6约束满足问题解析
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.下列命题不正确的是A.B.C.D.【答案】D【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【答案】A【解析】略4. 2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。
国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。
设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。
求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。
【答案】(千米/小时)时,取得最小值为8(小时)【解析】由题可得关系式为从而当且仅当,即(千米/小时)时,取得最小值为8(小时)5.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
高考数学考点24简单的线性规划试题解读与变式(new)
考点24 简单的线性规划【考纲要求】1.掌握确定平面区域的方法(线定界、点定域).2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.【命题规律】简单的线性规划是高考题中一定出现的,一般是在选择题或填空题中考查,有时会出现解答题中于其他知识结合考查.【典型高考试题变式】(一)求目标函数的最值例1。
【2017课标1,文7】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为()A.0 B.1 C.2D.3【解析】如图,作出不等式组表示的可行域,则目标函数z x y=+经过(3,0)A时z取得最大值,故max 303z=+=,故选D.【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.【变式1】【改变结论】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最小值为()A .0B .1C .2D .3【答案】B【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(1,0)B 时z 取得最小值,故min 101z =+=,故选B .【变式2】【改变条件】变量x ,y 满足约束条件错误!则z =x +y 的最大值是( ) A .4- B .4 C .2 D .6 【答案】B(二)非线性目标函数的最值例2。
【2016高考山东文数】若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是( )A.4 B 。
9 C 。
10 D.12 【解析】画出可行域如图所示,点31A -(,)到原点距离最大,所以 22max ()10x y +=,选C 。
最优解问题(解析版)
最优解问题(解析版)在优化问题中,我们经常遇到一个重要的概念,即最优解。
最优解是指在给定的约束条件下,能够最大化或最小化目标函数的解。
解决最优解问题的关键在于找到满足约束条件的解,并确定其中哪一个是最佳的。
问题分析解决最优解问题的第一步是进行问题分析,了解问题的背景和目标。
首先,我们需要明确问题的约束条件和目标函数。
约束条件是指解决该问题时必须遵守的条件,目标函数是我们要最大化或最小化的数学表达式。
接下来,我们需要确定问题的求解方法。
最优解问题通常可以分为离散和连续两种类型。
离散问题的解空间是有限的,而连续问题的解空间则是无限的。
解决方法针对离散问题,我们可以使用穷举法或动态规划等方法来寻找最优解。
穷举法是一种简单直接的方法,它遍历所有可能的解,并通过比较目标函数的值来确定最优解。
动态规划则是通过将问题分解为子问题,并利用子问题的最优解来推导出整体的最优解。
对于连续问题,我们可以使用数值优化方法来求解最优解。
数值优化方法通过迭代计算来逐步逼近最优解。
常用的数值优化方法包括梯度下降法和牛顿法等。
结论最优解问题是优化问题中的一个重要概念,解决最优解问题需要进行问题分析,并选择合适的求解方法。
对于离散问题,可以使用穷举法或动态规划;对于连续问题,可以使用数值优化方法。
通过合理的解决方法和对约束条件的准确把握,我们可以找到最优解,从而达到问题的最优化目标。
注意:以上内容为一般情况下的解决方法,具体问题的最优解求解可能需要根据特定情况进行调整和优化。
约束问题的最优化方法
m
⑤ .Φ ( x, r ) = f ( x) − r ∑ ln[− g u ( x)]
(k )
其中:惩罚(加权)因子 降低系数 c:
r ( 0 ) > r (1) > ....r ( k )
0< c <1
r ( k −1) ⋅ c = r ( k )
xk * → x *
当lim r ( k ) → 0
x ∈ D ⊂ Rn s.t. g u ( x ) ≥ 0, u = 1,2,..., p hv ( x ) = 0, v = 1,2,..., q min F ( x )
一. 约束优化问题解法分类: 约束优化方法按求解原理的不同可以分为直接法和间接法两类。
直接解法:随机方向搜索法、复合形法、可行方向法
其中:g u ( x) ≥ 0, u = 1,2,...m
③ .Φ ( x, r ) = f ( x) − ∑ ru ( k )
(k ) u =1
m
1 g u ( x)
④ .Φ ( x, r ) = f ( x) + r
(k )
(k )
(k )
1 ∑ 2 u =1 [ g u ( x )]
m u =1
k →∞
则Φ ( x, r ( k ) ) → f ( x) ,
) x12 + x22 例: 用内点法求 min f ( x=
s.t. g ( x ) = 1 − x1 ≤ 0
的约束最优解。
2 解: 首先构造内点惩罚函数:φ ( x , r ) = x12 + x2 − r k ln( x1 − 1)
(k ) u =1 m
lim r2 H [hv ( x ( k ) )] = 0
高一数学线性规划试题答案及解析
高一数学线性规划试题答案及解析1.若实数、满足约束条件则的最大值是_________【答案】3【解析】画出可行域如下图所示,为目标函数在轴上的截距,画出的图像如图中虚线部分,平移直线过点时有最大值3.故答案为3.【考点】线性规划的应用.2.在直角坐标系中,已知点,,,点在三边围成的区域(含边界)上,且.(Ⅰ)若,求;(Ⅱ)用表示,并求的最小值.【答案】(1),(2)的最小值-1.【解析】(1)向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的的坐标,则应先求出向量的坐标,解题过程中要注意方程的思想的运用及运算法则的正确使用;(2)利用线性规划求目标函数的最值一般步骤:一画、二移、三求,其关键是准确的作出可行域,理解目标函数的意义;(3)在线性约束条件下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题和填空题时可以根据可行域的顶点直接进行检验.试题解析:解(Ⅰ),∴....................5分由,,,8分设,直线过点时,取得最小值-1,即的最小值-1【考点】(1)向量的坐标表示;(2)线性目标函数的最值.3.已知点(3,1)和(- 4,6)在直线3x-2y+a=0的两侧,则a的取值范围是()A.a<-7或 a>24B.a="7" 或 a=24C.-7<a<24D.-24<a<7【答案】C【解析】由线性规划相关知识:两点位于直线的两侧,则一侧使得直线方程大于零,一侧使得直线方程小于零.即有,故选C.【考点】线性规划.4.实数满足,如果目标函数的最小值为,则实数b的值为_____ .【答案】8【解析】绘制平面区域可得:要使由最小值-2,则直线,在轴上有最大截距为2,且经过点B,由,又因B也在上,故有.【考点】线性规划.5.已知变量满足约束条件,若的最大值为,则实数.【答案】-1或.【解析】作出约束条件所对应的可行域:,由于的最大值为,所以直线必过点A(-2,3)或点B(4,3),因此有解得或,故应填入:-1或.【考点】线性规划.6.设动点满足,则的最大值是.【答案】100【解析】先画出可行域,根据目标函数可知最优解为C(20,0),带入目标函数得最大者为100【考点】线性规划问题7.已知变量,满足约束条件,则的最小值为()A.B.C.D.【答案】B.【解析】依题意可画出不等式组所表示的的可行域,可知直线与的交点,作出直线:,平移直线,则可知当,时,的最小值为.【考点】线性规划.8.设变量、满足约束条件,则z=2x+3y的最大值为【答案】18【解析】变量x,y满足约束条件,表示的可行域为如图,所以z=2x+3y的最大值就是经过M即的交点(3,4)时,所以最大值为:3×2+4×3=18.故答案为:18.【考点】线性规划的应用.9.不等式组表示的平面区域的面积为 .【答案】9【解析】由题意得:平面区域为一个三角形及其内部,其中因此面积为【考点】线性规划求面积10.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.求该公司从每天生产的甲、乙两种产品中,可获得的最大利润.【答案】该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元.【解析】设公司每天生产甲种产品x桶,乙种产品y桶,公司共可获得利润为z元/天,则由已知,得z=300x+400y.且画可行域如图所示,目标函数z=300x+400y可变形为解方程组得,即A(4,4).所以,Z=1200+1600=2800.所以,该公司从每天生产的甲、乙两种产品中,可获得的最大利润为2800元. 9分【考点】简单线性规划的应用点评:中档题,作为应用问题,解简单线性规划问题,要遵循“审清题意,设出变量,布列不等式组,画,移,解,答”等步骤。
