信号与系统期中考试答案3
信号与系统试卷及参考答案
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。
信号与系统课后习题与解答第三章
3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为Te jE e jE e jEe jEt f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20= 幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛==n tjn n tjn ne n Sa TE eF t f 112)(1ωωτωτ其直流分量为T E n Sa T E F n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω 将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。
信号与系统习题答案第三章
第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。
它是否是完备集?解:(积分???)此含数集在(0,2)π为正交集。
又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m 和n 。
由完备正交函数定义所以此函数集不完备。
3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。
3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。
如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。
解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。
和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。
信号与系统 习题部分参考答案
(2)[1 + mf (t)]cos(w0t) = cos(w0t) + mf (t) cos(w0 (t)
↔
π [δ
(w
+
w0
)
+
δ
(w
−
w0
)]
+
m 2
{F[
j(w
+
w0
)
+
F[
j(w
−
w0
)]}
(3) f (6 − 3t) = f [−3(t − 2)] ↔ 1 F (− 1 jw)e− j2w
↔ 2π e−a⎜−ω⎜
(4)单边指数信号 ∵ e−atu(t) ↔ 1 a + jw
∴ 1 ↔ 2π e−a(−w)u(−w) a + jt
即 1 ↔ 2π eawu(−w) a + jt
3.20 求下列各傅里叶变换的原函数
(1) F (ω) = δ (ω − ω0 ) (2) F (ω) = u(ω + ω0 ) − u(ω − ω0 );
sin 2π (t − 1) π (t − 1)
⎡ ⎢ ⎣
sin(π
πt
t
)⎤2
⎥ ⎦
;
2a a2 + t2
,
a
>
0;
(4) 1 ; a+ jt
解:
(1)∵
Gτ
(t
)
↔
tSa(
wτ 2
)
∴
w0
Sa(
w0t 2
)
↔
2π
Gw0
(− w)
令 w0 = 4π
有
4π
信号与系统期中考试参考答案_326004751
《信号与系统》期中考试试题2011年11月 A 卷一、填空(25分)1、(3分)已知2()(e )()t f t t u t -=+,则()f t ''=(2e )()()()t u t t t δδ-'+-+。
解:2()(2e )()(e )()(2e )()()t t t f t t u t t t t u t t δδ---'=-++=-+()(2e )()(2e )()()(2e )()()()t t t f t u t t t t u t t t δδδδ---''''=++-+=+-+2、(3分)若()f t 的最高截止频率为m ω,则对(/2)(4)f t f t 抽样的最大时间间隔为2/(9)m πω。
