(八年级数学教案)公开课--

合集下载

八年级数学公开课获奖教案设计优秀3篇

八年级数学公开课获奖教案设计优秀3篇

八年级数学公开课获奖教案设计优秀3篇作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。

写教案需要注意哪些格式呢?这次帅气的小编为您整理了八年级数学教案优秀3篇,如果对您有一些参考与帮助,请分享给最好的朋友。

八年级数学教案篇一一、教学目标1、使学生理解并掌握分式的概念,了解有理式的概念;2、使学生能够求出分式有意义的条件;3、通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;4、通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识。

二、重点、难点、疑点及解决办法1、教学重点和难点明确分式的分母不为零。

2、疑点及解决办法通过类比分数的意义,加强对分式意义的理解。

三、教学过程【新课引入】前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)【新课】1、分式的定义(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:用、表示两个整式,就可以表示成的形式。

如果中含有字母,式子就叫做分式。

其中叫做分式的分子,叫做分式的分母。

(2)由学生举几个分式的例子。

(3)学生小结分式的概念中应注意的问题。

①分母中含有字母。

②如同分数一样,分式的分母不能为零。

(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]2、有理式的分类请学生类比有理数的分类为有理式分类:例1 当取何值时,下列分式有意义?(1);解:由分母得。

∴当时,原分式有意义。

(2);解:由分母得。

∴当时,原分式有意义。

(3);解:∴恒成立,∴取一切实数时,原分式都有意义。

(4)。

解:由分母得。

∴当且时,原分式有意义。

思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?例2 当取何值时,下列分式的值为零?(1);解:由分子得。

人教初中数学八上《整式的乘法 》教案 (公开课获奖)

人教初中数学八上《整式的乘法   》教案 (公开课获奖)

整式的乘法〔3〕〔一〕教学目标 知识与技能目标:理解多项式乘法的法那么,并会进行多项式乘法的运算. 过程与方法目标:经历探索多项式乘法的法那么的过程. 情感态度与价值观:通过探索多项式乘法法那么,让学生感受数学与生活的联系,同时感受整体思想、转化思想,并培养学生的抽象思维能力.教学重点:多项式与多项式相乘法那么及应用. 教学难点:● 多项式乘法法那么的推导. ● 多项式乘法法那么的灵活运用. 〔二〕教学程序 教学过程师生活动设计意图 一、问题情境导入新课为了扩大街心花园的绿地面积,把一块原长为m 米,宽为a 米的长方形绿地,增长了n 米,加宽了b 米.你能用几种方法求出扩大后的绿地面积?问题情境导入新课有助于激发学生的学习兴趣.二、新知讲解扩大后绿地的面积可以表示为(m+n)(a+b)或(ma+mb+na+nb),它们表示同一块地的面积,故有:(m+n)(a+b)= ma+mb+na+nb通过图示方法向学生展示多项式amb n多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加. 乘以多项式的过程.也可以这样考虑: 当X=m+n时, (a+b)X=?由单项式乘以多项式知 (a+b)X=aX+bX 于是,当X=m+n时,(a+b)X=(a+b)(m+n)=a(m+n)+b(m+n) 即 (a+b)(m+n)=am+an+bm+bn=am+an+bm+bn为学生提供不同的思维方式,以使学生更好的掌握此内容.例题讲解:例题1:计算:(1)(x+2y)(5a+3b); (2)(2x-3)(x+4);(3)(x+y)2; (4)(x+y)(x2-xy+y2)解:(1)(x+2y)(5a+3b)=x·5a+x·3b+2y·5a+2y·3b=5ax+3bx+10ay+6by;(2)(2x-3)(x+4)=2x2+8x-3x-12=2x2+5x-12(3)(x+y)2=(x+y)(x+y)=x2+xy+xy+y2=x2+2xy+y2;(4)(x+y)(x2-xy+y2)=x3-x2y+xy2+x2y-xy2+y3=x3+y3例题2:计算以下各题:多项式乘以多项式的具体应用,通过教师演示向学生提供严格的书写过程培养学生严谨的思维训练.〔1〕(a+3)·(b+5); 〔2〕(3x-y) (2x+3y); 〔3〕(a-b)(a+b); 〔4〕(a-b)(a 2+ab+b 2) 解:(1) (a+3)·(b+5) =ab+5a+3b+15; (2) (3x-y) (2x+3y)=6x 2+9xy-2xy-3y 2(多项式与多项式相乘的法那么) =6x 2+7xy-3y 2(合并同类项) (3)(a-b)(a+b) =a 2+ab-ab-b 2= a 2-b 2(4)(a-b)(a 2+ab+b 2) =a 3+a 2b+ab 2-a 2b-ab 2-b 3= a 3-b 3例题3:先化简,再求值:〔2a-3〕〔3a+1〕-6a 〔a-4〕其中a =2/17 解:〔2a-3〕〔3a+1〕-6a 〔a-4〕 =6a 2+2a-9a-3-6a 2+24a =17a-3当a =2/17时,原式=17×2/17-3=-1 例题4:观察以下解法,判断是否正确,假设错请说出理由。

