高一数学必修1-函数模型及其应用

合集下载

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。

人教版高一数学必修的目录完整版

人教版高一数学必修的目录完整版

人教版高一数学必修的目录HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】人教版高一数学必修1-5的目录必修1第一章集合与函数概念?1.1 集合?1.2 函数及其表示?1.3 函数的基本性质?实习作业?小结?复习参考题第二章基本初等函数(Ⅰ)?2.1 指数函数?2.2 对数函数?2.3 幂函数?小结?复习参考题第三章函数的应用?3.1 函数与方程?3.2 函数模型及其应用?实习作业?小结?复习参考题必修2第一章空间几何体?1.1 空间几何体的结构?1.2 空间几何体的三视图和直观图?1.3 空间几何体的表面积与体积?实习作业?小结?复习参考题第二章点、直线、平面之间的位置关系? 2.1 空间点、直线、平面之间的位置关系? 2.2 直线、平面平行的判定及其性质?2.3 直线、平面垂直的判定及其性质?小结?复习参考题第三章直线与方程?3.1 直线的倾斜角与斜率?3.2 直线的方程?3.3 直线的交点坐标与距离公式?小结?复习参考题必修3第一章算法初步?1.1 算法与程序框图?1.2 基本算法语句?1.3 算法案例?阅读与思考割圆术?小结?复习参考题第二章统计?2.1 随机抽样?阅读与思考一个着名的案例?阅读与思考广告中数据的可靠性?阅读与思考如何得到敏感性问题的诚实反应? 2.2 用样本估计总体?阅读与思考生产过程中的质量控制图?2.3 变量间的相关关系?阅读与思考相关关系的强与弱?实习作业?小结?复习参考题第三章概率?3.1 随机事件的概率?阅读与思考天气变化的认识过程? 3.2 古典概型?3.3 几何概型?阅读与思考概率与密码?小结?复习参考题必修4第一章三角函数?1.1 任意角和弧度制?1.2 任意角的三角函数?1.3 三角函数的诱导公式?1.4 三角函数的图象与性质?1.5 函数y=Asin(ωx+ψ)?1.6 三角函数模型的简单应用?小结?复习参考题第二章平面向量?2.1 平面向量的实际背景及基本概念? 2.2 平面向量的线性运算?2.3 平面向量的基本定理及坐标表示? 2.4 平面向量的数量积?2.5 平面向量应用举例?小结?复习参考题第三章三角恒等变换?3.1 两角和与差的正弦、余弦和正切公式? 3.2 简单的三角恒等变换?小结?复习参考题后记必修5第一章解三角形正弦定理和余弦定理应用举例实习作业第二章数列数列的概念与简单表示法等差数列等差数列的前n项和等比数列等比数列的前n项和第三章不等式不等关系与不等式一元二次不等式及其解法二元一次不等式(组)与简单的线性规划基本不等式:根下ab<=(a+b)/2。