解:{}{}{}11(/2)(4)(/2)*(2)(2)*(/4)24f t f t f t f t F F ωωππ==FF F , (2)F ω的截止频率为0.5m ω,(/4)F ω的截止频率为4m ω,根据卷积性质知(/2)(4)f t f t 的最高截止频率为4.5m ω,因此最低抽样频率为9s m ωω=,最大时间间隔2/(9)m m T πω=。
3、(3分)已知实信号()f t 的频谱可写成(2/2)()()e j F A ωπωω-+=,其中()A ω为实奇函数,试问该信号波形满足何种对称性(2)(2)f t f t -+=-+。
解:由题意知2()j ()j F e A ωωω=,而[][]*j ()j ()A A ωω=-,即*j 2j2()()F e F e ωωωω⎡⎤=-⎣⎦,从而(2)(2)f t f t -+=-+,即()f t 关于2t =反对称。
4、(3分)由Parseval 定理计算2sin d t t t π+∞-∞⎛⎫= ⎪⎝⎭⎰2π。
解:{}[]sin()()()()t Sa t u u t ππππωπωπ⎧⎫==+--⎨⎬⎩⎭F F ,因此2sin d t t t π+∞-∞⎛⎫= ⎪⎝⎭⎰21d 2πππωππ2-=⎰。
信号与系统课后答案第三章作业答案
初始为 0, C2 -4
y f (t) -4e3tu(t) 4e2tu(t)
全响应= yx (t)+y f (t) 4e2tu(t)-2e3tu(t)
3-2 描述某 LTI 系统的微分方程为
d2 y(t) dt 2
3dy(t) dt来自2y(t)
df (t) dt
6
1
1
(2e1 e1 et ) u(t)
e1(2 et ) u(t)
(2)
f
(t)
a[u(t
s) 2
u(t
2)]
h(t) b[u(t 2) u(t 3)]
f
(t)
h(t)
ab[(t
1 2
)
u(t
1 2
)
(t
1 2
)
u(t
1) 2
tu(t)
1 4
(et
e3t
)u(t)
1 2
t
e3tu(t)
[
1 4
et
(
1 2
t
1 4
)e3t
]u
(t)
3-19 一 个 LTI 系 统 , 初 始 状 态 不 祥 。 当 激 励 为 f (t) 时 其 全 响 应 为
(2e3t sin 2t)u(t) ;当激励为 2 f (t) 时其全响应为 (e3t 2sin 2t)u(t) 。求
(1) 初始状态不变,当激励为 f (t 1) 时的全响应,并求出零输入相应、
零状态响应; (2) 初始状态是原来的两倍、激励为 2 f (t) 时系统的全响应。
信号与系统期中考试答案,DOC
一、(15%)已知连续时间信号x t ()和离散时间信号x n []的波形图如下图所示。
画出下列各信号的波形图,并加以标注。
1.()()11xt x t =-,2.()()221x t x t =-,3.3()()x x t ττ=-第三个自变量不为t !! 4.{}1[][][]e x n x n Even x n ==,5.2[][][1]x n x n n δ=-答案二、(25%)简要回答下列问题。
1. 推导离散时间信号[]0j n xn e ω=成为周期信号的条件(3%);若是周期信号,给出基波周期的求法(3%)。
答案:若为周期信号,则00()j nj n N e e n ωω+=∀,。
推出01j N e ω=,再推出02,,0N k k z k ωπ=∈≠。
得出02k Nωπ=为有理分数。
2.指出离散时间信号[]j n x n e ω=频率取值的主值范围(2%),指出它的最低频率和最高频率(2%)。
答案2πωπωπ-≤<≤<或0。
min max 02,21),k k z k k z ωπωππ=∈=+∈或。
而或(。
3. 断下列两个系统是否具有记忆性。
①()()()()222y t x t x t =-,(1%)②[][][]0.51y n x n x n =--。
(1%)答案①无记忆性②有记忆性4.简述连续时间和离散时间线性时不变(LTI )系统的因果性、稳定性与单位冲激响应(Unitimpulseresponse )的关系(4%)。
答案因果性与()()()[][][]h t h t u t h n h n u n ==或互为充要条件。