约束优化方法的讲解
2)按经验公式
r0 f x0 1 0 g x j 1 j
m
计算r0 值。这样选取的r0 ,可以是惩罚函数中的障 碍项和原目标函数的值大致相等,不会因障碍项的值 太大则其支配作用,也不会因障碍项的值太小而被忽 略掉。 3.惩罚因子的缩减系数c的选取 在构造序列惩罚函数时,惩罚因子r是一个逐次递 减到0的数列,相邻两次迭代的惩罚因子的关系为:
(k=0,1,2,…)
逐步趋向最优解,直到满足终止准则才停止迭代。
直接解法的原理简单,方法实用,其特点是:
1)由于整个过程在可行域内进行,因此,迭代计算不论 何时终止,都可以获得比初始点好的设计点。 2)若目标函数为凸函数,可行域为凸集,则可获得全域 最优解,否则,可能存在多个局部最优解,当选择的初始 点不同,而搜索到不同的局部最优解。 3)要求可行域有界的非空集。
a) 可行域是凸集;b)可行域是非凸集
间接解法的求解思路:
将约束函数进行特殊的加权处理后,和目标函数结合起来, 构成一个新的目标函数,即将原约束优化问题转化为一个 或一系列的无约束优化问题。
x, 1 , 2 f x 1G hk x g j x 2 H
当迭代点离约束边界越远时,惩罚项愈大,这可看 成是对迭代点不满足约束条件的一种惩罚。
例6-6 用外点法求问题
hk x 0
浙江2020版高考数学第二章不等式专题突破一高考中的不等式问题讲义(含解析)
高考专题突破一 高考中的不等式问题题型一 含参数不等式的解法例1解关于x 的不等式x 2+ax +1>0(a∈R ). 解 对于方程x 2+ax +1=0,Δ=a 2-4.(1)当Δ>0,即a >2或a <-2时,方程x 2+ax +1=0有两个不等实根x 1=-a -a 2-42,x 2=-a +a 2-42,且x 1<x 2,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a -a 2-42或x >-a +a 2-42; (2)当Δ=0,即a =±2时,①若a =2,则原不等式的解集为{x |x ≠-1}; ②若a =-2,则原不等式的解集为{x |x ≠1};(3)当Δ<0,即-2<a <2时,方程x 2+ax +1=0没有实根,结合二次函数y =x 2+ax +1的图象,知此时原不等式的解集为R .思维升华解含参数的一元二次不等式的步骤(1)若二次项含有参数应讨论是否等于0,小于0,和大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)当方程有两个根时,要讨论两根的大小关系,从而确定解集形式.跟踪训练1 (1)若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是________. 答案 3解析 由题意可知-7和-1为方程ax 2+8ax +21=0的两个根. ∴-7×(-1)=21a,故a =3.(2)若关于x 的不等式|x -1|+|x +m |>3的解集为R ,则实数m 的取值范围是__________. 答案 (-∞,-4)∪(2,+∞)解析 依题意得,|x -1|+|x +m |≥|(x -1)-(x +m )|=|m +1|,即函数y =|x -1|+|x +m |的最小值是|m +1|,于是有|m +1|>3,m +1<-3或m +1>3,由此解得m <-4或m >2.因此实数m 的取值范围是(-∞,-4)∪(2,+∞).题型二 线性规划问题例2(2018·浙江五校联考)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,x -y ≥-1,2x -y ≤4,且z =ax +y 的最大值为16,则实数a =________,z 的最小值为________. 答案 2 1解析 如图,作出不等式组所表示的可行域(△ABC 及其内部区域).目标函数z =ax +y 对应直线ax +y -z =0的斜率k =-a .(1)当k ∈(-∞,1],即-a ≤1,a ≥-1时,目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧ 2x -y =4,x -y =-1,解得A (5,6),故z 的最大值为5a +6,即5a +6=16,解得a =2.(2)当k ∈(1,+∞),即-a >1,a <-1时,目标函数在点C 处取得最大值,由⎩⎪⎨⎪⎧x +2y =2,x -y =-1,解得C (0,1),故z 的最大值为0×a +1=1,不符合题意. 综上,a =2.数形结合知,当直线z =2x +y 经过点C 时,z 取得最小值,z min =2×0+1=1. 思维升华1.利用线性规划求目标函数的基本步骤为一画二移三求,其关键是准确作出可行域,理解目标函数的意义. 2.常见的目标函数有(1)截距型:如z =-2x +y ,z =2y4x ,z =OP →·OM →(其中M (x ,y )为区域内动点,P (-2,1)),等等.(2)距离型:如z =(x -2)2+y 2,z =|2x -y |,等等.(3)斜率型:如z =y +1x ,z =x +y +1x ,z =x y +1,z =y +1x +x y +1=x 2+(y +1)2xy +x ,等等.(4)二次曲线型:如z =xy ,z =y 2x ,z =x 22+y 2,等等.3.解题时要注意可行解是区域的所有点还是区域内的整点.跟踪训练2 (1)(2018·湖州五校模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1>0,x +y -3<0,y >0,则z =2x-y 的取值范围为( ) A .(-6,-1) B .(-8,-2) C .(-1,8) D .(-2,6)答案 D解析 方法一 作出约束条件所表示的可行域如图中阴影部分所示.作出直线y =2x ,平移直线,直线z =2x -y 在点B (-1,0)处的取最小值为-2,在点C (3,0)处的取最大值为6,所以z =2x -y 的取值范围为(-2,6).方法二 三条直线两两联立求出的交点坐标分别是(1,2),(-1,0),(3,0),分别代入z =2x -y 求值,得0,-2,6,所以z =2x -y 的取值范围为(-2,6). (2)若x ,y 满足⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5,则不等式组表示的平面区域的面积为________,z =(x +1)2+(y -1)2的最小值为________. 答案 30 95解析 作出⎩⎪⎨⎪⎧2x +5y ≥0,2x -y ≥0,x ≤5表示的平面区域如图中阴影部分(含边界)所示,则不等式组表示的平面区域的面积为12×5×2+12×10×5=30.z =(x +1)2+(y -1)2表示可行域内的点(x ,y )与点M (-1,1)之间的距离的平方,数形结合易知,z =(x +1)2+(y -1)2的最小值为点M (-1,1)到直线2x -y =0的距离的平方,即z min =|2×(-1)-1|2[22+(-1)2]2=95. 题型三 基本不等式的应用例3 (1)已知x 2+4xy -3=0,其中x >0,y ∈R ,则x +y 的最小值是( ) A.32B .3C .1D .2 答案 A解析 由x 2+4xy -3=0,得y =3-x24x,即有x +y =x +3-x 24x =34⎝ ⎛⎭⎪⎫x +1x .∵x >0,∴x +1x ≥2,即x +y ≥32,当且仅当x =1x ,即x =1,y =12时,x +y 取得最小值32.(2)已知a >0,b >0,c >1,且a +b =1,则⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1的最小值为______.答案 4+2 2解析 ∵a 2+1ab =a 2+(a +b )2ab =2a 2+2ab +b 2ab=2a b +ba+2≥22a b ·ba+2=22+2,当且仅当⎩⎪⎨⎪⎧2a b =b a,a +b =1,即⎩⎨⎧a =2-1,b =2-2时等号成立,∴⎝ ⎛⎭⎪⎫a 2+1ab -2·c +2c -1≥22c +2c -1=22(c -1)+2c -1+2 2≥222(c -1)·2c -1+22=4+22, 当且仅当22(c -1)=2c -1,即c =1+22时,等号成立. 综上,所求最小值为4+2 2. 思维升华利用基本不等式求最值的方法(1)利用基本不等式求最值的关键是构造和为定值或积为定值,主要思路有两种:①对条件使用基本不等式,建立所求目标函数的不等式求解.②条件变形,进行“1”的代换求目标函数最值.(2)有些题目虽然不具备直接应用基本不等式求最值的条件,但可以通过添项、分离常数、平方等手段使之能运用基本不等式.