函数模型及其应用(1)_韦余玲

函数模型及其应用(1)_韦余玲

3.4.2函数模型及其应用(1)教学目标:1.能根据实际问题的情境建立数学模型,利用计算工具,结合对函数性质的研究,给出问题的解答;2.通过实例,理解一次函数、二次函数等常见函数在解决一些简单的实际问题中的应用,了解函数模型在社会生活中的广泛应用;3.在解决实际问题的过程中,培养学生数学地分析问题、探索问题、解决问题的能力,培养学生的应用意识,提高学习数学的兴趣.教学重点:一次函数、二次函数以及指、对数函数等常见函数的应用.教学难点:从生活实例中抽象出数学模型.教学过程:一、问题情境某城市现有人口总数为100万,如果人口的年自然增长率为1.2﹪,问:(1)写出该城市人口数y(万人)与经历的年数x之间的函数关系式;(2)计算10年后该城市的人口数;(3)计算大约多少年后,该城市人口将达到120万?(4)如果20年后该城市人口数不超过120万,年人口自然增长率应该控制在多少?二、学生活动回答上述问题,并完成下列各题:1.等腰三角形顶角y(单位:度)与底角x的函数关系为.2.某种茶杯,每个0.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,其定义域为.三、数学应用例1某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元,分别写出总成本C (万元)、单位成本P (万元)、销售收入R (元)以及利润L (万元)关于总产量x 台的函数关系式.例2 大气温度y (℃)随着离开地面的高度x (km)增大而降低,到上空11 km 为止,大约每上升1 km ,气温降低6℃,而在更高的上空气温却几乎没变(设地面温度为22℃).求:(1) y 与x 的函数关系式;(2)x =3.5 km 以及x =12km 处的气温.变式:在例2的条件下,某人在爬一座山的过程中,分别测得山脚和山顶的温度为26℃和14.6℃,试求山的高度. 四、建构数学利用数学某型解决实际问题时,一般按照以下步骤进行:1.审题:理解问题的实际背景,概括出数学实质,尝试将抽象问题函数化;2.引进数学符号,建立数学模型,即根据所学知识建立函数关系式,并确定函数的定义域;3.用数学的方法对得到的数学模型予以解答,求出结果;4.将数学问题的解代入实际问题进行检验,舍去不合题意的解,并作答.五、巩固练习1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为x 件时的成本函数是C (x )=200+10x +0.5x 2(元),若每售出一件这种商品的收入是200元,那么生产并销售这种商品的数量是200件时,该企业所得的利润可达到 元.2.有m 部同样的机器一起工作,需要m 小时完成一项任务.设由x 部机 器(x 为不大于m 的正整数)完成同一任务,求所需时间y (小时)与机器的 部数x 的函数关系式.3.A ,B 两地相距150千米,某人以60千米/时的速度开车从A 到B ,在B 地停留1小时后再以50千米/时的速度返回A ,则汽车离开A 地的距离x 与时间t的函数关系式为.4.某车站有快、慢两种车,始发站距终点站7.2km,慢车到达终点需16min,快车比慢车晚发车3min,且行驶10min到达终点站.试分别写出两车所行路程关于慢车行驶时间的函数关系式.两车在何时相遇?相遇时距始发站多远?5.某产品总成本C(万元)与产量x(台)满足关系C=3000+20x-0.1x2,其中0<x<240.若每台产品售价25万元,要使厂家不亏本,则最少应生产多少台?六、要点归纳与方法小结1.利于函数模型解决实际问题的基本方法和步骤;2.一次函数、二次函数等常见函数的应用.七、作业课本P100-练习1,2,3.。

数学必修一知识点

数学必修一知识点

数学必修一知识点在我们平凡的学生生涯里,说到知识点,大家是不是都习惯性的重视?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