八上沪科版数学市公开课获奖教案省名师优质课赛课一等奖教案

八上沪科版数学市公开课获奖教案省名师优质课赛课一等奖教案

八上沪科版数学教案一、教案简介本教案针对八年级上册沪科版数学教材编写,共包括多个单元的教学内容。

通过本教案的使用,旨在帮助学生更好地理解和掌握数学知识,提高数学思维能力和解题能力。

二、教学目标1. 知识目标a. 了解八年级上册沪科版数学的基本知识点;b. 掌握各单元的重点难点知识;c. 能够运用所学知识解决实际问题。

2. 能力目标a. 培养学生的数学思维能力,提高解题能力;b. 培养学生的逻辑思维和推理能力;c. 培养学生的数学建模能力。

三、教学内容和教学步骤1. 单元一:整数a. 教学内容:正整数、负整数、绝对值、整数的加减法、整数的乘法、整数的除法等;b. 教学步骤:i. 引入整数概念,让学生了解整数的定义和性质;ii. 通过实际例子让学生掌握整数的加减法;iii. 教授整数的乘法和除法,并进行练习。

2. 单元二:平方根与立方根a. 教学内容:平方根的概念、性质及运算规律,立方根的概念、性质及运算规律等;b. 教学步骤:i. 引入平方根和立方根的概念,让学生了解其定义和性质;ii. 教授平方根和立方根的运算规律,并进行练习。

3. 单元三:比例与类比a. 教学内容:比例、比例的性质及运用,类比等;b. 教学步骤:i. 介绍比例的概念和性质;ii. 引导学生应用比例解决实际问题;iii. 教授类比的概念和解题方法,并进行练习。

4. 单元四:平行线与角a. 教学内容:平行线、同位角、内错角等;b. 教学步骤:i. 让学生了解平行线和角的基本概念;ii. 教授平行线和角的性质,并进行练习。

5. 单元五:相交线与三角形a. 教学内容:相交线、三角形的分类与性质等;b. 教学步骤:i. 通过实际图形让学生了解相交线的性质;ii. 教授三角形的分类和性质,并进行练习。

6. 单元六:不等式与线性方程a. 教学内容:不等式及其性质,一次线性方程等;b. 教学步骤:i. 介绍不等式的概念和性质;ii. 引导学生应用不等式解决实际问题;iii. 教授一次线性方程的基本类型和解法,并进行练习。

《变量与函数》公开课教学设计 人教版八年级下册

《变量与函数》公开课教学设计  人教版八年级下册

人教版八年级下册19.1.1变量与函数教学设计因为数是固定不变的,所以在一个关系式中,常量是数,而字母可以取相应变化的值,所以变量是字母。

下列运动变化过程中的关系式,哪些是变量,哪些是常量:①y=0.4x常量:变量:②a=3+2.4b常量:变量:③C=2πR常量:变量:④V=6abc常量:变量:2、函数的相关概念:P73一般地,在一个变化过程中,如果有____个变量___与___,并且对于____的每一个确定的值,____都有___________的值与其对应,那么我们就说 x是_________,y是 x的______.如果当x=a 时,对应的y=b,那么 b 叫做当自变量的值为a时的_______.P74用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的_________.x/h 1 2 3 4 (x)y/km 60 120 180 240 (60x)在上述汽车行驶的过程中, y与x的关系式是_________,这其中有____个变量,给一个x,得____个y,所以____是自变量,_____是_____的函数。

