电子技术课程设计(数字频率计的设计)

合集下载

数字逻辑--数字频率计的设计

数字逻辑--数字频率计的设计

滁州学院之宇文皓月创作课程设计陈述课程名称:数字逻辑课程设计设计题目:数字频率计的设计系别:网络与通信工程系专业:网络工程组别:第四组起止日期:2012年5月28日~ 2012年6月 22日指导教师:计算机与信息工程学院二○一二年制课程设计任务书目录1 引言12 设计要求12.1题目12.2系统结构要求12.3制作要求12.4扩展指标12.5运行环境12.6设计条件12.7元件介绍2①计数显示器2② 74160N3③ 7473N4④ XFG143 整体设计方案54 详细分析64.1单元电路设计6 4.2控制电路64.3关于JK触发器7 4.4测试85 调试与操纵说明85.1第一次仿真95.2第二次仿真95.3第三次仿真10 5.4第四次仿真106 课程设计总结117 致谢118 参考文献121 引言数字频率计是近代电子技术领域的重要丈量工具之一,同时也是其他许多领域广泛应用的丈量仪器。

数字频率计是在基准时间内把丈量的脉冲数记录下来,换算成频率并以数字的形式显示出来。

数字频率计应用于丈量信号(方波、正玄波或其他周期信号)的频率,并用十进制数显示。

它具有精度高、丈量速度快、读数直观、使用方便等优点。

2 设计要求2.1题目频率计主要用于丈量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

其扩展功能可以丈量信号的周期和脉冲宽度。

①频率丈量范围:1HZ~10HZ。

②数字显示位数:四位静态十进制数显示被测信号的频率。

2.2系统结构要求数字频率计的整体结构要求如图所示。

图中被测信号为外部信号,送入丈量电路进行处理、丈量,档位转换用于选择测试的项目—频率、周期或脉宽,若丈量频率则进一步选择档位2.3制作要求①被测信号波形:正弦波、三角波和矩形波。

②丈量频率范围:1Hz~10kHz。

③丈量周期范围:0.1ms~1s。

④丈量脉宽范围:0.1ms~1s。

⑤丈量精度:显示4有效数字(要求分析1Hz、1kHz和10kHZ丈量误差)。

毕业设计124数字频率计的设计

毕业设计124数字频率计的设计

淮阴师范学院毕业设计物理系电子信息科学与技术专业课题名称数字频率计的设计学生姓名学生班级指导老师起讫日期 2004 .12 .1 — 2005 .4 .72005年4月7日摘要:利用等精度测量原理实现了频率的测量。

并介绍了一种进行等精度数字测量频率的硬件实现方案。

该方法简单实用,具有较广的使用价值。

关键词:数字频率计;函数信号发生器;闸门时间Abstract: A digital frequency meter designed by using equal precision measurement, have realized the frequency measurement. It introduces the hardware construction method of equal precision digital measurement frequency. This method is easy and convenient.Keywords: Digital frequency meter; Function signal generator;The interval between the opening and closing of the lock gate目录1 引言 (3)2 设计原理 (4)3 电路分析 (4)3.1 整体电路分析 (4)3.2 单元电路分析 (5)3.2.1 逻辑控制电路 (5)3.2.2 计数器 (7)3.2.3 锁存器 (8)3.2.4 BCD码七段显示译码/驱动器 (9)3.2.5 脉冲形成电路 (10)3.2.6 闸门电路 (12)3.3 整体电路图 (13)4 硬件调试 (15)4.1调试方法与过程 (15)4.1.1脉冲形成电路的调试 (15)4.1.2 时基电路的调试 (15)4.1.3锁存信号电路的调试 (15)4.1.4整体电路的调试 (15)4.2测试仪器与设备 (15)5 测试结果 (15)6心得体会 (15)7 感谢 (16)参考文献 (17)1.引言随着无线电技术的发展与普及,“频率”已成为广大群众所熟悉的物理量。

电工电子技术课程设计说明书简易数字频率计设计

电工电子技术课程设计说明书简易数字频率计设计

摘要频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。

通常情况下计算每秒内待测信号的脉冲个数,此时我们称基础时间为1秒。

基础时间也可以大于或小于一秒。

基础时间越长,得到的频率值就越准确,但基础时间越长则没测一次频率的间隔就越长。

基础时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。

本文数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。

关键词:数显、频率计、时基、protues仿真、555构成多谐振荡器简易数字频率计的设计数字频率计是直接用十进制数字来显示被测量信号频率的一种测量装置,它不仅可以测量正弦波、方波、三角波和尖端冲信号的频率,而且还可以测量它们的周期。