常用的方法还有:拆项法、变系数法、凑因子法、分离常数法、换元法、整体代换法.跟踪训练3 (1)已知xy =1,且0<y <22,则x 2+4y2x -2y 的最小值为( )A .4B.92C .22D .4 2答案 A解析 由xy =1且0<y <22,可知x >2, 所以x -2y >0.x 2+4y 2x -2y =(x -2y )2+4xy x -2y =x -2y +4x -2y≥4, 当且仅当x =3+1,y =3-12时等号成立. (2)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________. 答案233解析 由x 2+y 2+xy =1,得1=(x +y )2-xy , ∴(x +y )2=1+xy ≤1+(x +y )24,解得-233≤x +y ≤233(当且仅当x =y =33时取得最大值),∴x +y 的最大值为233.题型四 绝对值不等式的应用例4 (1)(2018·浙江五校联考)已知a ∈R ,则“a ≤9”是“2|x -2|+|5+2x |<a 无解”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 2|x -2|+|5+2x |=|2x -4|+|5+2x | ≥|2x -4-5-2x |=9,若2|x -2|+|5+2x |<a 无解,则a ≤9,同样若a ≤9,则2|x -2|+|5+2x |<a 无解, 所以“a ≤9”是“2|x -2|+|5+2x |<a 无解”的充要条件.(2)(2019·温州模拟)已知a ,b ,c ∈R ,若|a cos 2x +b sin x +c |≤1对x ∈R 恒成立,则|a sin x +b |的最大值为________. 答案 2解析 |a cos 2x +b sin x +c |≤1, 即|a sin 2x -b sin x -(a +c )|≤1,分别取sin x =1,-1,0,可知⎩⎪⎨⎪⎧|b +c |≤1,|b -c |≤1,|a +c |≤1,所以|a +b |=|(a +c )+(b -c )|≤|a +c |+|b -c |≤2, 且|a -b |=|(a +c )-(b +c )|≤|a +c |+|b +c |≤2.所以max{|a sin x +b |}=max{|a +b |,|a -b |}≤2,当a =2,b =0,c =-1时,取等号. 思维升华(1)解绝对值不等式可以利用绝对值的几何意义,零点分段法、平方法、构造函数法等.(2)利用绝对值三角不等式可以证明不等式或求最值.跟踪训练4 (1)已知函数f (x )=|x -5|+|x +3|+|x -3|+|x +5|-c ,若存在正实数m ,使f (m )=0,则不等式f (x )<f (m )的解集是________.答案 (-m ,m )解析 由|-x -5|+|-x +3|+|-x -3|+|-x +5|=|x -5|+|x +3|+|x -3|+|x +5|可知,函数f (x )为偶函数,当-3≤x ≤3时,f (x )取最小值16-c .结合题意可得c ≥16.由f (m )=0得f (x )<0,即|x -5|+|x +3|+|x -3|+|x +5|-c <0,结合图象(图略)可知,解集为(-m ,m ).(2)不等式|x -2|+|x +1|≥a 对于任意x ∈R 恒成立,则实数a 的取值范围为__________. 答案 (-∞,3]解析 当x ∈(-∞,-1]时,|x -2|+|x +1|=2-x -x -1=1-2x ≥3;当x ∈(-1,2)时,|x -2|+|x +1|=2-x +x +1=3; 当x ∈[2,+∞)时,|x -2|+|x +1|=x -2+x +1=2x -1≥3,综上可得|x -2|+|x +1|≥3,∴a ≤3.1.(2018·宁波期末)若a ,b ∈R ,且a <b <0,则下列不等式成立的是( ) A .2a -b>1B.1a -1>1b -1C .a 3>b 3D .a +|b |>0答案 B解析 由a <b <0得a -1<b -1<0,则(a -1)(b -1)>0,所以(a -1)·1(a -1)(b -1)<(b -1)·1(a -1)(b -1),即1a -1>1b -1,故选B.2.(2018·浙江绍兴一中期末)若关于x 的不等式|x +2|+|x -a |<5有解,则实数a 的取值范围是( ) A .(-7,7) B .(-3,3) C .(-7,3) D .∅答案 C解析 不等式|x +2|+|x -a |<5有解,等价于(|x +2|+|x -a |)min <5,又因为|x +2|+|x -a |≥|(x +2)-(x -a )|=|2+a |,所以|2+a |<5,-5<2+a <5,解得-7<a <3,即实数a 的取值范围为(-7,3),故选C.3.设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ x -y -1≤0,3x -y +1≥0,3x +y -1≤0,x ,y ∈R,则M 表示的平面区域的面积是( )A.2B.32C.322D .2答案 B解析 由题意,M 表示的平面区域是以A (0,1),B (-1,-2),C ⎝ ⎛⎭⎪⎫12,-12为顶点的三角形及其内部,如图中阴影部分所示(含边界),所以其面积为12×2×⎝ ⎛⎭⎪⎫12+1=32.4.(2018·杭州质检)若正数x ,y 满足2x +y -3=0,则2x +1y的最小值为( )A .2B .3C .4D .5 答案 B解析 由2x +y -3=0,得2x +y =3, 所以2x +1y =13(2x +y )⎝ ⎛⎭⎪⎫2x +1y =13⎝ ⎛⎭⎪⎫5+2x y +2y x≥13⎝⎛⎭⎪⎫5+2 2x y·2y x =3,当且仅当2x y =2y x,即x =y =1时等号成立,故选B.5.(2018·金华十校调研)设x ,y ∈R ,下列不等式成立的是( ) A .1+|x +y |+|xy |≥|x |+|y | B .1+2|x +y |≥|x |+|y | C .1+2|xy |≥|x |+|y | D .|x +y |+2|xy |≥|x |+|y |答案 A解析 对于选项B ,令x =100,y =-100,不成立;对于选项C ,令x =100,y =1100,不成立;对于选项D ,令x =13,y =-12,不成立,故选A.6.(2018·杭州学军中学模拟)设关于x ,y 的不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +m ≤0,y -m ≥0表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0>3,则实数m 的取值范围是( ) A .(-1,0) B .(0,1) C .(-1,+∞) D .(-∞,-1)答案 D解析 作出满足不等式组的平面区域,如图中阴影部分所示(包含边界),当目标函数z =x -2y 经过直线x +m =0与y -m =0的交点时取得最大值,即z max =-m -2m =-3m ,则根据题意有-3m >3,即m <-1,故选D.7.(2018·浙江舟山中学月考)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax+by (a >0,b >0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( ) A .5B .4C.5D .2 答案 B解析 画出满足约束条件的可行域如图中阴影部分(包含边界)所示,可知当目标函数过直线x -y -1=0与2x -y -3=0的交点A (2,1)时取得最小值,所以有2a +b =2 5.因为a 2+b 2表示原点(0,0)到点(a ,b )的距离的平方,所以a 2+b 2的最小值为原点到直线2a +b -25=0的距离,即(a 2+b 2)min =|-25|22+12=2,所以a 2+b 2的最小值是4,故选B.8.(2018·嘉兴教学测试)若直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,则2a +3b 的取值范围是( ) A .(-7,1) B .(-3,5) C .(-7,3) D .R答案 C解析 不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域是以A (1,1),B (-1,1),C (0,-1)为顶点的三角形区域(包含边界);因为直线ax +by =1与不等式组⎩⎪⎨⎪⎧y ≤1,2x -y -1≤0,2x +y +1≥0表示的平面区域无公共点,所以a ,b满足⎩⎪⎨⎪⎧a +b -1>0,-a +b -1>0,-b -1>0或⎩⎪⎨⎪⎧a +b -1<0,-a +b -1<0,-b -1<0,故点(a ,b )在如图所示的三角形区域(除边界且除原点)内,所以2a+3b 的取值范围为(-7,3),故选C.9.(2019·诸暨期末)不等式-x 2+2x +3<0的解集为________;不等式|3-2x |<1的解集为________.