x=1时,y的函数值是60;x=2时,y的函数值是120;x=3时,y的函数值是_______;x=4时,y的函数值是_______。

函数解析式即y与x的关系式:___________.y是x的函数吗?如果是,指出自变量。

①y=0.4x 两个变量x和y,给一个x,得一个y,所以,x是自变量,y是x的函数。

②y=±x 反例:当 x=1时,y=±1,给一个x,得两个y,所以y不是x函数。

③y2=x 问题前置的目的。

左题由组代表抢答,并计入本组竞赛成绩,教师根据答题情况纠偏改错。

2、学生齐读并齐答,教师根据回答情况纠偏改错。

①②③④是难点题目,教师先讲解,学生讨论研究。

反例:(±3)2=9,当 x=9时,y=±3,给一个x,得两个y,所以y不是x的函数。

八年级数学上册公开课教案

八年级数学上册公开课教案

东乡县实验中学初二数学公开课授课人:黄树华时间:2011.9.8 第2周授课班级:八年级课题探索勾股定理(3)教学目标知识与技能通过对几种常见的勾股定理验证方法的分析和欣赏,理解数学之间的内在联系。

过程与方法通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联系。

情感态度与价值观通过丰富有趣的拼图活动,增强对数学学习的兴趣;在合作学习中发展学生的合作交流意识和能力。

重点通过综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。

课型新授课难点利用数形结合的方法验证勾股定理。

教学方法探究发现式关键积极思考,动手实践。

教具:三角板、方格纸、自制教具、剪刀、硬纸板、铅笔。

教学环节教学内容教学活动设计意图设疑自探我们已经通过测量、数格子和图形割补等方法发现:图1—1中两个小正方形的面积之和恰好等于大正方形的面积。

那么能否将这个大正方形通过适当的剪切后再拼接成两个小正方形呢?图1-1学生分组进行活动,教师加以指导。

有助于学生提高对有关验证方法的认识,加深学生的理解。

解疑合探1、五巧版的制作:任作一个直角三角形ABC,如图1—13。

以其斜边AB为边向直角顶点C所在一侧作正方形ABDE.延长BC交DE于F;过D作BF的垂线DG,G为垂足;在线段CA上截取CH等于BC;过H作AC的垂线HI,交AB于I,如图1—3。

延这些线将正方形剪开,就得到一幅五巧版。

2、利用五巧版拼“青朱出入图”3、利用两幅五巧版,还可拼出其他图形来验证勾股定理,试一试吧。

4、利用五巧版还能通过怎样拼图来验证勾股定理?CAB图1-13HICGFAEBD图1--3在老师的指导下进行操作,培养学生动手实践能力。

通过前面的展示,学生已经基本了解所谓的“无字证明”。

通过学生的亲身实验进一步确认“无字证明”的验证方法。

图1—3学生积极思考,动手实践。

质疑再探1、学生质疑:勾股定理在所有三角形中都成立吗?2、观察下图,用数格子的方法判断图中三角形的三条边长是否满足222cba=+。

八年级数学公开课《矩形》第一课时教案

八年级数学公开课《矩形》第一课时教案

18.2.1 矩形(一)一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点1.重点:矩形的性质.2.难点:矩形的性质的灵活应用.三、例题的意图分析例1是教材P95的例1,它是矩形性质的直接运用,它除了用以稳固所学的矩形性质外,对计算题的格式也起了一个示范作用.例2与例3都是补充的题目,其中通过例2的讲解是想让学生了解:〔1〕因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法;〔2〕“直角三角形斜边上的高〞是一个根本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个根本关系式.并能通过例2、例3的讲解使学生掌握解决有关矩形方面的一些计算题目与证明题的方法.四、课堂引入1.提出问题应发思考引言对一类几何图形的研究,我们常常按照从一般到特殊的思路迸行. 比方研究了一般三角形后,我们研究了把边特殊化得到的等腰二角形、把角特殊化得到的直角二角形. 对于平行四边形我们也延续这样的思路进行研究。

问题1把平行四边形的一个内角特殊化一变为90', 会有什么样的特殊图形产生呢?你能给这种图形下一个定义吗?生活中存在这种图形吗?师生活动:教师对多媒体或实物迸行动态演示. 让学生观察从一般的平行四边形到矩形的变化过程.给出矩形的定义:矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形。