频率,就是周期性信号在单位时间 (1s) 内变化的次数.若在一定时间间隔 T 内测得这个周期性信号的重复变化次数为 N ,则其频率可表示为 f=N/T 。

原理框图中,被测信号 Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。

时基电路提供标准时间基准信号Ⅱ,其高电平持续时间t1=1s,当1s信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到1s信号结束时闸门关闭,停止计数。

若在基础时间1S内计数器计得的脉冲个数为N,则被测信号频率fx=NHz。

逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生“0”脉冲Ⅴ,使计数器每次测量从零开始计数。

1.电路设计方案及其论证1-1 ICM7216D 构成数字频率计电路图由ICM7216D 构成的数字频率计由ICM7216D 构成的10MHZ 频率计电路采用+5V 单电源供电。

高精度晶体振荡器和321R C C 、、构成10MHz 并联振荡电路,产生时间基准频率信号,经内部分频后产生闸门信号。

输出分别连接到相应数码显示管上。

ICM7216D 要求输入信号的高电平大于,低电平小于,脉宽大于50ns ,所以实际应用中,需要根据具体情况增加一些辅助电路。

数字频率计设计(PCB图+电路图+源程序)-课程设计

数字频率计设计(PCB图+电路图+源程序)-课程设计

数字频率计设计(PCB图+电路图+源程序)-课程设计数字频率计设计开题报告选题意义及国内外发展状况本课题主要研究如何用单片机来设计数字频率计。

因为在电子技术中,频率的测量十分重要,这就要求频率计要不断的提高其测量的精度和速度。

在科技以日新月异的速度向前发展,经济全球一体化的社会中,简洁、高效、经济成为人们办事的一大宗旨。

在电子技术中这一点表现的尤为突出,人们在设计电路时, 都趋向于用尽可能少的硬件来实现, 并且尽力把以前由硬件实现的功能部分, 通过软件来解决。

因为软件实现比硬件实现具有易修改的优点, 如简单地修改几行源代码就比在印制电路板上改变几条连线要容易得多, 故基于微处理器的电路往往比传统的电路设计具有更大的灵活性。

单片机就属于这一类设计电路,单片机因其功能独特和廉价已在全球有数???千种成功的范例, 在国内也开发出了充电器、空调控制器、电子定时器、汽车防盗器、卫星接收机以及各种智能仪表等实用产品。

频率计也是单片机的一种很重要的应用, 价格低廉且具有实际意义。

虽然使用逻辑分析仪也可以很好的测量信号的频率等参数,但其价格太昂贵。

实现测量的数字化、自动化、智能化已成为各类仪表设计的方向,而由单片机控制的、全自动的、数字显示的频率计就符合这一设计理念。

说到用单片机设计的频率计,这里说一下单片频率计ICM7216D。

单片频率计ICM7216D是美国Intersil公司首先研制的专用测频大规模集成芯片。

它是标准的28引脚的双列直插式集成电路,采用单一的+5V稳压电源工作。

它内含高频振荡器、10进制计数器、7段译码器、位多路复用器、能够直接驱动LED显示器的8段段码驱动器、8位位码驱动器。

其基本的测频范围为DC至10MHz,若加预置的分频电路,则上限频率可达40MHz或100MHz,单片频率计ICM7216D只要加上晶振、量程选择、LED显示器等少数器件即可构成一个DC至40MHz的微型频率计,可用于频率测量、机械转速测量等方面的应用。

数字频率计设计报告

数字频率计设计报告
总线接口部件由以下部件组成:
(1)四个段寄存器:代码段寄存器、数据段寄存器、附加段寄存器、堆栈段寄存器;
(2)指令指针寄存器;
数字频率计设计报告
一、设计要求
近年来,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
本设计实现一个由微机控制的数字频率计。具体要求如下:
1.能测量1Hz—10MHz频率范围的矩形和正弦波的频率或周期。
2.在全频率范围内测量误差≤0.1%。
3.以十进制数字显示出被测信号的频率或周期。
二、设计目的
1.进一步掌握8253、8255A的原理及应用方法。
2.熟悉数字频率计的测量原理与实现方法。
3.掌握微机化数字频率计的设计电路。
三、设计的具体实现
3.1系统概述
1.数字频率计的基本原理
频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。通常情况下计算每秒内待测信号的脉冲个数,此时我们称闸门时间为1秒。闸门时间也可以大于或小于一秒。闸门时间越长,得到的频率值就越准确,但闸门时间越长则每测一次频率的间隔就越长。闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
图1中S1为一个三刀双掷开关,置于0时为高频挡,按频率测量法测量高频信号;置于1时为低频挡,按周期测量法测量低频信号。S2和S3分别为高频和低频分档开关。S2置于0和1时,分别对应于500KHz—5MHz频段和5MHz—10MHz频段;S3置于0和1时,分别对应于1Hz—100KHz频段和100KHz—500KHz频段。
(2)写入计数值。
若规定只写低8位,则写入的为计数值的低8位,高8位自动置0;若规定只写高8位,则写入的为计数值的高8位,低8位自动置0;若是16位计数值,则分两次写入,先写入低8位,再写入高8位。