稳定性与|()||[]|n h t dt h n +∞+∞=-∞-∞<+∞<+∞∑⎰或互为充要条件。
5. 很广泛一类因果系统可用常系数微分方程:()()00k k NM k k k k k k d y t d x t a b dt dt ===∑∑表征,画出该类系统的增量线性系统结构(2%),用该结构说明全响应的构成方法及每一部分的物理含义(4%),在什么条件下该类系统为LTI 系统(3%)? 答案()()()x i y t y t y t =+,()()*()x y t x t h t =是仅由输入信号引起响应:零状态响应,()i y t 是仅由初始状态引起的响应:零输入响应。
信号与系统期中考试答案3
信号与系统期中考试答案一、共八小题 1、⎰-=++232)2()(dt t t t δ 2⎰∞-=-+td ττδτ)2()1( 3u(t-2)3、判别下列系统是否线性。
其中x (t 0)为初始状态,f (t )为输入。
)(7)(d )(d 3)(t f t ty tt y a =+线性系统)(6)(5)( )(0t tf t x t y b +=线性系统4、求下列信号的奈奎斯特抽样频率和抽样间隔 (1))70100cos(︒-t π最大的角频率ωm=100π rad/s奈奎斯特抽样频率fs=2fm=100Hz 奈奎斯特抽样间隔Ts=1/fs=0.01s; (2) )20()100(2t sa t sa ππ-最大的角频率ωm=100π rad/s奈奎斯特抽样频率fs=2fm=100Hz 奈奎斯特抽样间隔Ts=1/fs=0.01s; 5、一个系统的系统频域函数ωωω3sin 23cos 2)(j j H -=,该系统是否为无失真传输系统?ωωωω323s i n 23c o s 2)(j ej j H -=-=,是无失真传输系统 6、已知一线性系统的输入)1(3)(-=t t f δ,系统的单位冲激响应)(2)(3t u e t h t -=, 求系统的零状态响应。
零状态响应)1(3)(2*)1(3)(*)()()1(33-=-==---t u e t u e t t h t f t y t t f δ7、已知一线性系统当输入)(2)(t u t f =时,系统的零状态响应)(2)(3t u e t y t f -=,当输入)1()(2)(--=t u t t f δ时, 求系统的零状态响应。
系统的零状态响应是: )1()(6)(22)]1(2[)](2[)()1(33)1(33---=--=------t u et u et t u et u edt d t y t tt tf δ8、已知某一理想低通滤波器系统函数⎩⎨⎧><=- 50|| 050|| 5.0)(2πωπωωωj e j H ,系统的输入)30100cos(4)1020cos(2)(︒-+︒+=t t t f ππ,求系统的零状态响应。
东南大学信号与系统期中考试试卷及答案
F { f (t )} = 2 Sa (ω ) − 2 e
'
− jω
= jω F ( jω )
2 − jω F ( jω ) = [ Sa (ω ) − e ] jω
4。 计算卷积: 2 * t[ε(t+2)-ε(t-2)] 。 (5分)
2
f1 (t )
0
−2 2
t
f 2 (t )
0 2
t
= ∫ τ [ε (τ + 2) − ε (τ − 2)]2dτ
解: 引入辅助函数q(t), 得
d 3 q (t ) d 2 q (t ) dq ( t ) 4 5 + + + 6 q (t ) = e (t ) 3 2 dt dt dt dq ( t ) r (t ) = 7 + 8 q (t ) dt
7
e (t )
Σ
q ′′′
∫
-4 -5 -6
q ′′
∫
q′
(t ) = (t ) =
e
− 2 t
− 2 c
e
− 2 t
, t ≥
在输入为零时 r(0+)= r(0-)= 0,r´(0+)= r´(0-)= 2, 代入上列二式
c1 + c 2 = 0 , → − 2 c 2 = 2 ∴ r zi ( t ) = ( 1 − e
(2)系统转移算子为:
解法2:因 e(t)=5,(-∞<t<∞),故由直流稳态解,可设 r(t)=A (常数),代入系统方程,得 5A=3x5, ∴ r(t)= A =3
3. 利用傅里叶变换的性质求下列波形信号的傅里叶 变换。 (8分)
信号与系统期中考试题(答案201X.5)
.武夷学院期末考试试卷( 2010 级 电子信息技术 专业2012~2013学年度 第 2 学期) 课程名称 信号与系统 期中 卷 考试形式 开 卷 考核类型 考 试 本试卷共三 大题,卷面满分100分,答题时间120分钟。
一、选择题:(本大题共15小题,每小题2分,共30分每题给出四个答案,其中只有一个正确的)1、下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ= B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=2、积分dt t t ⎰∞∞---)21()2(δ等于( D )。
A 1.25B 2.5C -1.5D 53、周期信号的频谱和非周期信号的频谱分别为( A )A 离散频谱和连续频谱B 连续频谱和离散频谱C 均为离散频谱D 均为连续频谱4、将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A f (at )B f (t –k 0)C f (t –t 0)D f (-t ) 5、下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ6、某系统的系统函数为 H ( s ),若同时存在频响函数 H ( j ω),则该系统必须满足条件( C )A 时不变系统B 因果系统C 稳定系统D 线性系统 7、设定某系统的系统函数为)2)(1()2(2)(-++=s s s s s H ,则其极点为( D )A 0、-2B -2C 1、-2D -1、28、对因果系统,只要判断H(s)的极点,即A(s)=0的根(称为系统特征根)在平面上的位置,即可判定系统是否稳定。
下列式中对应的系统可能稳定的是( D ) A s 3+4s 2-3s+2 B s 3+4s 2+3s C s 3-4s 2-3s-2 D s 3+4s 2+3s+29、有两个系统分别为(1)y (t)= cost·f(t),(2)y (t )= 4f 2(t) +3f(t)则这两个系统分别为( B )A 都是时变系统B (1)是时变系统 (2)是时不变系统C 都是时不变系统D (1)是时不变系统 (2)是时变系统 10、下列说法不正确的是( D )。
信号与系统期中考试答案
一、(15%)已知连续时间信号x t ()和离散时间信号x n []的波形图如下图所示。
画出下列各信号的波形图,并加以标注。
1. ()()11x t x t =-, 2. ()()221x t x t =-, 3. 3()()x x t ττ=-第三个自变量不为t !! 4. {}1[][][]e x n x n Even x n ==, 5. 2[][][1]x n x n n δ=-答案二、(25%)简要回答下列问题。
1. 推导离散时间信号[]0j n x n e ω=成为周期信号的条件(3%);若是周期信号,给出基波周期的求法(3%)。
答案:若为周期信号,则00()j nj n N e e n ωω+=∀,。
推出01j N e ω=,再推出02,,0N k k z k ωπ=∈≠。
得出02kNωπ=为有理分数。
0002min ,1k N N z k z k πω⎧⎫⎪⎪=∈∈≥⎨⎬⎪⎪⎩⎭,且2.指出离散时间信号[]j n x n e ω=频率取值的主值范围(2%),指出它的最低频率和最高频率(2%)。
答案2πωπωπ-≤<≤<或0。
min max 02,21),k k z k k z ωπωππ=∈=+∈或。
而或(。
3.断下列两个系统是否具有记忆性。
① ()()()()222y t x t x t =-,(1%)② [][][]0.51y n x n x n =--。
(1%)答案 ① 无记忆性 ② 有记忆性4. 简述连续时间和离散时间线性时不变(LTI )系统的因果性、稳定性与单位冲激响应(Unit impulse response )的关系(4%)。