2.探究性质深化认知问题2 矩形在实际生活中大量存在和应用,这是因为此类图形有一些特殊的性质. 你认为矩有哪些性质?我们如何研究矩形的性质?〔设计意图:借助多媒体或实物的动态变化. 让学生直观感知角的变化带来平行四边形的改变. 体会矩是平行四边形角特珠化后的产物.自然引出矩形的概念. 通过举例说明,使学生真实感受矩形的广泛应用。

初中八年级数学教案-课题学习 最短路径问题-公开课比赛一等奖

初中八年级数学教案-课题学习 最短路径问题-公开课比赛一等奖

课题学习最短路径问题【教学目标】1.了解最短路径问题。

掌握解决最短路径问题的方法。

2.通过解决最短路径问题的过程培养学生分析问题的能力。

3.通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心。

【教学重难点】最短路径的选择。

【课时安排】2课时。

【第一课时】【教学过程】一、情景导入。

前面我们研究过一些关于“两点的所有连线中,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题。

同学们通过讨论下面两个问题,可以体会如何运用所学知识选择最短路径。

二、思考探究,获取新知。

问题:如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地。

牧马人到河边的什么地方饮马,可使所走的路径最短将A,B两地抽象为两个点,将河l抽象为一条直线。

设C为直线上的一个动点,上面的问题就转化为:当点C在l的什么位置时,AC与CB的和最小。

联想:如图所示,点A、B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短两点之间,线段最短。

连接AB,与直线l相交于一点,这个交点即为所求。

如果我们能把点B移到l的另一侧B′处,同时对直线l上的任意一点C,都保持CB与CB′的长度相等,就可以把问题转化为上面的情况。

作出点B关于l的对称点B′,利用轴对称的性质可以得到CB′=CB。

连接AB′,与直线l相交于点C。

则点C即为所求。

学生小组合作交流。

三、巩固练习。

1.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点(保留作图痕迹)。

【第二课时】【教学过程】一、造桥选址问题。

问题:如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。

桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直。

)(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小。

初中数学公开课教案

初中数学公开课教案

初中数学公开课教案•相关推荐初中数学公开课教案(精选10篇)作为一名优秀的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。

那么教案应该怎么写才合适呢?以下是小编收集整理的初中数学公开课教案,仅供参考,希望能够帮助到大家。

初中数学公开课教案篇1教学目标1.了解公式的意义,使学生能用公式解决简单的实际问题;2.初步培养学生观察、分析及概括的能力;3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议一、教学重点、难点重点:通过具体例子了解公式、应用公式.难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。

如本课中梯形、圆的面积公式。

应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。

具体计算时,就是求代数式的值了。

有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。

用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。

整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

人教版(2020版)八年级数学上册全册 公开课获奖教案(87页)

人教版(2020版)八年级数学上册全册 公开课获奖教案(87页)

第十一章三角形§11.1.1三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.学生回答:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一部分至思考,一段课文,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定回答以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.§11.1.2三角形的高、中线与角平分线教学目标1.经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.2.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.重点、难点重点:1.了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.2.了解三角形的三条高、三条中线与三条角平分线分别交于一点.难点:1.三角形平分线与角平分线的区别,三角形的高与垂线的区别.2.钝角三角形高的画法.3.不同的三角形三条高的位置关系.教学过程一、看一看把下面图表投影出来:三角形的重要线段意义图形表示法三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段1.AD是△ABC的BC上的高线.2.AD⊥BC于D.3.∠ADB=∠ADC=90°.三角形的中线三角形中,连结一个顶点和它对边中点的线段1.AD是△ABC的BC上的中线.2.BD=DC=BC.三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段1.AD是△ABC的∠BAC的平分线.2.∠1=∠2=∠BAC.1.指导学生阅读课本P71-72的课文.2.仔细观察投影表中的内容,并回答下面问题.(1)什么叫三角形的高?三角形的高与垂线有何区别和联系? 三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段,而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线.(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?三角形的中线是连结一个顶点和它对边的中点的线段, 而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?三角形的角平分线是三角形的一个内角平分线与它的对边相交, 这个角顶点与交点之间的线段,而角平分线指的是一条射线.3.三角形的高、中线和角平分线是代表线段还是代表射线或直线?三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.二、做一做1.让学生在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系?三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.2.让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.( 如果他们所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里)?观察这三条中线的位置有何关系?三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.3.让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.三、议一议通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.四、练习1.课本P5,练习1.2.2.画钝角三角形的三条高.五、作业1.P8-P9 习题11.1第 3.4.8§11.1.3三角形的稳定性教学目标:通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用重点:了解三角形稳定性在生产、生活的实际应用难点:准确使用三角形稳定性于生产生活之中课前准备:小木条8个,小钉若干教学过程:一、看一看,想一想课本P6投影出来二、做一做1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?三、议一议从上面实验过程你能得出什么结论?与同伴交流。