哪些才是我们真正需要的知识点呢?以下是店铺精心整理的数学必修一知识点,欢迎大家分享。

数学必修一知识点1函数简介函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。

函数概念含有三个要素:定义域A、值域B和对应法则f。

其中核心是对应法则f,它是函数关系的本质特征。

函数最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。

之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

一、一次函数定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

高一数学目录-人教版

高一数学目录-人教版

第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修一必修一第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质实习作业实习作业 小结小结复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修二必修二第一章第一章 空间几何体空间几何体 1.1 空间几何体的结构空间几何体的结构1.2 空间几何体的三视图和直观图空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积空间几何体的表面积与体积 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系置关系2.2 直线、直线、平面平行的判定及其性平面平行的判定及其性质2.3 直线、直线、平面垂直的判定及其性平面垂直的判定及其性质 小结小结 复习参考题复习参考题第三章第三章 直线与方程直线与方程3.1 直线的倾斜角与斜率直线的倾斜角与斜率 3.2 直线的方程直线的方程3.3 直线的交点坐标与距离公式直线的交点坐标与距离公式 小结小结 复习参考题复习参考题 必修三必修三第一章第一章 算法初步算法初步 1.1 算法与程序框图算法与程序框图 1.2 基本算法语句基本算法语句 1.3 算法案例算法案例 阅读与思考阅读与思考 割圆术割圆术 小结小结 复习参考题复习参考题第二章第二章 统计统计2.1 随机抽样随机抽样阅读与思考阅读与思考 一个著名的案例一个著名的案例阅读与思考阅读与思考 广告中数据的可靠性广告中数据的可靠性 阅读与思考阅读与思考 如何得到敏感性问题的诚实反应的诚实反应2.2 用样本估计总体用样本估计总体 阅读与思考阅读与思考 生产过程中的质量控制图制图2.3 变量间的相关关系变量间的相关关系 阅读与思考阅读与思考 相关关系的强与弱相关关系的强与弱 实习作业实习作业 小结小结 复习参考题复习参考题第三章第三章 概率概率3.1 随机事件的概率随机事件的概率阅读与思考阅读与思考 天气变化的认识过程天气变化的认识过程 3.2 古典概型古典概型 3.3 几何概型几何概型阅读与思考阅读与思考 概率与密码概率与密码 小结小结 复习参考题复习参考题 必修四第一章 三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用 小结 复习参考题第二章 平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积 2.5 平面向量应用举例 小结 复习参考题第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换 小结 复习参考题 必修五必修五第一章第一章 解三角形解三角形1.1 正弦定理和余弦定理正弦定理和余弦定理探究与发现探究与发现 解三角形的进一步讨论1.2 应用举例应用举例阅读与思考阅读与思考 海伦和秦九韶海伦和秦九韶 1.3 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 数列数列2.1 数列的概念与简单表示法数列的概念与简单表示法 阅读与思考阅读与思考 斐波那契数列斐波那契数列 阅读与思考阅读与思考 估计根号下2的值的值 2.2 等差数列等差数列2.3 等差数列的前n 项和项和 2.4 等比数列等比数列2.5 等比数列前n 项和项和 阅读与思考阅读与思考 九连环九连环 探究与发现探究与发现 购房中的数学购房中的数学 小结小结 复习参考题复习参考题第三章第三章 不等式不等式3.1 不等关系与不等式不等关系与不等式 3.2 一元二次不等式及其解法一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题的线性规划问题阅读与思考阅读与思考 错在哪儿错在哪儿信息技术应用 用Excel解线性规信息技术应用划问题举例划问题举例3.4 基本不等式基本不等式小结小结复习参考题复习参考题必修三实用性和适用性在高一作用不大,所以高一上学期学必修一二,下学期学必修四五,跳过必修三学期学必修四五,跳过必修三。

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其应用》

高一数学必修一教案《函数模型及其运用》【导语】心无旁骛,全力以赴,争分夺秒,坚强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!作者高一频道为大家推荐《高一数学必修一教案《函数模型及其运用》》期望对你的学习有帮助!【篇一】【内容】建立函数模型刻画现实问题【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发觉或建立数学模型,并能体会数学在实际问题中的运用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。

在一个具体问题的解决进程中,学生可以从知道知识升华到熟练运用知识,使他们能辩证地看待知识知道与知识运用间的关系,与所学的函数知识前后牢牢相扣,相辅相成。

;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正知道函数模型的运用和在运用进程中函数模型的建立与解决问题的进程,而从简单、典型、学生熟悉的函数模型中发掘、提炼出来的思想和方法,更容易被学生接受。

同时,应尽量让学生在简单的实例中学习并感受函数模型的挑选与建立。

由于建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和运算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析进程来挑选适当的函数模型和函数模型的构建进程。

在这个进程中,要使学生侧重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】(1)体现建立函数模型刻画现实问题的基本进程.(2)了解函数模型的广泛运用(3)通过学生进行操作和探究提高学生发觉问题、分析问题、解决实际问题的能力(4)提高学生探究学习新知识的爱好,培养学生,勇于探索的科学态度【重点】了解并建立函数模型刻画现实问题的基本进程,了解函数模型的广泛运用【难点】建立函数模型刻画现实问题中数据的处理【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本进程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究进程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本进程中让学生亲身体验函数运用的广泛性,同时提高学生探究学习新知识的爱好,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)【学生学习中预期的问题及解决方案预设】①描点的规范性;②实际操作的速度;③解析式的运算速度④运算终止后不进行检验针对上述可能显现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用运算器利用小组讨论来进行多人合作以期提高相应运算速度,在解析式得出后引导学生得出的标准应当是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行挑选从而引出检验.【教学用具】多媒体辅助教学(ppt、运算机)。