课程设计---数字频率计逻辑电路设计

课程设计---数字频率计逻辑电路设计

数字频率计逻辑电路设计一﹑简述在进行模拟﹑数字电路的设计﹑安装和调试过程中,经常要用到数字频率计。

数字频率计实际上就是一个脉冲计数器,即在单位时间里(如1秒)所统计的脉冲个数,如图3.1计数时序波形图所示。

频率数即为在1秒内通过与门的脉冲个数。

图3.1(a)门控计数图3.1(b)门控序列通常频率计是由输入整形电路﹑时钟振荡器﹑分频器﹑量程选择开关﹑计数器﹑显示器等组成。

如图3.2所示。

图3.2 方框图图3.2中,由于计数信号必须为方波信号,所以要用史密特触发器对输入波形进行整形,分频器输出的信号必须为1Hz,即脉冲宽度为1秒,这个秒脉冲加到与门上,就能检测到待测信号在1秒内通过与门的个数。

脉冲个数由计数器计数,结果由七段显示器显示。

二﹑设计任务和要求设计一个八位的频率计数器逻辑控制线路,具体任务和要求如下:1. 八位十进制数字显示。

2. 测显范围为1Hz~10MHz。

3. 量程分为四档,分别为*1000﹑*100﹑*10﹑*1。

三﹑可选用器材1. NET系列数字电子技术实验系统2. 直流稳压电源3. 集成电路:频率计数器专用芯片ICM7216B,74LS93,74LS123,74LS390,7555及门电路4. 晶振:8MHz,10MHz5. 数显:CL102,CL002,LC5011—116. 电阻﹑电容等四﹑设计方案提示数字频率计可分为三部分进行考虑:1. 计数﹑译码﹑显示这一部分是频率计数器不可少的。

即外部整形后的脉冲。

通过计数器在单位时间里进行计数﹑译码和显示。

计数器选用十进制的中规模(TTL/CMOS)集成计数器均可,译码显示可采用共阴或共阳的配套器件。

例如计数器选用74LS161,译码器为74LS248,数显器为LC5011—11。

也可选用四合一计数﹑寄存﹑译码﹑显示CL102或专用大规模频率计数器ICM7216芯片等。

中规模组成的计数﹑译码显示和四合一的数显。

我们在基本实验和前几个课题中都已使用过,使用时,可参阅有关章节。

简易数字频率计课程设计报告

简易数字频率计课程设计报告

简易数字频率计课程设计报告《简易数字频率计课程设计报告》一、设计目的和背景随着科技的不断发展和普及,计算机已经成为人们生活中不可或缺的一部分。

而数字频率计作为一种常见的电子测量仪器,在工业控制、电信通讯等领域有着广泛的应用。

本课程设计旨在通过设计一款简易的数字频率计,以帮助学生深入了解数字频率计的工作原理和设计方法。

二、设计内容和步骤1. 学习数字频率计的基本原理和工作方式:介绍数字频率计的基本功能、硬件组成和工作原理。

2. 设计数字频率计的主要电路:通过研究数字频率计的电路原理图,设计出适用于本设计要求的主要电路。

3. 制作数字频率计的原型:使用电子元器件将电路图中设计的电路进行实际制作,制作出数字频率计的原型。

4. 测试数字频率计的性能:通过对数字频率计进行各种频率波形的测试,验证其测量准确性和稳定性。

5. 优化和改进设计:根据测试结果和用户反馈,对数字频率计的电路和功能进行进一步优化和改进。

三、预期效果和评价标准通过本课程设计,预期学生能够掌握数字频率计的基本工作原理、主要电路设计和制作方法,并且能够针对实际需求进行优化和改进。

评价标准主要包括学生对数字频率计原理的理解程度、电路设计的准确性和创新性,以及对数字频率计性能进行测试和改进的能力。

四、开展方式和时间安排本课程设计可以结合理论学习和实践操作进行,建议分为以下几个阶段进行:1. 第一阶段(1周):学习数字频率计的基本原理和工作方式。

2. 第二阶段(1周):设计数字频率计的主要电路。

3. 第三阶段(2周):制作数字频率计的原型,并进行性能测试。

4. 第四阶段(1周):优化和改进数字频率计的设计。

总共需要约5周的时间来完成整个课程设计。

五、所需资源和设备1. 教材教辅资料:提供数字频率计的基本原理和电路设计方法的教材或教辅资料。

2. 实验设备和工具:数字频率计的主要电路所需的电子元器件、测试仪器和焊接工具等。

3. 实验环境:提供安全、稳定的实验室环境,以及必要的计算机软件支持。

简易数字频率计课程设计报告 .