初中数学八年级《命题与证明第一课时命题》公开课教学设计

初中数学八年级《命题与证明第一课时命题》公开课教学设计

初中数学八年级上册第十三章第二节课题: 13.2 命题与证明第一课时命题教学环节教学内容师生活动设计意图创设情境引入新课观察与验证:请同学们仔细观察图中线段AB与CD,EF与GH的位置关系,你觉得它们是否垂直?OA BCDPG HEF1.学生观察图形并作出回答.2.教师引导学生思考如何对观察的结果进行验证,利用几何画板度量角的度数说明两组线段都不垂直.通过观察与验证,激发学生的兴趣,产生认知冲突,说明观察、实验等方法得出的结论难以使人确信结果的正确性,学习几何还需要学会推理,为本课学习做好准备.合作探究辨析概念探究一:1.逻辑推理常需要对事物的情况作出种种判断,判断是通过语言来表达的,例如:(1)如果两个角是对顶角,那么这两个角相等;(2)如果两个角相等,那么这两个角是对顶角;(3)若a > 0,b > 0,则ab > 0;(4)若ab > 0,则a > 0,b > 0;(5)我们是安庆外国语学校八年级的学生;(6)1+2 < 3.2.下面的语句有没有作出判断,是不是命题?如果是命题请判断它的真假.(1)时间都去哪儿了?(2)两点之间线段最短.(3)以点O为圆心,3cm长为半径画圆.(4)欢迎来到安庆外国语学校!(5)若 a > b,则ac > bc.1.学生根据生活经验和已学知识判断六个语句(或式子)是否正确?2.教师引导学生发现这些语句的共性,引出课题《13.2.1命题》,并归纳出命题的概念.3.学生思考并完成辨析概念题,在此基础上总结如何判断一个语句是不是命题.4.教师引导学生思考在之前的学习中学过哪些命题,并试着举出几个例子.教师充分发挥学生的主体作用,让学生从自己的视点去观察、归纳,让学生亲身经历概念形成的全过程,感受数学概念形成的自然性与合理性,加深学生对概念的理解.巩固命题的概念,及时反馈学生的掌握情况,突出教学重点.探究二:1.请观察下面的命题,它们在结构形式上有什么共同特征?(1)如果两个角是对顶角,那么这两个角相等;(2)如果两个角相等,那么这两个角是对顶角;(3)若a >0,b >0,则ab > 0 ;(4)若ab >0,则a >0,b >0 ;1.学生用语文的眼光再来观察一下这四个命题,探究命题的结构形式上的共同特征,归纳出命题的一般形式:“如果p,那么q”或者“若p则q”.2.教师介绍:其中p是这个命题的条件(或题设),q是这个命题的结论(或题断).通过学生积极动脑,师生共同探索,发现命题的两个组成部分.环节教学内容师生活动设计意图课堂小结分层作业分层作业:必做题:课本P84习题13.2 第1、2、3题.选做题:思考并收集满足下面条件的互逆命题各一组:(1)原命题正确,逆命题也正确;(2)原命题正确,逆命题错误;(3)原命题错误,逆命题正确;(4)原命题错误,逆命题也错误.布置作业必做题是对本节课内容的巩固和反馈,选做题是对本节课知识的延伸.板书设计13.2.1 命题。