答案因果性与()()()[][][]h t h t u t h n h n u n ==或互为充要条件。
稳定性与|()||[]|n h t dt h n +∞+∞=-∞-∞<+∞<+∞∑⎰或互为充要条件。
5. 很广泛一类因果系统可用常系数微分方程:()()00k k NM k kk k k k d y t d x t a b dt dt ===∑∑表征,画出该类系统的增量线性系统结构(2%),用该结构说明全响应的构成方法及每一部分的物理含义(4%),在什么条件下该类系统为LTI 系统(3%)? 答案()()()x i y t y t y t =+, ()()*()x y t x t h t =是仅由输入信号引起响应:零状态响应,()i y t 是仅由初始状态引起的响应:零输入响应。
信号与系统期中考试试卷(答案)
衢州学院 2015- 2016 学年 第 2 学期《信号与系统》期中试卷1.填空(每小题5分,共4题)(1)⎰+∞∞-=tdt t 0cos )(ωδ 1(2)⎰∞-=td ττωτδ0sin )( 0(3)已知系统函数)2)(1(1)(++=s s s H , 起始条件为:2)0(,1)0(='=--y y ,则系统的零输入响应y zi (t )= t t e e 2-34--(4)()()()t h t f t y *=,则()=t y 2 )2(*)2(2t h t f2. 绘出时间函数的波形图u (t )-2u (t -1)+ u (t -2)的波形图(10分)1t123f (t )-13.电容C 1与C 2串联,以阶跃电压源v (t ) =Eu (t )串联接入,试写出回路电流的表达式。
(10分)题号 一 二 三 四 五 六 七 八 九 十 总分 分数班级 姓名 学号dtt dv c c c c t i d i c c c c d i c d i c t v ttt )()()()(1)(1)(2121212121+=⇒+=+=⎰⎰⎰∞-∞-∞-ττττττ4.如下图所示,t<0时,开关位于“1”且已达到稳态,t=0时刻,开关由“1”转到“2”,写出t ≥0时间内描述系统的微分方程,求v (t )的完全响应。
(10分)解:设回路电流为)(t i ,则)()(t Ri t v =,由KVL 方程由:)()()()(1t V t Ri dtt di L dt t i C in t =++⎰∞- 整理后得到: dt t dV t v RC dt t dv dt t v d R L in )()(1)()(22=++ 代入参数得到: )t t v dtt dv dt t v d (10)(10)(10)(68522δ=++ 特征根: 423110*9.9,102-≈⨯-≈αα 初始值: 610)0()0(')0(',0)0(==⨯==++++L v LRi R v v 得到: t t e e t v 2131.10-31.10)(αα=5.信号f (t )如图1所示,求=)(ωj F F )]([t f ,并画出幅度谱)(ωj F 。
北邮信号与系统期中考试卷及解析
u(
100π)
f2(t ) e j
f (t) f1(t) f2(t)
F 1 u( 100π) u( 100π)ej
100
(2)画出频谱图
F
1 100
100π O 100π
1
O
1
四.(10分)已知信号
x(t
)
3cos
πt
π 4
2 cos
2πt
π 6
2 sin
4πt
f (t) F 1 u( 100π) u( 100π)
100 (2) 奈奎斯特抽样频率 fsmin 100Hz
奈奎斯特抽样间隔 Tsmax 0.01s
(3)频谱图
fs(t)
f
(t
)T
(t
)
1 Tmax
F ( ns )
n
smin 200π rad s Fs
1
smin 100π O 100π smin
时域波形
f(t) Ts max
在过零 点抽样!
o Tsmax
t
T t
(1) E
o Tsmax
t
fS(t)
(1)
o Tsmax
t
提示:利用傅里叶变换的对成性质
填空题10
已知能量信号 x(t) 的傅里叶变换为 X ( ),则如何用
x(t)和 X ( ) 表示帕塞瓦尔定理?
x(t) 2dt 1
2
X () d
2π