答案 (-∞,-1)∪(3,+∞) (1,2)解析 依题意,不等式-x 2+2x +3<0,即x 2-2x -3>0,解得x <-1或x >3,因此不等式-x 2+2x +3<0的解集是(-∞,-1)∪(3,+∞);由|3-2x |<1得-1<3-2x <1,1<x <2,所以不等式|3-2x |<1的解集是(1,2).10.(2018·宁波期末)关于实数x 的不等式x 2-4x >1a+3在[0,5]上有解,则实数a 的取值范围为______________.答案 (-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞ 解析 由x 2-4x >1a +3得x 2-4x -3>1a ,则问题等价于1a小于x 2-4x -3在[0,5]上的最大值,又因为x 2-4x -3=(x -2)2-7,所以当x =5时,x 2-4x -3取得最大值2,所以1a<2,解得a <0或a >12,所以a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫12,+∞.11.(2018·嘉兴测试)已知f (x )=x -2,g (x )=2x -5,则不等式|f (x )|+|g (x )|≤2的解集为______________;|f (2x )|+|g (x )|的最小值为________.答案 ⎣⎢⎡⎦⎥⎤53,3 3 解析 由题意得|f (x )|+|g (x )|=|x -2|+|2x -5|=⎩⎪⎨⎪⎧7-3x ,x <2,-x +3,2≤x ≤52,3x -7,x >52,所以|f (x )|+|g (x )|≤2等价于⎩⎪⎨⎪⎧7-3x ≤2,x <2或⎩⎪⎨⎪⎧-x +3≤2,2≤x ≤52或⎩⎪⎨⎪⎧3x -7≤2,x >52,解得53≤x ≤3,|f (2x )|+|g (x )|=|2x -2|+|2x -5|=⎩⎪⎨⎪⎧7-4x ,x <1,3,1≤x ≤52,4x -7,x >52,|f (2x )|+|g (x )|的图象如图,则由图象易得|f (2x )|+|g (x )|的最小值为3.12.(2018·浙江镇海中学模拟)已知正数x ,y 满足1x +2y =1,则1x +1+2y +1的最大值是________. 答案 34解析 设u =1x ,v =1y ,则问题转化为“已知正数u ,v 满足u +2v =1,求u u +1+2vv +1的最大值”.uu +1+2v v +1=3-⎝ ⎛⎭⎪⎫1u +1+2v +1=3-⎝⎛⎭⎪⎫1u +1+2v +1·14[(u +1)+2(v +1)]=3-14⎣⎢⎡⎦⎥⎤5+2(v +1)u +1+2(u +1)v +1≤3-14(5+4)=34. 当且仅当2(v +1)u +1=2(u +1)v +1,即u =v =13时,取等号.13.(2018·浙江金华十校联考)已知实数x ,y ,z 满足⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5,则xyz 的最小值为________. 答案 911-32 解析 将⎩⎪⎨⎪⎧xy +2z =1,x 2+y 2+z 2=5变形为⎩⎪⎨⎪⎧xy =1-2z ,x 2+y 2=5-z 2,由|xy |≤x 2+y 22知,|1-2z |≤5-z22,即-5-z 22≤1-2z ≤5-z 22,解得2-7≤z ≤11-2.所以xyz =(1-2z )z =-2z 2+z 在[2-7,11-2]上的最小值为911-32.14.(2018·宁波模拟)若6x 2+4y 2+6xy =1,x ,y ∈R ,则x 2-y 2的最大值为________. 答案 15解析 方法一 设m =x +y ,n =x -y ,则问题转化为“已知4m 2+mn +n 2=1,求mn 的最大值”.由基本不等式,知1=mn +4m 2+n 2≥mn +4|mn |,所以-13≤mn ≤15,当且仅当n =2m ,即x =-3y 时,取得最大值15.方法二 (齐次化处理)显然要使得目标函数取到最大值,x ≠0.令z =x 2-y 2=x 2-y 26x 2+4y 2+6xy=1-⎝ ⎛⎭⎪⎫y x26+4·⎝ ⎛⎭⎪⎫y x 2+6·y x ,设t =y x ,则z =1-t 26+4t 2+6t,则(4z +1)t 2+6zt +6z -1=0对t ∈R 有解.当z=-14时,t =-53.当z ≠-14时,Δ=36z 2-4(4z +1)(6z -1)≥0,解得-13≤z ≤15.当t =-3z 4z +1=-13时取最大值.方法三 1=6x 2+4y 2+6×x3×3y ≥6x 2+4y 2-6×x 23+3y 22=5x 2-5y 2,所以x 2-y 2≤15,当且仅当x =-3y 时取等号.15.(2019·浙江嘉兴一中模拟)已知点P 是平面区域M :⎩⎨⎧x≥0,y ≥0,3x +y -3≤0内的任意一点,则P 到平面区域M 的边界的距离之和的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤32,3 解析 设平面区域M :⎩⎨⎧x ≥0,y≥0,3x +y -3≤0为△ABO 区域(包含边界),由题意,|AO |=1,|BO |=3,|AB |=2,P 到平面区域M 的边界的距离之和d 就是P 到△ABO 三边的距离之和,设P 到边界AO ,BO ,AB 的距离分别为a ,b ,c ,则P (b ,a ),由题意0≤a ≤3,0≤b ≤1,0≤c =12(3-a -3b )≤32,所以d =a +b +c =12[a +(2-3)b +3],从而d ≥32,当a =b =0时取等号.如图,P 为可行域内任意一点,过P 作PE ⊥x 轴,PF ⊥y 轴,PP ′⊥AB ,过P ′作P ′E ′⊥x 轴,P ′F ′⊥y 轴,则有PE +PF +PP ′≤P ′F ′+P ′E ′,由P (b ,a ), 可得P ′⎝⎛⎭⎪⎫3+b -3a4,3+3a -3b 4,所以d =a +b +c ≤3+b -3a 4+3+3a -3b 4=3+3+(3-1)(3a -b )4,又0≤a ≤3,0≤b ≤1,则d ≤3,当a =3,b =0时取等号,因此d 的取值范围为⎣⎢⎡⎦⎥⎤32,3. 16.(2018·浙江“七彩阳光”新高考研究联盟联考)若正数a ,b ,c 满足b +c a +a +c b =a +bc+1,则a +bc的最小值是________. 答案1+172解析 由a ,b ,c 为正数,且b +c a +a +c b =a +b c +1得b c +1a c +a c +1b c =a c +b c +1,设m =a c ,n =bc,则有m >0,n >0,上式转化为n +1m +m +1n =m +n +1,即m 2+n 2+m +nmn=m +n +1,又由基本不等式得m 2+n 2≥(m +n )22,mn ≤(m +n )24,所以m +n +1=m 2+n 2+m +n mn ≥(m +n )22+m +n (m +n )24,令t =m +n ,则t >0,上式转化为t +1≥t 22+tt 24,即t 2-t -4≥0,解得t ≥1+172,所以t =m +n =a c +bc =a +b c 的最小值为1+172.。
线性规划中的约束条件
线性规划中的约束条件教案主题:线性规划中的约束条件一、引言在数学中,线性规划是一种优化问题,用于寻找满足一定约束条件下的最优解。
而这些约束条件是问题中的关键要素之一。
本教案将围绕线性规划中的约束条件展开讨论。
二、约束条件的定义1. 什么是约束条件约束条件是在线性规划中限制变量值的条件。
它们是问题的要求或限制,决定了可行解的空间。
2. 线性约束条件的形式线性约束条件是指一组关于变量的线性等式或不等式,如≤、≥和=等。
三、约束条件的类型1. 相等约束条件相等约束条件是指变量需要满足等式限制,如x + y = 10。
这种约束条件在几何上表示为一条直线。
2. 非负约束条件非负约束条件指变量需要满足非负性,如x ≥ 0和y ≥ 0。
这种约束条件在几何上表示为第一象限内的区域。
3. 不等式约束条件不等式约束条件是指变量需要满足不等式限制,如2x + 3y ≤ 6。
这种约束条件在几何上表示为一条直线及其以上(或以下)的区域。
四、约束条件的几何解释1. 几何解释的基本原则线性规划的约束条件可以用在笛卡尔坐标系中的几何形状进行解释。
例如,几个不等式约束条件的交集表示问题的可行解区域。
2. 图形化方法解析使用图形化方法可以直观地表达线性规划的约束条件和可行解区域。
通过画出约束条件和目标函数的等高线图,可以找到最优解。
五、多目标的线性规划问题1. 多目标规划问题的背景多目标规划问题是在一个优化问题中同时考虑多个目标函数,需要综合考虑多个目标。
2. 多目标规划问题中的约束条件在多目标规划问题中,约束条件需要满足多个目标函数的约束,这可能会增加问题的复杂性。
六、约束条件的松弛和紧缩1. 约束条件的松弛约束条件的松弛是指通过引入松弛变量,将不等式约束条件转化为等式约束条件,从而使得问题更容易求解。
2. 约束条件的紧缩约束条件的紧缩是指通过引入人工变量或者在目标函数中引入罚项,将等式约束条件转化为不等式约束条件,从而使得问题更容易求解。
运筹学第15讲 约束最优化方法 (1)
⎛1 ⎞ (2) = ⎜ ⎜ 2 ⎟ ⎟ ⎝ ⎠
第六章
6.1 Kuhn-Tucker 条件
二、不等式约束问题的Khun-Tucker条件: (续)