必修1高一数学笔记完整版

必修1高一数学笔记完整版

高中数学必修一第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用第一章集合与函数概念§1.1集合一.集合1.定义:一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

2.集合元素的特征:确定性、互异性、无序性3.集合1=集合2:构成集合的元素完全一样4.元素与集合的关系:∈和∉(1)a属于集合A:a∈A(2)a不属于集合A:a∉A5.常用数集及其记法(1)N={全体非负整数}={全体自然数}={0,1,2,……}(2)N+/N* ={全体正整数}={1,2,3,……}(3)Z={全体整数}={…,-2,-1,0,1,2,…}(4)Q={全体有理数}(5)R={全体实数}6.集合的分类:有限集,无限集,空集(∅)7.集合的表示方法:列举法、描述法(1)列举法:把集合中的元素一一列举出来,如{1,2,3,4}(2)描述法:把集合中对的元素的公共属性描述出来,如{x|x-3>2,x∈N} 8.奇数集A={x|x=2k+1,k∈Z}偶数集B={x|x=2k,k∈Z}二.集合间的基本关系1.定义:集合A中任意一个元素都是集合B中的元素,若任意x∈A,都有x∈B,称A为B的子集。

记作:A含于B(A⊆B),B包含于A(B⊇A)2.不包含:当集合A不包含于集合B时,记作A⊈B3.注意:(1)A不包含于B,记作A⊈B(2)任意一个集合都是它本身的子集A⊆A(3)规定空集是任意集合的子集(4)若A⊆B,且B⊆C,则A⊆C4.Venn图(韦恩图)5.集合相等:两个集合中全部元素相同A=B满足A⊆B,B⊆A,即A=B6.真子集:若集合A⊆B,存在元素x∈B且x∉A,则称集合A是集合B的真子集(propersubset)。

高一数学必修1第三章知识点

高一数学必修1第三章知识点

高一数学必修1第三章知识点第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。

即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:1(代数法)求方程f(x)0的实数根;○2(几何法)对于不能用求根公式的方程,能够将它与函数yf(x)的图象联系起来,○并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数ykx(k0)仅有一个零点。

k(k0)没有零点。

x③一次函数ykxb(k0)仅有一个零点。

②反比例函数y④二次函数yax2bxc(a0).(1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.(2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数ya(a0,且a1)没有零点。

⑥对数函数ylogax(a0,且a1)仅有一个零点1.⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。

5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。

6、选择题判断区间a,b上是否含有零点,只需满足fafb0。

7、确定零点在某区间a,b个数是的条件是:①fx在区间上连续,且fafb0②在区间a,b上单调。

8、函数零点的性质:从“数”的角度看:即是使f(x)0的实数;从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;x若函数f(x)的图象在xx0处与x轴相切,则零点x0通常称为不变号零点;若函数f(x)的图象在xx0处与x轴相交,则零点x0通常称为变号零点.9、二分法的定义对于在区间[a,b]上连续持续,且满足f(a)f(b)0的函数yf(x),通过持续地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.10、给定精确度ε,用二分法求函数f(x)零点近似值的步骤:(1)确定区间[a,b],验证f(a)f(b)0,给定精度;(2)求区间(a,b)的中点x1;(3)计算f(x1):①若f(x1)=0,则x1就是函数的零点;②若f(a)f(x1)14、根据散点图设想比较接近的可能的函数模型:一次函数模型:f(x)kxb(k0);二次函数模型:g(x)ax2bxc(a0);幂函数模型:h(x)axb(a0);指数函数模型:l(x)abxc(a0,b>0,b1)利用待定系数法求出各解析式,并对各模型实行分析评价,选出合适的函数模型12扩展阅读:高一数学必修1各章知识点总结金太阳新课标资源网高一数学必修1各章知识点总结第一章集合与函数概念一、集合相关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