填空题11
f (t ) 为具有最高频率 fmax =1kHz的限带信号,则 f 2(t) 的奈奎斯特抽样频率是 4kHz f (t), f (t) 的奈奎斯特抽样频率是 2kHz 。
信号系统习题解答3版3
图 题 3-1
解:
f
= 5kHz ,τ
= 20μs, E = 10V ,T1
=
1 f
= 200µs , Ω1
=
2π
f
= 104 π
频谱图为
2 cn
1
5 20
50
80 100
150 f (kHz)
从频谱图看出,可选出 5、20、80kHz 的频率分量。
3-3 求图题 3-3 所示周期锯齿信号指数形式的傅里叶级数,并大致画出频谱图。
图 题 3-8
解法一:按定义求
∫ ∫ F( jΩ) =
∞ f (t )e− jΩtdt =
−∞
τ
2 τ − 2
E
cos
π τ
t
⋅ e−
jΩ tdt
由于 f (t)是偶函数,所以
∫ ∫ F( jΩ) =
τ
2 τ − 2
E
cos
π τ
t
cos Ωtdt
=
2
τ 2
E
cos
π
t
cos
Ωtdt
0
τ
∫=
τ 2 0
(6)
t −
ea
f
t () a
e−3t − e−5t (8) t
解:(1)
(1 +
2t )e −t
↔
1 +
s +1
2 (s + 1)
2
=
s+3 (s + 1) 2
(∵ t ↔
1 s2)
(4) e −(t+a) cos Ω 0t = e −a e −t cosΩ 0t
↔
信号与系统考试题及答案(共8套)
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统期中考试标准答案
《信号与系统》课程期中试卷参考答案及评分标准 第 1 页 共 5 页中国计量学院20 13 ~ 20 14 学年第 二 学期《 信号与系统 》课程 期中考试试卷参考答案及评分标准开课: 信息_ ,学生班级:12通信12 教师:一.(共20分)解: (1)4)(422sin )(42sin )(2)(====⎰⎰⎰∞+∞-∞+∞-∞+∞-dt t dt ttt dt t t t t f δδδ (4分)(2)方程不符合线性性质,故是非线性系统;(2分)响应与激励施加于系统的时刻无关,故是时不变系统。
(2分)(3)T 时刻的响应与T 时刻之前的激励有关,是非因果系统。
(4分)(4)KHz sT f s rad T 1010011)/(102021311===⨯==μππω(2分)KHz sB f 502011===μτ(2分) (5)因为|()|1/ω=常数H j ,所以不满足无失真传输条件。
(4分)二、1、解:(1))2(2)(2)(1--=t t t f εε (2分)(2))3()()(2--=t t t f εε (2分)(3) (4分)1《信号与系统》课程期中试卷参考答案及评分标准 第 2 页 共 5 页2、(8分)解:f(t)为周期信号,T=2,其基波角频率Ω=π。
在间隔(-1,1)内,f(t)表示为δ(t),f(t)的傅里叶级数展开式为 21)(1,)(11===⎰∑-ΩΩ-∞-∞=dt e t Tc ec t f tin n tjn n n δ其中, 所以,∑-∑=-=∑=∑=∞-∞=∞-∞=-∞-∞=-∞-∞=n n tjn n ntjn n nn n eF c ec F t f F )()(221][][)]([πωδπΩωπδΩΩ3、(8分)解:211)(j ωω+=Hωωϕa r c t a n )(-=)4sin(21sin π-⇒t t ,)sin(sin 632512-⇒t t ,)sin(sin 7231013-⇒t t所以,)723sin(101)632sin(51)4sin(21)( -+-+-=t t t t y π三.(12分) 解:⎪⎫⎛==⎰--)(21ωττωττωSa A dt Ae j F t j (4分)(4分)(2) 2 (4分)四、(10分)将f(t)展开成三角函数形式的傅立叶级数,考虑到f(t)偶对称性质,故正弦分量bn 全为零,其中:12/2/21T ωπππ===,τπ=,E A = !!!!