m ⎧ ⎪ ∇ f ( x ) − ∑ u i∇ g i ( x ) = 0 i ⎪ u i ≥ 0 , i = 1,2 ,L , m → ⎨ ⎪ u ig i( x ) = 0 ⎪ ⎩
< 寻找下降可行方向: 定理 1:设 其中 x 是可行解,在
1 2
6.2 可行方向法
一、解线性约束问题的可行方向法 (续)
d x 处有 A 1 x = b 1,A
2
x > b2,
⎛ A A = ⎜ ⎜A ⎝
⎞ ⎛ b1 ⎟ ⎜ , b = ⎟ ⎜b ⎠ ⎝ 2
⎞ ⎟ ⎟ 。则非零向量 ⎠
d 为 x 处的下降可行
g3=0 x2 2 1 1
▽g2(x*)
第六章
例
-▽f(x*) (3,2)T
x* 2 3 g1=0
▽g1(x*)
4
g4=0 x1 g2=0
6.1 Kuhn-Tucker 条件 二、不等式约束问题的Khun-Tucker条件: (续)
在 x *点 ⎧ g 1 ( x1 , x 2 ) = 0 ⎨ ⎩ g 2 ( x1 , x 2 ) = 0
∗ ∗ ∗பைடு நூலகம்
第六章
6.1 Kuhn-Tucker 条件
三、一般约束问题的Kuhn-Tucker 条件 (续)
如果 x ∗ − l .opt .那么 ∃ u i∗ ≥ 0 , i ∈ I , v ∗j ∈ R , j = 1, 2 , L , l ∇f (x ) −
∗
∑u
数据库系统概论CH6(部分)习题解答
第六章关系数据理论第六章讲解关系数据理论。
这是关系数据库的又一个重点。
学习本章的目的有两个。
一个是理论方面的,本章用更加形式化的关系数据理论来描述和研究关系模型。
另一个是实践方面的,关系数据理论是我们进行数据库设计的有力工具。
因此,人们也把关系数据理论中的规范化理论称为数据库设计理论,有的书把它放在数据库设计部分介绍以强调它对数据库设计的指导作用。
一、基本知识点本章讲解关系数据理论,内容理论性较强,分为基本要求部分(《概论》6.1~6.3)和高级部分《概论》6.4)。
前者是计算机大学本科学生应该掌握的内容;后者是研究生应该学习掌握的内容。
①需要了解的:什么是一个“不好”的数据库模式;什么是模式的插入异常和删除异常;规范化理论的重要意义。
②需要牢固掌握的:关系的形式化定义;数据依赖的基本概念(函数依赖、平凡函数依赖、非平凡的函数依赖、部分函数依赖、完全函数依赖、传递函数依赖的概念,码、候选码、外码的概念和定义,多值依赖的概念);范式的概念;从lNF 到4NF的定义;规范化的含义和作用。
③需要举一反三的:四个范式的理解与应用,各个级别范式中存在的问题(插入异常、删除异常、数据冗余)和解决方法;能够根据应用语义,完整地写出关系模式的数据依赖集合,并能根据数据依赖分析某一个关系模式属于第几范式。
④难点:各个级别范式的关系及其证明。
二、习题解答和解析1.理解并给出下列术语的定义:函数依赖、部分函数依赖、完全函数依赖、传递依赖、候选码、主码、外码、全码(All-key)、lNF、2NF、3NF、BCNF、多值依赖、4NF。
解析解答本题不能仅仅把《概论》上的定义写下来。
关键是真正理解和运用这些概念。
答函数依赖:设R(U)是一个关系模式,U是R的属性集合,X和Y是U的子集。
对于R(U)的任意一个可能的关系r,如果r中不存在两个元组,它们在X上的属性值相同,而在Y上的属性值不同,则称“X函数确定Y”或“Y函数依赖于X”,记作X→Y。
高一数学线性规划试题
高一数学线性规划试题1.若,满足约束条件,则的最大值是( ).A.B.C.D.【答案】C【解析】作出可行域和目标函数基准线(如图),将化为;当直线向右下方平移时,直线在轴上的截距减小,即增大;当直线过点B时,取到最大值;联立,得,此时.【考点】简单的线性规划.2.已知点在不等式组表示的平面区域上运动,则的取值范围是()A.B.C.D.【答案】B【解析】作出不等式组表示的平面区域,得到如图的及其内部,其中.设,将直线进行平移,观察轴上的截距变换,可得当经过点时,达到最小值;当经过点时,达到最大值.∴,,即的取值范围是.【考点】1、简单线性规划;2、二元一次不等式组表示的平面区域.3.设实数满足约束条件,则的最大值为()A.10B.8C.3D.2【答案】B.【解析】作出不等式组所表示的平面区域,即可行域,则直线与直线的交点.,作直线:,平移直线,则可知,当,时,【考点】线性规划.4.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为_____________.【答案】4【解析】作出可行域(如图),,当目标直线过点A时 ,目标函数取得最大值,联立,得即;则(当且仅当,即时取等号).【考点】线性规划、基本不等式.5.目标函数,变量满足,则有()A.B.无最小值C.D.既无最大值,也无最小值【答案】C【解析】由题意知线性区域为:,当目标函数经过点时,有最小值;当目标函数经过点时,有最大值为.【考点】线性规划问题.6.若点在直线的下方,则的取值范围是_____________.【答案】.【解析】∵点在直线的下方,∴,∴的取值范围是.【考点】二元一次不等式与平面区域.7.已知,求的取值范围【答案】【解析】设,则,,又①②则①+②,故答案为【考点】简单的线性规划8.已知x,y满足约束条件,则的最小值为______________.【答案】—12.5【解析】作出不等式组表示的平面区域,得到如图的三角形及其内部,由,联立得A(-2.5,2.5),设z=F(x,y)=4x-y,将直线l:进行平移,可得当l经过点A时,目标函数z达到最小值∴z=F(-2.5,2.5)=—12.5.故答案为:—最小值12.5.【考点】二元一次不等式组表示的平面区域;简单的线性规划等知识.9.设=(1,1),=(3,1),O为坐标原点,动点P(x,y)满足0≤·≤1,0≤·≤1,则的最大值是()A.B.0C.D.1【答案】B【解析】,,,即,画出可行域如图平移目标函数线,使之经过可行域当过时纵截距最小此时最大为0。
八种经典线性规划例题最全总结(经典)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、5解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330mm+>⎧⎨-<⎩,故0<m<3,选 C七、比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
动态最优化第6讲 变分法约束问题
(一)约束的四种基本类型
(3)不等式约束 对于最大化的不等式约束变分法问题:
Max
V
T 0
F t ,
y1,,
yn
,
y1,,
yn
dt
g1t, y1,, yn c1
S .T .
g m t, y1,, yn cm
适当的边界条件
第六讲 变分法约束问题
(一)约束的四种基本类型
(3)不等式约束 最小化的不等式约束变分法问题求解方法:
静态最优化等式约束问题: 约束条件有时候是这种形式:
Min f x, x En
S.T. hi x Ci , i 1,2,, m
拉格朗日函数:
m
Lx, f x iCi hi x i 1
拉格朗日乘子i的经济学含义 : 外生参数Ci的影子价格
第六讲 变分法约束问题
(一)约束的四种基本类型
(1)等式约束
由于 Li 0 ,欧拉方程
d Li dt Li 0
可简化为:
Lλi ci gi 0 对于所有的t 0,T
(与给定约束条件相吻合)
第六讲 变分法约束问题
(一)约束的四种基本类型
(1)等式约束
例子:
Min V T 1 y2 z2 1/2 dt 0 S.T. t, y, z 0
y y C1
通解:y*t C2et C3et C1
第六讲 变分法约束问题
(一)约束的四种基本类型
(2)微分方程约束
例子: 由z y :
把y的通解y*t C2et C3et C1代入,得:
z C2et C3et C1 两边求t的积分, 得z的最优路径通解:
z*t C2et C3et C1t C4
人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx
5.已知线性目标函数 z=3x+2y,在线性约束条件
x+y-3≥0 2x-y≤0 y≤a
下取得最大值时的最优解只有一个,则实数 a
的取值范围是________.
x+y-3≥0
解析: 作出线性约束条件2x-y≤0
y≤a
表示的平面
区域,
如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数a的取值范 围是[2,+∞).
元.该企业在一个生产周期内消耗A原料不超过 13吨、B原料不超过18吨,那么该企业可获得最 大利润是( )
• A.12万元
B.20万元
• C.25万元D.27万元
解析: 设该企业在一个生产周期内各生产甲、乙产品
x、y 吨,获得利润 z 万元,根据题意,得
3x+y≤13
2x+3y≤18 x≥0
• (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
• [注意] 画可行域时,要特别注意可行域各边 的斜率与目标函数直线的斜率的大小关系,以 便准确判断最优解.
• 2.最优解的确定
• 最优解的确定可有两种方法:
• (1)将目标函数的直线平行移动,最先通过或 最后通过的顶点便是最优解.
交点 A(4,5)时,目标函数 z=200x+300y 取到最小值为 2 300
元,故所需租赁费最少为 2 300 元.