简易数字频率计课程设计报告  .

目录第一章概述1.1 数字频率计功能及特点1.2 数字频率计应用意义第二章设计方案2.1 设计指标与要求2.2 设计原理2.3方案论证第三章数字频率计分析及参数设计3.1 电路基本原理3.2 时基电路设计3.3闸门电路设计3.4控制电路设计3.5 小数点显示电路设计3.6 整体电路图第四章设计总结4.1 整体电路图4.2 元器件列表4.3 设计心得与体会4.4 附录4.5 参考文献第一章、概述数字频率计是直接用十进制数字来显示被测信号频率的一种测量装置。

它不仅可以测量正弦波、方波、三角波、尖脉冲信号和其他具有周期特性的信号的频率,而且还可以测量它们的周期。

经过改装,可以测量脉冲宽度,做成数字式脉宽测量仪;可以测量电容做成数字式电容测量仪;在电路中增加传感器,还可以做成数字脉搏仪、计价器等。

因此数字频率计在测量其他物理量如转速、振动频率等方面获得广泛应用。

1.1 整体功能及特点1,频率计主要用于测量正弦波、矩形波、三角波和尖脉冲及其它各种周期信号。

2,测量信号复制范围0.5-5v3,显示方式:四维十进制LED显示4,测量范围:1HZ-10HZ5,测量误差:≤±0.1%6,自动检测切换量程1.2 数字频率计应用意义数字频率计是一种应用很广泛的仪器电子系统非常广泛的应用领域内,到处可见到处理离散信息的数字电路。

数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。

集成电路的类型很多,从大的方面可以分为模拟电路和数字集成电路2大类。

数字集成电路广泛用于计算机、控制与测量系统,以及其它电子设备中。

一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。

数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个领域。

第二章设计方案2.1 设计指标与要求2.1.1 设计指标1,频率计主要用于测量正弦波、矩形波、三角波和尖脉冲及其它各种周期信号。

数字频率计的设计 中国计量学院现代科技学院

数字频率计的设计 中国计量学院现代科技学院

中国计量学院现代科技学院课程设计报告课程设计名称数字频率计的设计系(部)信息工程系专业班级通信102班姓名学号指导老师2013年 06 月 23 日目录前言…………………………………………………………………………( 2 )第一章设计要求……………………………………………………………( 3 )1.技术要求………………………………………………………………(3 )2.技术要求………………………………………………………………(3 )第二章设计总方案……………………………………………………………( 4 )1.设计软件:Quartus II……………………………………………………(4 )2.数字频率计的实现原理及整机原理框图………………………………(4 )3.各模块电路的设计要求及功能仿真……………………………………(5 )第三章顶层电路及仿真………………………………………………………(10 )第四章心得体会………………………………………………………………(14 )第五章参考文献………………………………………………………………(15 )指导教师评语及成绩……………………………………………………………(16 )附件:前言数字频率计是采用数字电路制做成的能实现对周期性变化信号频率测量的仪器。

频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

其扩展功能可以测量信号的周期和脉冲宽度。

通常说的,数字频率计是指电子计数式频率计。

测量频率的方法有很多,按照其工作原理分为无源测量法、比较法、示波器法和计数法等。

计数法在实质上属于比较法,其中最常用的方法是电子计数器法。

电子计数器是一种最常见、最基本的数字化测量仪器。

数字计数式频率计能直接计数单位时间内被测信号的脉冲数,然后以数字形式显示频率值。

这种方法测量精确度高、快速,适合不同频率、不同精确度测频的需要。

电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。

数字电路课程设计--自动换挡型1Hz-9.99KHz频率计

数字电路课程设计--自动换挡型1Hz-9.99KHz频率计

数字电子技术课程设计(频率计设计)姓名:学号:班级:成绩:指导老师:设计时间:一.设计题目自动换挡型1Hz-9.99KHz频率计二.设计要求1设计一个能测量1Hz—9.99KHz、TTL电平的频率计,具有自动换挡功能。