高一数学必修1课件:3.2.1 几类不同增长的函数模型

高一数学必修1课件:3.2.1 几类不同增长的函数模型
报比前一天翻一番。
y=0.4×2x-1 (x∈N*)
第五页,编辑于星期日:二十二点 十七分。
(1)比较三种方案每天回报量:
x/天
方案一
y/元 增长量/元
方案二
y/元 增长量/元
方案三
y/元
增长量/元
1 40 0 10
0.4
2 40 0 20 10
0.8
0.4
3 40 0 30 10
1.6
0.8
4 40 0 40 10
高一年级数学 3.2 函数模型及其应用
3.2.1 几类不同增长的函数模型 第一课时 线性函数、指数函数和
对数函数模型
湖南师大附中 彭萍
第一页,编辑于星期日:二十二点 十七分。
所谓“模型”,通俗的解释就是一种固定 的模式或类型,在现代社会中,我们经常 用函数模型来解决实际问题.那么,面对 一个实际问题,我们怎样选择一个恰当的 模型来刻画它呢?
3.2
1.6
5 40 0 50 10
6.4
3.2
6 40 0 60 10
12.8
6.4
7 40 0 70 10
25.6
12.8
8 40 0 80 10
51.2
25.6
9 40 0 90 10
102.4
51.2
…… … … …


30 40
0
300 10 214748364.8 107374182.4
方案一
方案二 方案三
天数
回报/元
1 2 3 4 5 6 7 8 9 10 11 12 13
方案

40 80 120 160 200 240 280 320 360 400 440 480 520

函数模型及其应用教案

函数模型及其应用教案
例2.某公司为了实现1000万元利润的目标||,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时||,按销售利润进行奖励||,且奖金 (单位:万元)随销售利润 (单位:万元)的增加而增加但奖金不超过5万元||,同时奖金不超过利润的25%.现有三个奖励模型:

问:其中哪个模型能符合公司的要求?
生:仿照例题的探究方法||,选用具体函数进行研究、论证||,并进行交流总结||,形成结论性报告.
师:对学生的结论进行评析||,借助信息技术手段进行验证演示.





尝试练习:
1)教材P116练习1、2||;
2)教材P119练习.
小结与反思:
通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义||,认识数学的价值||,认识数学与现实生活、与其他学科的密切联系||,从而体会数学的实用价值||,享受数学的应用美.
探究:
1)本例涉及了哪几类函数模型?
本例的实质是什么?
2)你能根据问题中的数据||,判定所给的奖励模型是否符合公司要求吗?
师:引导学生分析三种函数的不同增长情况对于奖励模型的影响||,使学生明确问题的实质就是比较三个函数的增长情况.
生:进一步体会三种基本函数模型在实际中的广泛应用||,体会它们的增长差异.
(1)求出a、b的值||;
(2)若这种鸟类为赶路程||,飞行的速度不能低于2 m/s||,则其耗氧量至少要多少个单位?
答案与解析
(1)由题意可知||,当这种鸟类静止时||,它的速度为0 m/s||,此时耗氧量为30个单位||,故有 =0||,
即a+b=0||;当耗氧量为90个单位时||,速度为1 m/s||,故 =1||,整理得a+2b=1.