北师大版初中数学八年级上册《第二章实数6实数》公开课教案_0

北师大版初中数学八年级上册《第二章实数6实数》公开课教案_0

八年级数学教学设计一、教学地位及作用本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节这节内容教材安排了3个课时,本节课主要是复习前几节的知识在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的从而将有理数扩充到实数范围,使学生对数认识进一步深入•中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础二、教学目标及其解析(一)教学目标1理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2 •会用计算器进行数的加、减、乘、除、乘方及开方运算;3•了解无理数的意义,会对实数进行分类,掌握实数的相反数和绝对值的意义;4 •理解实数与数轴上的点一一对应,理解有理数的运算律适用于实数范围.(二)教学重难点:1平方根和算术平方根的概念、性质,无理数与实数的意义;2 •算术平方根的意义及实数的性质.三、教法学法1 •教学方法:知识回顾-合作探究-当堂检测-布置作业-总结回顾•2 •课前准备:课本,导学案,练习本.四、教学过程设计(1)知识回顾:2、实数可以分为________ 和,也可以分为______________ 和实数和数轴上的点是____________ 关系•3、用字母表示下列性质和运算法则.积的算数平方根____________ 商的算数平方根________________二次根式的乘法法则_________________________二次根式的除法法则_________________________(2 )合作探究专题一:平方根、立方根和算数平方根1、填空:(1)25的平方根是81(2)-.64的平方根是27(3)皿的平方根是(4)2(_1.44)的算数平方根是(5)227如果(x_2)2,则X等于82、已知2a-1的平方根是_3,3a+b-1的算数平方根是4,求a+2b的值.专题二:实数3. ^7 的相反数是________ __ 話的倒数是 _____________绝对值等于「3 的数是__________4. 把下列各数分别填入相应的集合里:0, - .12,丝,3^25 , .10^ , 0.3, , 0.101001000100001..(每两个1 之间多一7 2个0)(三)当堂检测1. 教科书第86页的练习第2题.2. 比较下列各组数中两个实数的大小:(1)3 10 与2.; (2) I 2-二I 与2 .(四)布置作业1.16的平方根记作 ________ ,等于__________ .2. J16的值为_________ .3. 计算^-1 + #(一1)2= _____ .24. -亍的倒数是__________ .5. 两个无理数的和为有理数,这两个无理数可以是___________ 和_______ .6. 若|X2-25 | + J y _3 =0,贝y x= _______ ,y= ______ .7. 已知X的平方根是土8,贝U X的立方根是 ________ .8.4的平方根是()A.2B.-2C. ± 2D. ± 29. 下列各式中,无意义的是()A.- -.3B. 二C. .(-3)2D. .10“10. 下列各组数中,互为相反数的一组是()A.-2 与..(-2)2B.-2与3二8C.-2 与-1D. I -2 | 与211. 下列说法正确的是()A.1的平方根是1;B.1 的算术平方根是1;C.-2 是2的平方根;D.-1 的平方根是-112. 求下列各式中的X:①x =1.21; ②27(x+1) +64=0.13. a > 0时,.、a才有意义--- 、...a表示a的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1) x -1 ; (2) ■, 2x 10 ; (3) .. 6-2x; (4) i x-1 + .6-2x.(五) 总结回顾1. 现在你知道实数的分类了吗?2. 现在求某些数的平方根或立方根3. 对于实数的运算,你学会了吗?。