要求用三位数字显示,1—999Hz显示单位为Hz、1KHz—9.99KHz显示单位为0.01KHz。

画出完整的电路图,说明电路的工作原理。

2根据所给参考电路分析其工作原理并解答思考题。

3 根据上述原理电路图,在印刷电路图中标出元器件的位置及代号,并完成跳线,使连接完整。

4 组装、调试频率计;写出实验、调试报告。

选作内容:1频率计输入接口,可以测量5mV—10V的正弦波、三角波方波信号。

2让频率计具有以下精度:1—99Hz精度为0.2Hz100—999Hz精度为0.5Hz1KHz—9.99KHZ精度为1Hz三.题目分析:所谓频率,就是周期性信号在单位时间(1s)里变化的次数。

根据频率计的测频原理,可以选择合适的基准信号即闸门时间,对输入被测信号脉冲进行计数,实现测频的目的。

并且当频率超过一定值后,电路能够自动换挡。

四.整体构思:本数字频率计的设计思路是:1 数字频率计的主要功能是测量周期信号的频率。

频率是单位时间( 1S )内信号发生周期变化的次数。

如果我们能在给定的 1S 时间内对信号波形计数,并将计数结果显示出来,就能读取被测信号的频率。

2 数字频率计首先必须获得相对稳定与准确的时间,同时将被测信号转换成幅度与波形均能被数字电路识别的脉冲信号,然后通过计数器计算这一段时间间隔内的脉冲个数,将其换算后显示出来。

这就是数字频率计的基本原理。

值了。

此时的时基信号为输入信号。

3 自动换挡,由于此频率计只有三个数码管显示,故数字频率即必须采用自动换挡的方式工作,当所测频率超过999Hz时自动换挡,借助分频器分频后通过数码管显示。

五.具体实现:画出总体方框图和原理图并给出说明。

原理图必须电脑画。

数字频率计课程设计报告

数字频率计课程设计报告

数字频率计课程设计报告目录1方案的选择 (5)1.1 数字频率计的发展现状及研究概况 (5)1.2供选方案 (5)1.2.1方案一 (5)1.2.2方案二 (6)1.3方案选择 (8)2课程设计内容 (9)2.1数字频率计设计所用元件简单介绍 (9)2.1.1 BS202数码显示管 (9)2.1.2 74LS48芯片 (9)2.1.3 74LS273芯片简介: (10)2.1.4 74LS90简介 (11)2.1.5 74LS123芯片简介 (13)2.1.6 555定时器简介 (14)2.1.7 74LS00芯片简介 (15)2.2.2锁存器 (17)2.2.4脉冲形成电路 (19)2.2.5 放大整形电路 (20)2.3 数字频率计的整机电路 (21)3测量与分析 (23)3.1 调试、测量所需要的仪器 (23)3.2电路的调试 (23)3.2.1对频率计的测量 (23)3.2.2 对闸门电路的测量 (23)3.3 对仿真结果的分析 (24)3.4 电路出现故障及排除方法 (24)4设计小结 (25)摘要在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案测量结果都有十分密切的关系,因此频率的测量就显得更为重要。

测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

电子计数器测频有两种方式:一是直接测频法,即在一定闸门时间内测量被测信号的脉冲个数;二是间接测频法,如周期测频法。

直接测频法适用于高频信号的频率测量,间接测频法适用于低频信号的频率测量。

本文阐述了用数字电路设计了一个简单的数字频率计的过程。

频率测量中直接测量的数字频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。

在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成方波信号,加到与非门的另一个输入端上.该与非门起到主阀门的作用,在与非门第二个人输入端上加阀门控制信号,控制信号为低电平时阀门关闭,无信号进入计数器;控制信号为高电频时,阀门开启整形后的信号进入计数器,若阀门控制信号取1s,则在阀门时间1s内计数器得到的脉冲数N就是被测信号的频率。

数字频率计课程设计心得【模版】

数字频率计课程设计心得【模版】

课程设计任务书一、设计题目数字频率计设计二、设计任务频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。

其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。

用中小规模数字集成电路和半导体显示器件实现以下技术指标:频率测量范围:10~9999Hz输入电压幅度:300mV~3V输入信号波形:任意周期信号显示位数: 4位电源: 220V50Hz三、设计计划电子技术课程设计共1周:第1天:针对选题查阅资料,确定设计方案;第2天:电路原理设计,进行元器件及参数选择;第3~4天:电路仿真,画电路原理图;第5天:编写整理设计说明书。