第 3 页共 5 页故:01/2a = ,1sin(/2)2*/2A A a πππππ== 3sin(3/2)2*3/23A A a πππππ==等,如下,其它偶次项0n a =)7cos 715cos 513cos 31(cos 22)( +-+-+=t t t t A A t f π (5分) 考虑到该系统是一个带通滤波器,只将2到7 rad/s 的频率成分保留,故除3,5,7三个频率分量保留外,其它分量全部滤除!!又因为该系统的通带内的增益为1,所以输出信号的直接就是f(t)的三个频率分量!!如下所示:)7c o s 715c o s 513c o s 31(2)(t t t A t f +--=π (5分)五、解:1《信号与系统》课程期中试卷参考答案及评分标准 第 4 页 共 5 页(8分)2、将y(t)与2cos30000πt 相乘,得到信号的频谱为:将2y(t) cos30000πt 经过截止频率为15kHz 的低通滤波器,则可以恢复到m(t)的频谱,即恢复为m(t).所以解密器与加密器的结构完全相同。
信号与系统考试题及答案
信号与系统考试题及答案# 信号与系统考试题及答案一、选择题(每题2分,共20分)1. 信号f(t)=3cos(2πt + π/3)的频率是:A. 1HzB. 2HzC. 3HzD. 4Hz答案:B2. 系统是线性时不变系统(LTI),如果满足以下条件:A. 系统对所有信号都有响应B. 系统对输入信号的线性组合有响应C. 系统对时间平移的输入信号有响应D. 系统对所有条件都有响应答案:B3. 如果一个信号是周期的,那么它的傅里叶级数表示中包含:A. 只有直流分量B. 只有有限个频率分量C. 无限多个频率分量D. 没有频率分量答案:B4. 拉普拉斯变换可以用来分析:A. 仅连续时间信号B. 仅离散时间信号C. 连续时间信号和离散时间信号D. 仅离散时间系统答案:C5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. 1/tD. e^(-st)答案:A6. 一个系统是因果系统,如果:A. 它的脉冲响应是零,对于所有t<0B. 它的输出总是零C. 它的输出在任何时候都不依赖于未来的输入D. 所有上述条件答案:A7. 傅里叶变换可以用来分析:A. 仅周期信号B. 非周期信号C. 周期信号和非周期信号D. 仅离散信号答案:B8. 一个信号x(t)通过一个线性时不变系统,输出y(t)是:A. x(t)的时移版本B. x(t)的反转版本C. x(t)的缩放版本D. x(t)的卷积答案:D9. 如果一个信号的傅里叶变换存在,那么它是:A. 周期的B. 非周期的C. 有限能量的D. 有限功率的答案:C10. 系统的频率响应H(jω)是输入信号X(jω)和输出信号Y(jω)的:A. 乘积B. 差C. 比值D. 和答案:C二、简答题(每题10分,共30分)1. 解释什么是卷积,并给出卷积的基本性质。
答案:卷积是信号处理中的一个重要概念,表示一个信号与另一个信号的加权叠加。
具体来说,如果有两个信号f(t)和g(t),它们的卷积定义为f(t)与g(-t)的乘积的积分,对所有时间t进行积分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统期中考试答案
一、共八小题 1、
⎰
-=++2
3
2
)2()(dt t t t δ 2
⎰
∞
-=-+t
d ττδτ)2()1( 3u(t-2)
3、判别下列系统是否线性。
其中x (t 0)为初始状态,f (t )为输入。
)(7)(d )(d 3
)(t f t ty t
t y a =+
线性系统
)(6)(5)( )(0t tf t x t y b +=
线性系统
4、求下列信号的奈奎斯特抽样频率和抽样间隔 (1))70100cos(︒-t π
最大的角频率ωm=100π rad/s
奈奎斯特抽样频率fs=2fm=100Hz 奈奎斯特抽样间隔Ts=1/fs=0.01s; (2) )20()100(2t sa t sa ππ-
最大的角频率ωm=100π rad/s
奈奎斯特抽样频率fs=2fm=100Hz 奈奎斯特抽样间隔Ts=1/fs=0.01s; 5、一个系统的系统频域函数ωωω3sin 23cos 2)(j j H -=,该系统是否为无失真传输系统?