八年级实数市公开课获奖教案省名师优质课赛课一等奖教案

八年级实数市公开课获奖教案省名师优质课赛课一等奖教案

八年级实数教案一、教学目标1. 理解实数的概念,并能够将实数分类为有理数和无理数。

2. 掌握实数的加减、乘除运算。

3. 能够应用实数进行简单的代数方程式求解。

4. 培养学生的逻辑思维能力和解决问题的能力。

5. 培养学生的团队合作精神和互相协作能力。

二、教学重点和难点1. 实数的概念和分类。

2. 实数的加减、乘除运算。

3. 实数在代数方程式中的应用。

三、教学准备1. 教材:八年级数学教材。

2. 教具:黑板、白板、彩色粉笔、教学PPT等。

四、教学过程1. 导入(5分钟)通过一个问题引入实数的概念:小明有3个苹果,他吃掉了2个苹果,那么他手里还剩下几个苹果?请同学们思考这个问题,然后回答。

2. 概念解释与分类(15分钟)通过导入问题引出有理数的概念,并与无理数进行对比,清楚地解释有理数和无理数的概念。

有理数的定义:有理数是可以表示为分数形式的实数。

例如,2、-3、1/4等。

无理数的定义:无理数是无法用分数形式表示的实数,它的小数部分是无限不循环的。

例如,π、√2等。

将实数按照有理数和无理数进行分类,并利用示意图进行说明。

3. 实数的加减运算(30分钟)通过具体的例子,讲解实数之间的加减运算规则,并指导学生进行练习。

示例1:计算-3 + 5 = ?示例2:计算7 - 2.5 = ?示例3:计算-2/3 + 1/6 = ?学生进行练习,巩固实数的加减运算规则。

4. 实数的乘除运算(30分钟)通过具体的例子,讲解实数之间的乘除运算规则,并指导学生进行练习。

示例1:计算2 × -4 = ?示例2:计算-7 ÷ 2 = ?示例3:计算3/4 × 1/2 = ?学生进行练习,巩固实数的乘除运算规则。

5. 实数在代数方程式中的应用(20分钟)学生通过具体问题的解决,了解实数在代数方程式中的应用。

示例1:解方程2x + 3 = 7。

示例2:解方程3x - 5 = 4x + 2。

示例3:解方程2(x - 3) = x + 4。

2024年《因式分解》教案公开课获奖

2024年《因式分解》教案公开课获奖

2024年《因式分解》教案公开课获奖一、教学内容本节课选自2024年教材《数学》八年级下册,第3章《整式的乘除与因式分解》中的第2节“因式分解”。

详细内容包括因式分解的定义、方法及应用。

通过本节课的学习,使学生掌握因式分解的基本方法,并能解决实际问题。

二、教学目标1. 知识与技能:理解因式分解的概念,掌握提公因式法、平方差公式、完全平方公式等因式分解方法,并能够熟练运用。

2. 过程与方法:培养学生观察、分析、归纳的能力,提高学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生合作交流、自主探究的学习习惯。

三、教学难点与重点重点:因式分解的概念及提公因式法、平方差公式、完全平方公式的应用。

难点:如何找出多项式的公因式,并熟练运用公式进行因式分解。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔、直尺等。

学具:练习本、铅笔、橡皮等。

五、教学过程1. 实践情景引入(5分钟)通过一个实际生活中的问题,引出因式分解的概念。

例如:小明和小华去超市购物,小明花了3个苹果的钱,小华花了5个苹果的钱,问他们一共花了多少个苹果的钱?2. 知识讲解(15分钟)(1)因式分解的概念:把一个多项式表示成几个整式的乘积的形式,叫因式分解。

(2)因式分解的方法:a. 提公因式法:找出多项式的公因式,然后提出公因式,将多项式分解为两个或多个整式的乘积。

b. 平方差公式:a^2 b^2 = (a + b)(a b)c. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 2ab + b^2 = (a b)^23. 例题讲解(15分钟)讲解两道例题,一道涉及提公因式法,另一道涉及平方差公式和完全平方公式。

4. 随堂练习(10分钟)布置两道练习题,让学生当堂完成,巩固所学知识。

5. 小组讨论(5分钟)将学生分成小组,讨论如何解决实际问题时应用因式分解。

六、板书设计1. 因式分解的概念2. 因式分解的方法:a. 提公因式法b. 平方差公式c. 完全平方公式3. 例题及解答七、作业设计1. 作业题目:a. 将多项式x^2 4分解因式。

八年级数学上册等边三角形优质课公开课教案

八年级数学上册等边三角形优质课公开课教案

八年级数学等边三角形教学设计(一)、导入新课情境导入:复习等边三角形的性质和判定方法。

请同学们思考一个问题:等腰三角形中有一种特殊的三角形是什么三角形?揭示课题——今天,我们就来学习这种特殊的等腰三角形。

设计意图:为本节课利用等腰三角形知识来探究等边三角形的问题埋下铺垫。

(二)、探究新知:1、请同学回答:等边三角形定义(学生回答)三边相等三角形叫做等边三角形2、学生折纸探究等边三角形的性质:可从边、角、重要线段、对称性等方面进行探究。

(1)边:三边相等(2)角:三角相等,且都等于60度。

(3)三线合一。

(4)是轴对称图形,共有三条对称轴3、思考:已知:在△ABC中,∠A = ∠B=∠C求证:△ABC是等边三角形。

(引导学生证明)归纳出等边三角形的判定方法1:三个角都相等的三角形是等边三角形。

4、已知:在△ABC中,AB = AC,∠A = 60°求证:△ABC是等边三角形。

学生证明更换条件:∠B= 60°或∠C= 60°,结论仍然成立吗?通过师生互动,生生互动,交流合作后得出等边三角形判定方法2:有一个角是60°的等腰三角形是等边三角形5、应用新知1)、等边三角形ABC的周长等于21㎝,求:(1)各边的长;(2)各角的度数。