四、设计要求1. 系统工作原理说明;2. 画出系统电路原理图;3. 对所设计的电路全部或部分进行仿真,使之达到设计任务要求;4. 写出设计说明书。

指导教师:时间:年月日目录0综述 (1)1 方案论证 (5)2 原理及技术指标 (6)3 单元电路设计及参数计算 (8)3.1时基电路 (8)3.2放大整形电路 (9)3.3逻辑控制电路 (9)3.4计数器 (10)3.5锁存器 (12)3.6译码电路 (13)4 仿真 (13)5 设计小结 (14)5.1 设计任务完成情况 (14)5.2 问题及改进 (14)5.3 心得体会 (15)6 参考书目 (15)摘要数字频率计是一种用十进制数字,显示被测信号频率的数字测量仪器。

它的基本功能是测量正弦信号,方波信号以及其他各种单位时间内变化的物理量。

在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,显示直观,所以经常要用到数字频率计。

频率测量中直接测量的数字频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。

在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成方波信号,加到与非门的另一个输入端上.该与非门起到主阀门的作用,在与非门第二个人输入端上加阀门控制信号,控制信号为低电平时阀门关闭,无信号进入计数器;控制信号为高电频时,阀门开启整形后的信号进入计数器,若阀门控制信号取1s,则在阀门时间1s内计数器得到的脉冲数N就是被测信号的频率.在普通的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。

课程设计之简易数字频率计的设计

课程设计之简易数字频率计的设计

安康学院电子技术课程设计报告书课题名称:简易数字频率计的设计姓名:向XX学号:2010222XXX院系:电子与信息工程系专业:电子信息工程指导教师:张XX、吕XX时间:2012年6月课程设计项目成绩评定表设计项目成绩评定表设计报告书目录一、设计目的 (3)二、设计思路 (3)三、设计过程 (3)3.1、整体框图及原理 (3)3.2、放大整形电路 (3)3.3、闸门电路 (5)3.4、时基电路 (5)3.5、控制电路 (7)3.6、整体电路 (8)四、系统调试与结果 (9)五、主要元器件与设备 (10)六、课程设计体会与建议 (11)七、参考文献 (11)一、设计目的1、熟悉集成电路的引脚安排。

2、掌握芯片的逻辑功能及使用方法。

3、了解面包板结构及其接线方法。

4、了解简易数字频率计的组成及工作原理。

5、熟悉简易数字频率计的设计与制作。

二、设计思路1、设秒脉冲电路。

2、设计放大整形电路。

3、设计门控电路。

4、设计主控电路。

5、设计计数器和显示器三、设计过程3.1、整体框图及原理频率测量是通过在单位时间内对被测信号进行计数来实现的。

工作原理如图1所示。

图 13.2、放大整形电路对信号的放大功能由三触发器电路是一种特殊的数字器件,一般的数字电路器件当输入起过一定的阈值,其输出一种状态,当输入小于这个阈值时,转变为另一个状态,而施密特触发器不是单一的阈值,而是两个阈值,一个是高电平的阈值,输入从低电平向高电平变化时,仅当大于这个阈值时才为高电平,而从高电平向低电平变化时即使小于这个阈值,其仍看成为高电平,输出状态不这;低电平阈值具有相同的特点。

放大整形电路由三极管与与非门组成。

三极管构成的放大器将输入频率为fx 的周期信号如正弦波、三角波、等进行放大。

将电源电压设为5V ,当输入信号幅值比较大时,会出现线性失真,将放大后的波形幅度控制在5V 以内。

与非门构成施密特触发器对放大器的输出信号进行整形,使之成为矩形脉冲。

数电课程设计_数字频率计

数电课程设计_数字频率计

电子技术课程设计报告设计题目:数字频率校音器院(部): 电气工程及自动化学院专业班级: 测仪学生姓名: 吴学号: 3113指导教师:目录摘要3绪论41、设计原理方案51.1设计总体方案:31.2工作步骤:71.3测频原理:92、单元电路设计102.1采集音律信号电路112.2时标和闸门电路112.3锁存器、计数和清零143、心得体会、元器件清单194、参考文献1815、附件225.1电路仿真图及样品图165.2音阶频率对照表18设计题目:数字频率校音器摘要随着社会的发展,人们的业余生活不断丰富,学乐器的人也越来越多,但是对于初学者来说,学习乐器最难的问题之一就是对乐器音准的把握、调节。