• 答案: 2300
• 2.某企业生产甲、乙两种产品,已知生产每吨 甲产品要用A原料3吨、B原料2吨;生产每吨乙产
品要用A原料1吨、B原料3吨.销售每吨甲产品可 获得利润5万元、每吨乙产品可获得利润3万
规格类型 钢板类型
高一数学不等式试题答案及解析
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【解析】略4.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。
【答案】【解析】略5.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值6.设,且,,则下列结论正确的是()A.B.C.D.【答案】A【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质7.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式8.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划9.设a>0,b>0,若是与的等比中项,则的最小值为()A.4B.8C.1D.【答案】A【解析】,所以,所以:,等号成立的条件是.【考点】1.等差数列的性质;2.基本不等式求最值.10.不等式对一切恒成立,则实数的取值范围为.【答案】【解析】当时,或,代入,只有使不等式恒成立,当时,,即,解得,所以最后的取值范围是【考点】二次不等式恒成立11.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式12.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.13.不等式的解集为()A.或B.或C.或D.{或【答案】A【解析】,由数轴穿根法知,或【考点】•分式不等式的解法分式——不等式化整式不等式 数轴穿根法求不等式的解14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集16.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题17.若点的坐标满足约束条件:,则的最大值为A.B.C.D.11【答案】C【解析】如图,先画可行域,先设目标函数,当目标函数过点时,,最后除以得最小值是.【考点】线性规划18.不等式的解集为_______________.【答案】【解析】解:,所以不等式的解集是.【考点】一元二次不等式的解法19.(本题满分10分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数).【答案】(1)(2)当时解集为;当时解集为;当时解集为【解析】(1)本题考察的是一元二次不等式与一元二次方程关系,由题意知是关于的方程的两个根,再由韦达定理可得方程组,解方程组即可得到答案.(2)不等式等价于,按照对应方程的根的大小关系分三种情况进行讨论即可解出分式方程的解集.试题解析:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:当时解集为;当时解集为;当时解集为.【考点】一元二次不等式的解法20.不等式的解集是()A.B.C.D.【答案】D【解析】不等式可得,所以解集为:,故选择D 【考点】解一元二次不等式21.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;22.解关于x的不等式:【答案】当a=0时,;当a﹥0时,;当a﹤0时,【解析】移项,通分,将分式不等式转化为一元二次不等式,分解因式后比较两根的大小即可求解不等式.试题解析:解:所以,当a=0时,当a﹥0时,当a﹤0时,【考点】分式不等式.23.如果实数x,y满足约束条件,那么2x-y的最大值为A.2B.1C.-2D.-3【答案】B【解析】将不等式组中不等式看成方程.两两结合解出交点坐标分别为,代入可得值最大为.故答案选B.也可结合图形分析得出答案.【考点】线性规划24.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.25.(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.【考点】1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.26.解关于的不等式:.【答案】见解析【解析】解分式不等式,一般移项、通分、再讨论有无根及根的大小:由得只有一根-1; 比较大小试题解析:解:【考点】解分式不等式【名师】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.27.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间上的最小值.【答案】(Ⅰ) f(x) =2x2-10x (Ⅱ)【解析】(Ⅰ)求二次函数解析式常采用待定系数法,设出解析式,由已知条件得到参数值,从而得到解析式;(Ⅱ)求二次函数最值首先判断其单调性,本题中要分情况讨论区间与对称轴的位置关系试题解析:(Ⅰ)∵f(x)是二次函数,且f(x)<0的解集是(0,5)∴可设f(x)=ax(x-5)(a>0)∴f(x)的对称轴为x=且开口向上∴f(x)在区间[-1,4]上的最大值是f(-1)=6a=12.∴a=2∴f(x)=2x(x-5)=2x2-10x.(Ⅱ)由题意,,①当时,在区间上单调递增,∴的最小值为;②当时,∴的最小值为;③当时,在区间上单调递减,∴的最小值为;综上所述:【考点】1.待定系数法求解析式;2.二次函数单调性与最值28.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.29.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.30.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.31.下列各函数中,最小值为2的是()A.B.,C.D.【答案】A【解析】对于A.,当且仅当即取等号正确;对于B.,,则当且仅当即取等号,等号取不到所以错误;对于C.,当且仅当即取等号,等号取不到所以错误,D.,当不满足题意,所以应选A.【考点】基本不等式的应用.【易错点睛】利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值,特别是等号成立的条件是否满足,必须进行验证,否则易错;基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.32.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集33.已知正项等比数列满足,若存在两项使得,则的的最小值为()A.B.C.D.【答案】B【解析】将代入中,可求得(数列为正向数列,舍去负值),则,代入有,所以,当且仅当,显然是整数,所以不能取得最小值,单可取相邻整数的值,即时的值,可求得最小值为,股本题正确选项为B.【考点】等比数列的公比与重要不等式的运用.【思路点睛】因为,所以只要求得公比,便可通过求得的和,将等比数列通项代入,化简解方程便可求得公比,从而进一步求得,对乘以,化简整理后,再利用重要不等式求最值,最后要注意,取最值时,看能否满足取等号的条件,如果不能满足,则可取的相邻两个整数值,从中取最小的代数值即可.34.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】由题意得,,因为,所以,所以,所以,【考点】不等式的性质.35.已知实数满足.(1)若,求的最小值;(2)解关于的不等式:.【答案】(1);(2).【解析】(1)根据条件将二元代数式的最值问题转化为一元代数式的最值问题,再结合基本不等式,即可求出的最小值;(2)根据条件将不等式转化为关于的分式不等式,进而可得到其解集.试题解析:(1)由及得,因为,所以当且仅当,即时取等号,此时所以的最小值为(2)由(1),且原不等式可化为,即所以,即且所以原不等式的解集为【考点】1、基本不等式;2、分式不等式.36.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.37.如果不等式对一切实数均成立,则实数的取值范围是()A.B.C.D.【解析】不等式对一切实数均成立,等价于对一切实数均成立,所以,解得,故选A.【考点】函数的恒成立问题.【方法点晴】本题主要考查了不等式的恒成立问题的求解及一元二次函数的图象与性质的综合应用,对于函数的恒成立问题,一般选用参变量分离法、转化为对一切实数均成立,进行求解,其中正确运用一元二次函数的图形与性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档题.38.若满足约束条件则的最大值为【答案】7【解析】如图,画出可行域,令,画出初始目标函数,,当初始目标函数向上平移时,函数取值越来越大,当多点时,函数取得最大值,最大值为,故填:7.【考点】线性规划39.已知a>0,则的最小值是【答案】【解析】,当且仅当时等号成立取得最小值【考点】不等式性质40.二次不等式的解集为或,则关于的不等式的解集为_________.【答案】【解析】由题意可知所以所以不等式为,又,所以,解得.所以答案应填:.【考点】一元二次不等式的解法.【方法点睛】根据二次不等式的解集得出,求出,采用消元的思想,将和消去,再将不等式转化为具体的一元二次不等式来求解即可.本题考查了一元二次不等式与一元二次方程之间的应用问题,解题时应利用一元二次方程根与系数的关系进行求解即可.属于基础题.41.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.42.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】由题意得,不等式的解集是空集,当,解得或,(1)当时,不等式可化为,所以解集不是空集,不符合题意(舍去);(2)当时,不等式可化为不成立,所以解集为空集;当,要使的不等式的解集为空集,则,解得,综上所述,实数的范围为,故选B.【考点】一元二次不等式问题.43.设,则的大小关系是()A.B.C.D.【答案】D【解析】【考点】比较大小44.三个数的大小关系是().A.B.C.D.【答案】C【解析】,,,所以,故选C.【考点】指数,对数45.已知,则的大小关系为()A.B.C.D.【答案】C【解析】由指数函数是单调递减函数,所以,又,所以,故选C.【考点】指数函数与对数函数图象与性质.46.设,则()A.B.C.D.【答案】C【解析】,函数在上单调递增,故,又,而.综上知【考点】指数函数,对数函数的性质47.已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.48.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a 2>b2.本题选择C选项.49.关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2)B.(-1,2)C.(-,-1)(2,+)D.(-,1)(2,+)【答案】C【解析】由已知,不等式为,所以或,故选C.50.设,给出下列结论:①;②;③;④.其中正确的结论有()A.①④B.②④C.②③D.③④【答案】B【解析】①;②;③;;④.所以选B.51.已知.(1)当时,解不等式;(2)若,解关于的不等式.【答案】(1)(2)见解析【解析】(1),结合图像可得不等式解集(2),所以根据根的大小进行分类讨论:时,为;,为;时,为试题解析:(1)当时,不等式,即,解得.故原不等式的解集为.(2)因为不等式,当时,有,所以原不等式的解集为;当时,有,所以原不等式的解集为;当时,原不等式的解集为52.已知,那么下列命题中正确的是( )A.若则B.若,则C.若且,则D.若且,则【答案】C【解析】当时,,选项A是假命题;若,则由可得,选项B是假命题;若a3>b3且ab<0,则 (对),若a3>b3且ab<0,则若a2>b2且ab>0,则 (错),若,则D不成立。