2)例4 如图,△ABC是等边三角形,DE∥BC,交AB,AC于D,E。

求证△ ADE是等到边三角形。

3)变式训练上题中,△ABC是等边三角形,分别满足下列条件时:•①在边AB、AC上分别截取AD=AE.•②作∠ADE=60°,D、E分别在边AB、AC上.这时△ ABC还是等边三角形吗?6、拓展训练已知:如图,P、Q是△ABC的边BC上的两点,并且PB=PQ=QC=AP=AQ,求∠BAC的大小。

(三)巩固练习1、下列四个说法中,不正确的有()(A)0个(B)1个(C)2个(D)3个Ø 三个角都相等的三角形是等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公开课--
八年级数学教案
&t;&It;长方体和正方体的表面积&gt;&gt;教学设计
【教学内容】
西师版第十册第39页例1。

【教学目标】
1&#57360;结合具体情境,探索并掌握长方体和正方体的表面积的计算方法从中获得解决问题的方法和成功的体验。

2& #57360;培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

3& #57360;让学生感受知识的形成过程,从而激发学生学习数学的兴趣。

4& #57360;让学生体会所学知识在实际中的应用价值。

【教学重点】
长方体、正方体表面积的计算方法。

【教学难点】
确定长方体每一个面的长和宽
【教具学具】
教具:长方体、正方体纸盒(可展开)。

学具:长方体、正方体纸盒、剪刀。

【教学过程】
一、复习引入
师:前面我们学习了长方体、正方体的表面积,谁来说说什么是它们的表
面积?
出示一个长方体,指名摸它的表面。

师:我们已经掌握了长方体和正方体面的特征,也会计算每个面的面积,
今天就运用这些知识来计算它们的表面积。

二、探究学习
1& #57360;探索长方体表面积的计算方法
出示例1:制作下面这样一个长方体的纸盒,至少需要用多少平方厘米的纸板?师:请大家想一想,这道题实际上是求什么呢?你打算怎样解决这个问题呢?
4人小组合作完成这个长方体表面积的计算。

汇报交流计算情况,教师总结学生的不同算法,点拨得出长方体的表面积的计算方法。

生1 我们组是这样算的:8&times;4&times;2 +4&times;5&times;2 +
8&times;5&times;2 = 184cm2前后面左右面上下面
师:你能把这种求表面积的方法归纳一下吗?
生:长&times;宽&times;2 +长&times;高&times;2 + 宽&times;高&times;2。

生2:我们组是把6个面的面积分别算出来后再相加。

生3:我们组是先算前面+左面+上面”的面积,再乘2就可以了。

即:
(8&times;4 + 4&times;5 + 8&times;5)&times;2 = 184cm2。

师:为什么求出这3个面的面积和,再乘2就可以了?
生:长方体6个面可以分为3组,相对的面相等,只要算出这个长方体盒子的一半,再乘2就可以了。

师:你能把这种求表面积的方法归纳一下吗?
生:(长&times;宽 + 长&times;高 + 宽&times;高)&times;2。

(师板书)
师:观察真仔细,归纳能力真强。

师:在这些方法中你认为哪些比较简便?把你喜欢的方法给同桌交流交流
2& #57360;探索正方体表面积的计算方法
师:通过大家的积极思考,我们学会了计算长方体的表面积。

想一想,正方体的表面积又怎样算呢?
出示一个正方体,让学生自主探索方法。

汇报交流。

生1我是把6个面的面积加起来。

生2:我是用(长&times;宽+长&times;高+宽&times;高)&times;2的计算
方法来做的。

生3:我觉得只要求出一个面的面积再乘6就可以了。

师:能给大家讲讲你的想法吗?
生:正方体6个面的面积都是相同的。

师:你能把这种求表面积的方法归纳一下吗?
生:正方体的表面积二棱长&times;棱长&times;6。

(师板书)
三、巩固练习
1&#57360;练习十第2题。

练习长方体和正方体表面积计算方法。

让学生独
立列式计算,然后集体评析。

2&#57360;练习十第3题。

先独立完成,再与同桌交流自己的算法。

四、课堂小结。

相关文档
最新文档