例如二胡经常会出现跑音的现象,需要人对其进行不断的调节,但对于初学者来说便是个很是让人头疼的问题。

在电子技术中,我们可以测量声音的频率来知道乐器是否音准,从而去调节,解决生活难题。

因此频率的测量就显得更为重要。

本次课程设计的目的是根据已经学到的知识,按照这次课程设计的要求设计一个简易的数字频率校音器,要求频率计范围内能测出所输入音调的频率,一般基准中低音在200到900Hz。

关键词:校音器,频率计,逻辑控制,计数器,定时器。

绪论乐器是个很有活力的娱乐工具,千百年来在世界各个地区居住的人群基本都有属于自己的民族乐器,随着社会的发展,人民的生活水平的不断提高,人们的业余文化生活也越来越丰富,学乐器的人群也越来越多。

但是对于有有些乐器,往往在演奏前需要对其音准进行调试,例如我国民族乐器中的二胡经常会出现跑音的现象,竹笛的制作定调时则需要对每个音控的位置进行校准。

那么对于初学乐器的人群来说,通过自己的耳力去听音准则是一件很难的事。

本次设计的目是利用测量音调频率的方法去判断音调的准度,这样便为了给那些初学乐器或者对乐器的音准把握不准的人们在调试乐器音调高低时带来方便。

测量频率的方法有多种,中电子计数器测量频率具有精度高、使用方便、测量迅速,其以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一课程设计题目:数字频率计的设计
二、功能要求
(1)主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。

(2)率范围:分四1Hz~999Hz、01kHz~9.99kHz、1kHz~99.9kHz、10~999KHZ
(3)周期范围:1ms~1s。

(4)用3个发光二极管表示单位,分别对应3个高档位。

三频率计设计原理框图
正弦波
数字频率计原理框图
1
测试电路原理:在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。

改闸门信号控制闸门电路的导通与开断。

让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。

测量频率的误差与闸门信号的精度直接相关。

被测信号
频率测量算法对应的方框图
四、各部分电路及仿真
1 整形电路部分
整形电路的目的是将三角波、正弦波变成方便计数的脉冲信号。

整形电路可以直接用555定时器构成施密特触发。

本次设计采用555定时器,适当连接若干个电阻就可以构成触发器
图1-1 整形电路
将555定时器的THR和TR1两个输入端连在一起作为信号输入端,则可得到
显示电路
闸门产生
输入电路闸门计数电路
施密特触发器,为了提高其稳定性通常要在要在CON端口接入一个0.01uf左右的滤波电容。

但使用555定时器的时候输入的电压应该要大于5V,本次设计直接用信号源来做输入信号,并且信号源的振幅为10V,没有用放大电路将信号放大。

2 时基电路
时基电路时用来控制闸门信号选通的时间,由于本次设计的频率计测试范围是0到999KHz,故时基信号要有1ms 10ms 100ms 1s,基于上述,还需要一个分频器分出不同的频率。

设计过程如下:可用一个多谐振电路产生频率为1KHz的脉冲信号(即T=1ms),然后使用分频器产生10ms 100ms 1s。

多谐振电路可以采用555定时器或者晶体振荡器来完成。

本次设计采用555定时器实现,本次设计的精确度要求比较低,而且555定时器组成的多谐振荡起的最高振荡频率只能最多1MHz,而我们将用555定时器产生1Kz的频率,满足在该范围之内。

分频器采用10分频,可用74LS90或者74LS160。

图2-1555定时器构成的多谐振振荡器
555多谐振振荡器设计参数:设计一个震荡周期为1ms,输出的占空比
2
3 q
12 12
12
12
1
18
12
2
23
(2)ln20.001
10
3ln21
0.0011
48
3ln23100.69
48
R R
q
R R
R R
T R R C s
C nf
R C
R k
C
R R k
-
+
==
+
=
=+=
=
=
===Ω
⨯⨯
==Ω
占空比
周期
图2-2时基分频电路
时基电路的调测
首先调测时基信号,通过555定时器、RC阻容件构成多谐振荡器的两个暂态时间公式,选择R1=8.2KΩ ,R2=5.1KΩ,C=0.01μF。

把555产生的信号接到示波器中,调节电位器使得输出的信号的频率为1KHz。

同时输出信号的频率也要稳定。

测完后,下面测试分频后的频率,分别接一级分频、二级分频、三级分频的输出端,测试其信号。

测出来的信号频率和理论值很接近。

说明电路能正常工作。

3 闸门信号
时基信号分频得的频率虽然是1ms 10ms 100ms 1s,但是它们占空比
2
3
q=,但闸门信号要求的是高电平的持续时间分别是1ms 10ms 100ms 1s,故还需要将它们一个周期的时间变为高电平,可选用4017BD。