高一数学函数模型及其应用复习名师公开课获奖课件百校联赛一等奖课件

高一数学函数模型及其应用复习名师公开课获奖课件百校联赛一等奖课件
函数模型及其应用复习小结 复习小结
长兴三中 江群
温故
设 f (x) x2, g(x) 2x , h(x) log2 x,当 x (4, 时), 对这三个函数旳增长速度进行比较,下列结论正 确旳是( ) B A.f (x)增长速度最快,h(x) 增长速度最慢。 B. g(x)增长速度最快,h(x) 增长速度最慢。 C. g(x)增长速度最快,f (x) 增长速度最慢。 D. f (x)增长速度最快,g(x) 增长速度最慢。
建立拟合函数模型处理实际问题
解:(1)从散点图旳整体趋势来看,散点近似在一条W轴对称旳抛物线上,选 用(1900,1.5),(1940,17.5),可求出W(t)所满足旳抛物线旳解析式为: _________________.于是得到2023年旳人口预测数为__________(万).
W (t) 0.01 (t 1900)2 1.5
(1).写出图(1)表达旳市场售价与时间旳函数关系式P=f(t); 写出图(2)表达旳种植成本与时间旳函数关系式Q=g(t);
(2).认定市场售价减去种植成本为纯收益,问何时上市旳西红柿纯收益最 大?(注:市场售价和种植成本旳单位:元/102kg,时间单位:天)
(1)问题1:.写出图(1)表达旳市场售价与时间旳函数关系式P=f(t);
116 从数据资料和散点图旳整体趋势上看,这条曲线和指数
函数图象比较接近,在散点图上取两个点(1970,60),
(1980,80) 设 W (t) 60at1970 ,
将点(1980,80)代入可得
a10
4 3

t 1970
从而
W
(t)
60
4 3
10
,故 W (2007) 174 (万)

高一数学必修1第一章知识点归纳

高一数学必修1第一章知识点归纳

高一数学必修1第一章知识点归纳一:函数模型及其应用本节主要包括函数的模型、函数的应用等知识点。

主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

2、用函数解应用题的基本步骤是:(1)阅读并且理解题意.(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回答实际问题。

常见考法:本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。

多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

误区提醒:1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

【典型例题】例1:(1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利).(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.如果存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数.y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元.例2:某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。