备战2021年高考理数 6年高考真题分项版精解精析专题06 不等式(解析版)
【2022高考真题】1. 【2022高考安徽卷理第5题】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯..一.,则实数a 的值为( ) A,121-或 B.212或 C.2或1 D.12-或2.【2022高考北京版理第6题】若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12-3. 【2022高考福建卷第11题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________.4. 【2022高考福建卷第13题】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元).5. 【2022高考广东卷理第3题】若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M m -=( )A.8B.7C.6D.56.【2022高考湖南卷第14题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤k y y x x y 4,且y x z +=2的最小值为6-,则____=k .7.【2022辽宁高考理第16题】对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .8. 【2022全国1高考理第9题】不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是( )A .23,p pB .12,p pC .13,p pD .14,p p10. 【2022山东高考理第5题】已知实数y x ,满足)10(<<<a a a yx,则下面关系是恒成立的是( )A.111122+>+y x B.)1ln()1(ln 22+>+y x C.y x sin sin > D.33y x >11. 【2022山东高考理第9题】 已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为( )A.5B.4C.5D.212. 【2022四川高考理第4题】若0a b >>,0x d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c< 4.若0a b >>,0c d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c<13. 【2022四川高考理第5题】执行如图1所示的程序框图,假如输入的,x y R ∈,则输出的S 的最大值为( )A .0B .1C .2D .314. 【2022浙江高考理第13题】当实数x,y满足240,10,1,x yx yx+-≤⎧⎪--≤⎨⎪≥⎩时,14ax y≤+≤恒成立,则实数a的取值范围是________. 【考点定位】线性规划.15. 【2022天津高考理第2题】设变量x,y满足约束条件0,20,12,yx yyx+-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y=+的最小值为()(A)2(B)3(C)4(D)51 6. 【2022大纲高考理第14题】设,x y满足约束条件2321x yx yx y-≥⎧⎪+≤⎨⎪-≤⎩,则4z x y=+的最大值为.17. 【2022高考上海理科】若实数x,y 满足xy=1,则2x +22y 的最小值为______________.18.【2022高考安徽卷第21题】设实数0>c ,整数1>p , *N n ∈. (1)证明:当1->x 且0≠x 时,px x p+>+1)1(;(2)数列{}n a 满足pc a 11>,pn n n a pc a p p a -++-=111,证明:p n n c a a 11>>+. ①【2021高考真题】(2021·天津理)8. 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是( ) (A) 15,02⎛⎫- ⎪ ⎪⎝⎭(B) 13,02⎛⎫- ⎪ ⎪⎝⎭(C) 15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭(D) 52,1⎛⎫-- ⎪ ⎝⎭∞⎪ (2021·上海理)15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞(2021·陕西理)9. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )(A) [15,20] (B) [12,25] (C) [10,30](D) [20,30](2021·山东理)12.设正实数,,x y z 满足22340x xy y z -+-=,则当zxy取得最大值时,z y x 212-+的最大值为A.0B. 1C.49D. 3 (2021·湖南理)10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 .(2021·广东理)9.不等式220x x +-<的解集为___________.(2021·湖南理)20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 动身沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”。
高二数学线性规划试题答案及解析
高二数学线性规划试题答案及解析1.已知满足不等式组,使目标函数取得最小值的解(x,y)有无穷多个,则m的值是A.2B.-2C.D.【答案】D【解析】画出可行域,目标函数z=mx+y,取得最小值的最优解有无数个知取得最优解必在边界上而不是在顶点上,目标函数中系数必为负,最小值应在边界3x-2y+1=0上取到,即mx+y=0应与直线3x-2y+1=0平行,进而计算可得m值.【考点】线性规划2.若x,y满足则的最大值是.【答案】 10【解析】根据线性约束条件划出可行域,由目标函数得,即只需求直线在轴上的最大值即可。
【考点】线性规划求最值问题。
3.在平面直角坐标系中,若不等式组(a为常数)所表示的平面区域的面积等于2,则实数a的值为.【答案】3【解析】由题意得:不等式组(a为常数)所表示的平面区域必须为一个封闭图形.直线恒过定点所以平面区域为三角形,面积为【考点】线性规划4.已知实数满足条件,则的最大值为.【答案】10【解析】作出满足约束条件下的平面区域,如图所示.由图可知点目标函数经过点时取得最大值,且最大值为.【考点】简单的线性规划.5.若实数满足,则的取值范围是( )A.B.C.D.【答案】A【解析】表示单位圆,表示单位圆上的点与点形成的直线的斜率.显然当与圆相切时,如图所示,可知 .【考点】线性规划求最值.6.不等式组所围成的平面区域的面积是 .【答案】2【解析】根据题意作出不等式组所表示的平面区域(如下图)直线的斜率都为,而直线的斜率都为1,所以该区域为正方形区域,其中该正方形的边长为,所以该平面区域的面积为.【考点】1.二元一次不等式表示的平面区域问题;2.两直线垂直的判定.7.设变量满足则目标函数的最小值为( )A.2B.4C.6D.以上均不对【解析】因为变量满足,符合的x,y的可行域如图所示的阴影部分,目标函数. 其中的最小值即为直线CD在y轴的截距最小.所以通过移动直线CD可知过点B是符合题意.又因为B(1,0).所以.故选A.【考点】1.线性规划问题.2.作图的能力.3.对比归纳的思想.4.复杂问题简单化的转化过程.8.已知实数满足,且目标函数的最大值为6,最小值为1, 其中的值为( )A.1B.2C.3D.4【答案】B【解析】本题为线性规划含有带参数直线问题.需要对含参直线的斜率以及b进行讨论.另外借助选项,观察4个选项都是正数,所以.这样可以减少讨论情况 .利用现行约束条件作出可行域.当讨论(ⅰ):若无论我们都可以作图,若则表示虚线下方无最大值不合题意.所以建立方程组和分别代入目标函数可以得出.(ⅱ):同理当时,结合图像仍然会得如上的方程组.所以.所以答案为D.【考点】线性规划、分类讨论思.9.下列坐标对应的点中,落在不等式表示的平面区域内的是A.(0,0)B.(2,4)C.(-1,4)D.(1,8)【答案】A【解析】把选项中的点的坐标代入不等式检验,得点(0,0)符合题意,故选A【考点】本题考查了二元一次不等式表示平面区域点评:只需在这条直线的某一侧取一个特殊点(x0,y0) ,以Ax0+By0+C的正负情况便可判断Ax+by+C>0 表示这一直线哪一侧的平面区域,特殊地,当C≠0 时,常把原点作为此特殊点.10.已知实数x,y满足,若取得最大值时的最优解有无数个,则a的值为()A.0B.2C.-1D.【解析】先画出可行域,该可行域是一个三角形,因为取得最大值时的最优解有无数个,根据图象可知应该与边界平行,所以【考点】本小题主要考查简单线性规划.点评:目标函数的最优解有无数多个,处理方法一般是:①将目标函数的解析式进行变形,化成斜截式②分析Z与截距的关系,是符号相同,还是相反③根据分析结果,结合图形做出结论④根据斜率相等求出参数.11.(本题满分12分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时和每台产值如下表:432【答案】【解析】设每周生产空调台、彩电台、则生产冰箱台,产值(千元). (2分)目标函数为(6分)所以题目中包含的限制条件为即: 可行域如图.(10分)解方程组得点的坐标为所以(千元) (12分)【考点】线性规划的最优解运用点评:解决该试题的关键是能根据题意抽象出不等式,同时结合二元一次不等式组表示的区域,平移法得到最值,属于基础题。
高校排课问题的约束满足优化模型与算法
SCIENCE &TECHNOLOGY VISION 科技视界0引言随着高校规模的不断扩大、专业的不断扩充、以及教学设施的不断完善,教务管理工作的难度逐年加大,作为教务管理关键工作之一的课程编排问题也成为了当前教务人员所面临的复杂问题。
杨林根[1]提出了基于免疫遗传算法的排课问题解决方案,但未考虑课程对于教学楼的特殊要求;王超[2]针对机房排课问题,设计了改进的离散粒子群算法进行求解;针对中职院校的排课需求,张燕芬[3]提出了一个基于银行家算法和贪心算法的排课算法;针对高职院校的排课特点,吴小丽[4]对排课系统的基本功能模块和主要和新算法实现进行了研究与分析。
约束满足是一种组合优化问题的建模与求解技术,它能以更加接近现实世界的方式描述调度问题及其约束,在约束求解中,能够充分利用问题的结构信息、约束关系,采用约束传播、回溯、搜索等技术对求解空间快速缩减,提高问题的求解效率。
本文考虑了高等院校的排课问题对于不同教学楼的特殊需求,将其映射为一类约束满足问题,进而建立以最优化教室负荷均衡性为目标的约束满足优化模型。
针对模型中硬性约束和柔性约束并存的特殊情况,设计了问题的约束满足求解算法。
1排课优化模型1.1问题描述高校排课问题是在课程及任课教师已定的情况下,为每一门课程选定适当的教室和时间,以确保教学计划的正常进行。
在排课过程中,应当综合考虑教室、教师、时间等资源的限制,遵循以下原则:1)同一个班级的不同课程不允许安排在同一时间。
2)同一名教师的不同课程不允许安排在同一时间。
3)同一个教室在同一时间只允许至多安排一门课程。