图3-1闸门信号电路
图3-1的4017BD的脚引
CP接分频之后周期为1ms 10ms 100ms 1s,图中用信号
源来代替,信号源中的参数设为:占空比
2
3
q ,频率100Hz(对应的周期为10ms)
(注:也可以用1kHz 1Hz 10Hz来测试)。

将其作为闸门选通的信号,跟整形之后的波形用一个与非门连在一块。

如下图
图3-2
图3-34017BD的脚引
CP接分频之后周期为1ms 10ms 100ms 1s,图中依旧暂
时用信号源来代替,信号源中的参数设为:占空比
2
3
q ,频率100Hz,与555定时
器构成的整形电路用与非门连接。

图3-4
4显示译码计数电路
这部分电路省去了锁存器,因为只有在高电平才计数,那么高电平一过,就不计数,也就是相当于锁存,直到下一个高电平在重新清零和计数。

计数器用3个74LS90来连接,译码器用4511BD,采用共阴驱动八段数码管显示器。

电路图如下
图4-1显示译码计数电路
图4-1中用了一个矩形脉冲信号来测试一下显示译码计数电路的正确性。

如果能显示计数,则电路正确,否则,还需修改。

其中74LS90的R0和R1脚引是用来清零信号的。

5逻辑控制电路
逻辑控制电路是整个电路图中比较关键的部分,用来控制清零信号的。

用4017BD后接入个RC延迟电路作为控制电路。

电路图如下
图5-1控制电路设计方案
图5-1中,4017BD脚引
CP接分频之后周期为1ms 10ms 100ms 1s,图中依
旧暂时用信号源来代替,信号源中的参数设为:占空比
2
3
q ,频率100Hz。

6 手动换挡电路及量程显示电路
图6-1手挡换挡及量程显示电路下面用表格说明其工作原理:
开关J1
74LS138
A B C端口
74LS138
Y0 Y1 Y2
74LS151
A B C
74LS151
输出Y
J1三个按钮都不打上0 0 0 0 1 1 1 0 0 Y=
4
D
J1只打第一
个按钮
1 0 0 1 0 1 0 1 0 Y=2D J1只打第二
个按钮
0 1 0 1 0 1 0 0 1 Y=1D J1只打第三
个按钮
001 111 000 Y=0D
故,当J1开关不打的时候,设为0档,此时LED灯不亮,将74LS151的脚引D接分频之后周期T=1s的时基信号,此时测量的范围为1Hz~999Hz ,可以用灯4
不亮来指示量程
当J1开关打第一个按钮的时候,设为1档,此时LED1灯亮,将74LS151 D接分频之后周期T=100ms的时基信号,此时测量的范围为1kHz~9.99kHz,可的脚引
2
用LED1指示量程。

当J1开关打第二个按钮的时候,设为2档,此时LED2灯亮,将74LS151 D接分频之后周期T=10ms的时基信号,此时测量的范围为10kHz~99.9kHz,可的脚引
1
用LED2指示量程.
当J1开关打第三个按钮的时候,设为3档,此时LED3灯亮,将74LS151 D接分频之后周期T=1ms的时基信号,此时测量的范围为100kHz~999KHz,可的脚引
用LED3指示量程。

7总的电路图
如下图所示
8电路存在的问题以及改进
电路中缺少了一个量程溢出的报警电路,缺少了这个电路会导致严重的后果,没有报警电路就不知道什么时候该手动换挡
初步的改进方法:当有溢出的时候,则第三个计数器的Qd端会从1到0跳变,可以考虑加上一个边沿触发器。

五、整机原件清单
六心得体会
在设计计数器电路时,我首先复习了以前学过的知识,然后用学过的知识对电路进行分析,在经过多次推算之后,最后终于把电路设计出来了。

在设计过程中也遇到很多问题,在和同学和老师讨论之后,顺利解决了遇到的问题,同时也巩固了以前学过的知识,在这次电子设计中,我感触最深的当属查阅大量的设计资料。

为了让自己的设计更加完善,查阅这方面的设计资料是十分必要的,同时;也是必不可少的。

这次电子设计加强了我们动手、思考核解决问题的能力。

七参考文献
1.张顺兴. 数字电路与系统设计. 第1版. 南京:东南大学出版社,2004
2.邹其洪. 电工电子实验与计算机仿真. 第1版. 北京:电子工业出版社,200
3.9
3.王玉秀. 电工电子基础实验. 第1版. 南京:东南大学出版社,2006
4.孙肖子. 模拟电子技术基础. 第1版. 西安:西安电子科技大学出版社,2001.1。

相关文档
最新文档