量相同的白色球和红色球数个,已知从袋中
随机摸出一个红球的概率为3
1
,则从袋中随机摸出一个白球的概率是________。
3. 在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB 。
现将背面完全相同,正面分别标有数1、2、3、
21、3
1
的5张卡片洗匀后,背面朝上,
第一次第二次
红红
黄
黑 黄红
黄
黄 黑 红
黄
黑 (第8题)
1
5 (第9题)
从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为。
4. 如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),
则P(偶数)P(奇数)(填“>”“<”或“=”).
5. 袋中装有除颜色外其他完全相同的4个小球,其中3个红色,1个白色.从袋中任意地摸出两个球,这两个球颜色相同的概率是_________.
6.若100个产品中有95个正品、5个次品,从中随机抽取一个,恰好是次品的概率是.
三、解答题
1.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,
出现1个男婴、2个女婴的概率是多少?
2.某商场在今年“六·一”儿童节举行了购物摸奖活动.摸奖箱里有四个标号分别为
1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:
两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树状图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.
3.有A 、B 两个黑布袋,A 布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3, B 布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A 布袋中随机取出—个小球,用m 表示取出的球上标有的数字,再从B 布袋中随机取出一个小球,用n 表示取出的球上标有的数字.
(1)若用(m ,n)表示小明取球时m 与n 的对应值,请画出树状图并写出(m ,n)的所有取值;
(2)求关于x 的一元二次方程021
2=+-n mx x 有实数根的概率.
4. 小明准备今年暑假到北京参加夏令营活动,但只需要一名家长陪同前往,爸
爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次.
(1)用树状图列举三次抛掷硬币的所有结果;
(2)若规定:有两次或两次以上
...........正面向上,由爸爸陪同前往北京;有两次或两
次以上
...反面向上,则由妈妈陪同前往北京.分别求由爸爸陪同小明前往北京和由妈妈陪同小明前往北京的概率;
(3)若将“每次掷一枚硬币,连掷三次,有两次或两次以上正面向上时,由爸
爸陪同小明前往北京”改为“同时掷三枚硬币,掷一次,有两枚或两枚以上
.......正面向上时,由爸爸陪同小明前往北京”.求:在这种规定下,由爸爸陪同小明前往北京的概率.
答案
一.
1C,2D3C4A5C6C7C8C9C10A 二 1.
13
2.23 3.35 4.< 5.1600 6.1
2 7.0.05 三.
1. 解:(1)
(2)P (由爸爸陪同前往)12=;P (由妈妈陪同前往)1
2
=; (3)由(1)的树形图知,P (由爸爸陪同前往)1
2=.
2. 解:画出如图的树状图……3′ 6=2+4=3+3=4+2,8=4+4 ∴小彦中奖的概率311
444
P +=
=⨯。
……………6′
3.(1)共12种
(2)由原方程得:⊿=m2-2n
当m,n 的值为(1,0)(2,0)(2,1)(2,2)(3,0)(3,1)(3,2)
正
反
正 反
正 反 正
正
反
正 反
正 反 反
第一次 第二次 第三次
1
2
3
4
1234
123412344
321
⊿≥0,原方程有实数根.故P=7
12
4. 1
4。