4)教室能容纳的学生数不小于在该教室上课的人数。
5)同一门课程不允许在同一天内连续上两节或两节以上。
此外,由于高校是具有多学院、多专业的高等院校,每个学院往往是有其专门的学院楼,因此,在排课过程中应尽量满足学院、教师、教室、班级等特殊需求,例如:课程指派应尽可能的分散在不同的教室;专业课应主要安排在该学院所在的教学楼内的教室进行,公共课则必须安排在公共教学楼;尽量满足个别教师教课时间的特殊要求。
2025届辽宁省抚顺县高级中学高三第二次模拟考试数学试卷含解析
2025届辽宁省抚顺县高级中学高三第二次模拟考试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的点关于直线1y =-的对称点在 1y kx =-的图像上,则实数k 的取值范围是( ) A .1,12⎛⎫⎪⎝⎭B .13,24⎛⎫⎪⎝⎭C .1,13⎛⎫⎪⎝⎭D .1,22⎛⎫⎪⎝⎭2.已知集合A ={x |–1<x <2},B ={x |x >1},则A ∪B = A .(–1,1)B .(1,2)C .(–1,+∞)D .(1,+∞)3.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B.[-C.(-D.⎡⎣4.已知角a 的终边经过点()()4,30P m m m -≠,则2sin cos a a +的值是( ) A .1或1-B .25或25- C .1或25-D .1-或255.已知实数,x y 满足约束条件30202x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则3z x y =+的最小值为( )A .-5B .2C .7D .116.已知函数()()3cos 0f x x x ωωω=+>,对任意的1x ,2x ,当()()1212f x f x =-时,12min2x x π-=,则下列判断正确的是( ) A .16f π⎛⎫=⎪⎝⎭B .函数()f x 在,62ππ⎛⎫⎪⎝⎭上递增 C .函数()f x 的一条对称轴是76x π=D .函数()f x 的一个对称中心是,03π⎛⎫⎪⎝⎭7.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅8.若直线2y kx =-与曲线13ln y x =+相切,则k =( ) A .3B .13C .2D .129.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( ) A .21,06e ⎛⎫-⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭10.已知集合{}2|2150A x x x =-->,{}|07B x x =<<,则()R A B 等于( )A .[)5,7-B .[)3,7-C .()3,7-D .()5,7-11.定义在R 上的偶函数()f x 满足()()11f x f x +=-()()0≠f x ,且在区间()20172018,上单调递减,已知,αβ是锐角三角形的两个内角,则()()sin cos f f βα,的大小关系是( ) A .()()sin cos βα<f f B .()()sin cos βα>f f C .()()sin =cos βαf fD .以上情况均有可能12.已知函数log ()a y x c =+(a ,c 是常数,其中0a >且1a ≠)的大致图象如图所示,下列关于a ,c 的表述正确的是( )A .1a >,1c >B .1a >,01c <<C .01a <<,1c >D .01a <<,01c <<二、填空题:本题共4小题,每小题5分,共20分。
人工智能 约束满足问题 6-5 问题的结构
The Structure of ProblemsContents☐6.5.1 Decomposing Problem☐6.5.2Independent Sub-problems☐6.5.3 Tree-structured Problems☐6.5.4 Reduce Constraint Graphs to Tree StructuresDecomposing Problem 问题分解☐The structure of problem as represented by constraint graph can be used to find solutions.由约束图所表征的问题结构,可以用于寻找解。
☐The complexity of solving a CSP is strongly related to the structure of its constraint graph.求解一个CSP问题的复杂性,与约束图的结构密切相关。
☐The problem in the real world can be decomposedinto many sub-problems.现实世界的问题可以被分解为许多子问题。
Example:Coloring Tasmania and coloring themainland are independent sub-problems.Divide and Conquer!对塔斯曼尼亚着色与澳洲大陆着色是相互独立的子问题。
Independent Sub-problems独立子问题☐They are identifiable as connected components of constraint graph.独立子问题可被标识为约束图的联接组件。
☐Suppose a graph of n variables can be broken into sub-problems of only c variables:each worst-case solution cost is O((n/c)·d c), linear in n.设n个变量的图可分解为仅有c个变量的子问题:每个最坏解的代价是O((n/c)·d c), n的线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (Q1,Q2)的合法值是 (1,3),(1,4),(2,4), (3,1),(4,1),(4,2)
实例:密算(Cryptarithmetic)
• 变量:D,E,M,N,O,R,S,Y • 域:{0,1,2,3,4,5,6,7,8,9} • 约束
V1 V2 V3 V4 V5 V6 ? ? ? ? ? ? 值次序: (B,R,G)
V1 V2 V3 V4 V5 V6 B ? ? ? ? ?
V1 V2 V3 V4 V5 V6 B B ? ? ? ?
V1 V2 V3 V4 V5 V6
B R ? ? ? ?
不考虑该树枝,因为 V2=B与目前已赋值 相关的约束不符。
范例:图形着色
CSP定义
• CSP={V,D,C} • 变量:V={V1,…,VN}
– 例如:图中结点的值
• 域:每个变量能取的d个值的集
– 例如:D={R,G,B}
• 约束:C={C1,…,CK} • 每个约束由一组变量与一列该组变量允许取的值 组成
– 例如:[(V2,V3),{(R,B),(R,G),(B,R),(B,G),(G,R),(G,B)}]
坏值
深度优先搜索(DFS)
V1 V2 V3 V4 V5 V6 ? V1 V2 V3 V4 V5 V6 B ? ? ? ? ? ? ? ? ? ? 值次序: (B,R,G)
V1 V2 V3 V4 V5 V6 R ? ? ? ? ?
V1 V2 V3 V4 V5 V6 G ? ? ? ? ?
V1 V2 V3 V4 V5 V6 B B ? ? ? ?
二元CSP
• 如果变量V与V’出现在一个约束中,则它们是有联 系的。 • V近邻=与V有联系的变量。 • V域,记为D(V),为变量V可取值的集。 • Di=D(Vi)
• 二元CSP问题的约束图:
– 结点是变量 – 连线代表约束 – 与图形着色问题相同
实例:N个皇后
• 变量:Qi • 域:Di={1,2,3,4} • 约束
向前查看
• 对未赋值的变量,跟踪余下的合法值。 • 当变量无合法值时,回溯。
值次序:(R,B,G) V1 V2 V3 V4 V5 V6 R B ? ? ? ? ? ? ? ? ? ? ? ?
G
?
?
?
?
?
?
向前查看
• 对未赋值的变量,跟踪余下的合法值。 • 当变量无合法值时,回溯。
值次序: (B,R,G)
V1 V2 V3 V4 V5 V6 B ? ? ? ? ?
V1 V2 V3 V4 V5 V6
V1 V2 V3 V4 V5 V6 B R ? ? ? ?
B
B
?
?
?
?
V1 V2 V3 V4 V5 V6
B R R B ? ?
V1 V2 V3 V4 V5 V6
B
R
R
B
G
?
回溯DFS
• 如果找不到合法赋值,则回溯到前一个状 态。 • 一旦找到解,就停止。
回溯 值(变量=值)相关的约束。 • 用预测来改进不知情搜索:
– 一个变量的赋值对所有其它变量有什么影响? – 下一个应赋值的变量是谁?并且应遵循什么次 序来评估值? – 当一条路径失败,怎样避免犯同样错误?
约束满足问题(CSP)
概要
• CSP定义 • 标准搜索 • 方法改进
– 回溯 – 向前查看 – 约束传播
• 启发式算法
– 变量排序 – 值排序
• CSP实例 • 树结构CSP • 解CSP的局域搜索
CSP:定义
范例:图形着色
• • • • 考虑一个图形中的N个结点。 把变量V1,…,VN的值赋给N个结点。 值取自{R,G,B} 约束:如果i与j之间有边,则Vi与Vj必不同。
样本状态: (V1=G,V2=B,V3=?,V4=?,V5=?,V6=?)
• 状态:给出k个变量赋值,而第k+1,…,N个变量未 赋值。 • 后续态:通过给第k+1个变量赋值,而保持其它变 量不变,来获得一个态的后续态。 • 始态: (V1=?,V2=?,V3=?,V4=?,V5=?,V6=?) • 终态:所有变量已赋值,且约束也已满足。 • 无任何关于转换代价的概念。即,只想找到一个 解,而不担心是怎样找到的。
V1 V2 V3 V4 V5 V6 ? ? ? ? ? ?
值次序: (B,R,G)
V1 V2 V3 V4 V5 V6
B ? ? ? ? ?
V1 V2 V3 V4 V5 V6
R ? ? ? ? ?
V1 V2 V3 V4 V5 V6
G ? ? ? ? ?
V1 V2 V3 V4 V5 V6 B B ? ? ? ?
• 通常隐式地定义约束,即,定义一个函数来测试 一组变量是否满足该约束
– 例如:对每条边(i,j),有ViVj
CSP定义
• CSP的解:每个变量有一个满足所有相关 约束的值 • 特点:
– 状态的分解表示:一组变量及其值 – 利用状态的结构和通用启发方式 – 通过确定违反约束的变量与值组合可取消大部 分搜索空间
V1 V2 V3 V4 V5 V6
B
R
R
B
?
?
回溯到前一个状态, 因为不能给V6赋合法 的值。
V1 V2 V3 V4 V5 V6 B R R B G ?
回溯DFS
• 对D中每个可能值x:
– 如果将x赋给下个未赋值变量Vk+1后,不违反与 k个已赋值变量相关的任何约束:
• 给Vk+1赋x。 • 赋值后,评估当前态的后续态。
– M 0,S 0,单元约束 – Y = D E 或Y = D E 10 – D E,D M,D N 等
S E N D MO R E M O N E Y
更多实例
• • • • • • 调度 产品设计 资产分配 电路设计 受约束机器人的规划 …
CSP:标准搜索
搜索空间
• 采用递归方式:
对D中每个可能值: 为后续态中的下个未赋值变量赋该值 赋值后,评估当前态的后续态 一旦找到解,就停止
DFS
• 改进:
– 只评估那些赋值,它们不违反任何与目前已赋 值相关的约束。 – 不搜索那些明显不可能通往解的分枝。 – 预测合法的赋值。 – 控制变量与值的次序。
CSP:改进
V1 V2 V3 V4 V5 V6 ? ? ? ? ? ?