ω
ωωω323s i n 23c o s 2)(j e
j j H -=-=,是无失真传输系统 6、已知一线性系统的输入)1(3)(-=t t f δ,系统的单位冲激响应)(2)(3t u e t h t -=, 求系统的零状态响应。
零状态响应)1(3)(2*)1(3)(*)()()1(33-=-==---t u e t u e t t h t f t y t t f δ
7、已知一线性系统当输入)(2)(t u t f =时,系统的零状态响应)(2)(3t u e t y t f -=,当输入)1()(2)(--=t u t t f δ时, 求系统的零状态响应。
系统的零状态响应是: )1()(6)(22
)]
1(2[)](2[)()
1(33)
1(33---=--
=
------t u e
t u e
t t u e
t u e
dt d t y t t
t t
f δ
8、已知某一理想低通滤波器系统函数⎩
⎨⎧><=- 50|| 050|| 5.0)(2πωπωωωj e j H ,系统的输
入)30100cos(4)1020cos(2)(︒-+︒+=t t t f ππ,求系统的零状态响应。
解:输入f(t)中的)30100cos(4︒-t π部分不能通过理想低通滤波器,
理想低通滤波器在ω<50π时能做到无失真传输,此时零状态响应和输入之间满足)3(5.0)(-=t f t y f ,因而系统的零状态响应)10)3(20cos()( +-=t t y f π。
二、(1) 已知系统的微分方程是)()(2d )(d 3
d )(d 2
2
t f t y t
t y t
t y =++,求系统的传输算子
和系统频域传递函数。
系统的传输算子2
31)(2
++=
p p p H
系统频域传递函数2
3)(1
)(2
++=
ωωωj j j H
(2)已知f(t)的傅立叶变换是ω
ω
ω211)(2
-∠+=j F ,请画出信号f(t)的振幅频
谱和相位频谱图。
振幅频谱2
11|)(|ω
ω+=
j F 相位频谱ωωϕ2)(-=
振幅频谱图如下: 相位频谱图如下:
w
1/(w 2 + 1)1/2
-4-2
024
w
-2 w
(3)已知)()(2)(t t u t f δ-+=,求f(t-1)的傅立叶变换。
f(t-1)的傅立叶变换是:ω
ω
ω
ωπδωπδ---++e
e
j )1)(()(2
三、共三小题 1、传输算子
4
431
11)
1//1(33
)(2
++=
+⨯
+
+=
p p p p p p p H
2、单位冲激响应)()()()(52t u e e t t h t t --+-=δ
3、2
)
cos 1(4)(ω
ωω-=j F
四、已知系统的微分方程是
)
()(2d )(d t f t y t
t y =+,输入)()(t u e t f t -=,分别用时域
分析法和频域分析法求零状态响应y f (t)。
时域分析法用卷积求响应,即)(][)(*)()(2t u e e t h t f t y t t f ---== 频域分析法用傅立叶变换响应,即:
先求得)()()(ωωωj H j F j Y f = 再作傅立叶反变换)(][)(2t u e e t y t t f ---= 五、已知周期信号f(t)周期是T=3,它在一个周期内的波形如图所示, (1) 求其指数形式的傅立叶级数,并写出它的一次和二次谐波: (2) 求其傅立叶变换
(1) f(t)的周期T=3,基波角频率ω1=2π/T=2π/3 rad/s
指数形式的傅立叶级数系数
]2)1([3
1)(13
3
2
111⎰⎰
⎰
---+
-=
=
dt e
dt e
t dt e
t f T
F t
jn t
jn T
t
jn n ωωωδ
][32311
1
231
ωωωn j n j n e
e
n j
F ---+=
1]2)1([3
1)(13
3
2
0=+
-=
=
⎰⎰
⎰
dt dt t dt t f T
F T
δ
其指数形式的傅立叶级数∑∞
-∞
==
n t
jn n
e
F
t f 1)(ω
3
/223
/23231
13878.0][3
/2323
1][323
11
1
∠=-⨯+=-+=
⨯-⨯---ππωωπωj j j j e
e
j
e
e
j F
一次谐波是:)38cos(278.00
1+⨯t ω
3
/243
/2622231
251
31.0][3
/2623
1][2323
11
1
∠=-⨯+=
-⨯+=
⨯-⨯-⨯-⨯-ππωωπωj j j j e
e
j
e
e
j
F 二次谐波是:)512cos(231.00
1+⨯t ω
(2) 其傅立叶变换
)(2)(1
∑∞
-∞
=-=n n
n F j F ω
ωδπ
ω
)(2)(]}[323
1{
20
1231
1
1
ωπδωωδωπ
ωω+--+=∑
∞
≠-∞=--n n n j n j n e
e
n j。