函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题

函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题

函数模型及其应用-2018-2019学年高一数学人教版必修1必刷题1.一个模具厂一年中12月份的产量是1月份产量的m倍,那么该模具厂这一年中产量的月平均增长率是A.m11B.m12C. 1 D. 1【答案】D2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000)D.y=0.1x+1 200(0≤x≤4 000)【答案】C【解析】由题意得y=0.3(4 000-x)+0.2x=-0.1x+1 200.故选C.3.某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米者均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价).陈先生坐了一趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程的取值范围是A.[5,6)B.(5,6]C.[6,7)D.(6,7]【答案】B【解析】若按x千米(x∈Z)计价,则6+(x-2)×3+2×3=24,得x=6.故实际行程应属于区间(5,6].故选B.4.y1=2x,y2=x2,y3=log2x,当2<x<4时,有A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1【答案】B【解析】在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.故选B.5.有一组实验数据如下表所示:下列所给函数模型较适合的是A.y=log a x(a>1)B.y=ax+b(a>1)C.y=ax2+b(a>0)D.y=log a x+b(a>1)【答案】C6.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为【答案】D【解析】设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),函数为对数函数,所以函数y=f(x)的图象大致为D中图象,故选D.7.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为A.200副B.400副C.600副D.800副【答案】D【解析】由5x+4 000≤10x,解得x≥800,即日产手套至少800副时才不亏本.故选D.8.四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x【答案】D9.下列函数中随x 的增大而增大且速度最快的是 A .y =1100e xB .y =100ln xC .y =x 100D .y =100·2x【答案】A【解析】指数爆炸式形如指数函数.又e>2,∴1100e x 比100·2x增大速度快.10.下列函数中,随着x 的增大,增长速度最快的是A .y =50B .y =1 000xC .y =2x -1D .y =11 000ln x 【答案】C【解析】指数函数模型增长速度最快,故选C .11.已知A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,则汽车离开A 地的距离x 关于时间t (小时)的函数解析式是 A .x =60tB .x =150-50tC .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5150,2.5<t ≤3.5150-t -,3.5<t ≤6.5【答案】D【解析】显然出发、停留、返回三个过程中行车速度是不同的,故应分三段表示函数.故选D . 12.以下是三个变量y 1,y 2,y 3随变量x 变化的函数值表:其中,关于x 呈指数函数变化的函数是________. 【答案】y 113.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的序号是________. 【答案】②③【解析】由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1),反映了C 随时间的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确. 14.若a >1,n >0,那么当x 足够大时,a x ,x n,log a x 的大小关系是________.【答案】a x >x n>log a x【解析】∵a >1,n >0,∴函数y 1=a x ,y 2=x n,y 3=log a x 都是增函数.由指数函数、对数函数、幂函数的变化规律可知,当x 足够大时,a x >x n >log xa .15.函数y =x 2与函数y =x ln x 在区间(1,+∞)上增长较快的一个是________.【答案】y =x 2【解析】当x 变大时,x 比ln x 增长要快,∴x 2要比x ln x 增长的要快.16.在不考虑空气阻力的情况下,火箭的最大速度v 米/秒和燃料的质量M 千克、火箭(除燃料外)的质量m 千克的函数关系式是v =2 000·ln(1+Mm).当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒. 【答案】e 6-1【解析】当v =12 000时,2 000·ln(1+M m )=12 000,∴ln (1+M m )=6,∴M m=e 6-1.17.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,则现在价格为8100元的计算机15年后的价格应降为________元.18.如图所示,折线是某电信局规定打长途电话所需要付的电话费y (元)与通话时间t (分钟)之间的函数关系图象,根据图象填空:(1)通话2分钟,需付的电话费为________元; (2)通话5分钟,需付的电话费为________元;(3)如果t ≥3,则电话费y (元)与通话时间t (分钟)之间的函数关系式为________. 【答案】(1)3.6 (2)6 (3)y =1.2t (t ≥3) 【解析】(1)由图象可知,当t ≤3时,电话费都是3.6元. (2)由图象可知,当t =5时,y =6,即需付电话费6元.(3)当t ≥3时,y 关于x 的图象是一条直线,且经过(3,3.6)和(5,6)两点,故设函数关系式为y =kt +b ,则⎩⎪⎨⎪⎧3k +b =3.6,5k +b =6,解得⎩⎪⎨⎪⎧k =1.2,b =0.故y 关于t 的函数关系式为y =1.2t (t ≥3).19.今有一组实验数据如下:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是A .v =log 2tB .v =log 12tC .v =t 2-12D .v =2t -2【答案】C【解析】从表格中看到此函数为单调增函数,排除B ,增长速度越来越快,排除A 和D ,故选C . 20.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由红变绿,汽车以1米/秒2的加速度匀加速开走,那么 A .人可在7秒内追上汽车B .人可在10秒内追上汽车C .人追不上汽车,其间距最少为5米D .人追不上汽车,其间距最少为7米21.三个变量y 1,y 2,y 3,随着变量x 的变化情况如下表:则关于x 分别呈对数函数、指数函数、幂函数变化的变量依次为 A .y 1,y 2,y 3 B .y 2,y 1,y 3 C .y 3,y 2,y 1 D .y 1,y 3,y 2【答案】C22.下面对函数f (x )=12log x 、g (x )=1()2x ,与h (x )=x -12在区间(0,+∞)上的衰减情况说法正确的是A .f (x )衰减速度越来越慢,g (x )衰减速度越来越快,h (x )衰减速度越来越慢B .f (x )衰减速度越来越快,g (x )衰减速度越来越慢,h (x )衰减速度越来越快C .f (x )衰减速度越来越慢,g (x )衰减速度越来越慢,h (x )衰减速度越来越慢D .f (x )衰减速度越来越快,g (x )衰减速度越来越快,h (x )衰减速度越来越快 【答案】C【解析】观察函数f (x )=12log x 、g (x )=1()2x 与h (x )=x -12在区间(0,+∞)上的图象如图.可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢;同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象在区间(0,1)上递减较快,但递减速度变慢;在区间(1,+∞)上,递减较慢,且越来越慢.故选C .23.若x ∈(0,1),则下列结论正确的是A .2x>12x >lg x B .2x>lg x >12xC .12x >2x>lg xD .lg x >12x >2x【答案】A【解析】结合y =2x,y =12x 及y =lg x 的图象易知,当x ∈(0,1)时,2x>12x >lg x .故选A .24.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年. 【答案】7【解析】由题意知,第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.25.表示一位骑自行车和一位骑摩托车的旅行者在相距80 km 的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.【答案】①②③26.四个变量y1,y2,y3,y4随变量x变化的数据如下表:关于x呈指数函数变化的变量是________.【答案】y227.一水池有2个进水口,1个出水口,两个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断序号是________.【答案】①②【解析】从0点到3点,两个进水口的进水量为9,故①正确;由排水速度知②正确;4点到6点可以是不进水,不出水,也可以是开一个进水口(速度快的)、一个排水口,故③不正确.28.已知A,B两地相距150 km,某人开汽车以60 km/h的速度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地,汽车离开A地的距离x随时间t变化的关系式是__________.【答案】x=600 2.51502.5 3.5 503253.5 6.5t ttt t≤≤⎧⎪<≤⎨⎪-+<≤⎩,,,29.(2016•四川)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年 D .2021年【答案】B【解析】设从2015年开始第n 年该公司全年投入的研发资金开始超过200万元,由已知得()11200130112%200, 1.12130n n --⨯+>∴>, 两边取常用对数得200(1)lg1.12lg,130n ->lg 2lg1.30.30.111 3.8,5lg1.120.05n n --∴->==∴≥, 故从2019年开始,该公司全年投入的研发资金开始超过200万元,故选B .。

2021-2022学年新教材湘教版高中数学必修第一册4.5函数模型及其应用 课时练习题

2021-2022学年新教材湘教版高中数学必修第一册4.5函数模型及其应用 课时练习题

4.5 函数模型及其应用1、几种函数增长快慢的比较 ................................................................................. 1 2、形形色色的函数模型 .. (7)1、几种函数增长快慢的比较1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( ) A .y =2x -2 B .y =⎝ ⎛⎭⎪⎫12xC .y =log 2xD .y =12(x 2-1)解析:选D 法一:相邻的自变量之差从左到右依次大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,抛物线拟合程度最好,故选D.法二:可以采用特殊值代入法,取某个x 的值代入,再比较函数值是否与表中数据相符.可取x =4,经检验易知选D.2.有甲、乙、丙、丁四种不同品牌的自驾车,其跑车时间均为x 小时,跑过的路程分别满足关系式:f 1(x )=x 2,f 2(x )=4x ,f 3(x )=log 3(x +1),f 4(x )=2x -1,则5个小时以后跑在最前面的为( )A .甲B .乙C .丙D .丁解析:选D 法一:分别作出四个函数的图象(图略),利用数形结合,知5个小时后丁车在最前面.法二:由于4个函数均为增函数,且f 1(5)=52=25,f 2(5)=20,f 3(5)=log 3(5+1)=1+log 32,f 4(5)=25-1=31,f 4(5)最大,所以5个小时后丁车在最前面,故选D.3.(2021·安徽省级示范高中高一期中)若x ∈(0,1),则下列结论正确的是( )A .2x >x 12>lg x B .2x >lg x >x 12 C .x 12>2x >lg xD .lg x >x 12>2x解析:选A 如图所示,结合y =2x ,y =x 12及y =lg x 的图象易知,当x ∈(0,1)时,2x >x 12>lg x ,故选A.4.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月的增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析:选A 设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可知,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=m (m +8a ).因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2.故本年5月份甲食堂的营业额较高.5.某企业的一个车间有8名工人,以往每人年薪为1万元.从今年起,计划每人的年薪比上一年增加10%,另外每年新招3名工人,每名新工人的第一年年薪为8千元,第二年起与老工人的年薪相同.若以今年为第一年,那么第x 年企业付给工人的工资总额y(万元)表示成x的函数,其表达式为() A.y=(3x+5)1.1x+2.4B.y=8×1.1x+2.4xC.y=(3x+8)1.1x+2.4D.y=(3x+5)1.1x-1+2.4解析:选A第一年企业付给工人的工资总额为8×1.1+3×0.8(万元),第二年企业付给工人的工资总额为(8+3)×1.12+3×0.8(万元),…,以此类推,第x年企业付给工人的工资总额应为y=[8+3(x-1)]×1.1x+2.4=(3x+5)1.1x+2.4(万元).6.函数y=x2与函数y=x ln x在区间(1,+∞)上增长较快的一个是________.解析:当x变大时,x比ln x增长要快,∴x2要比x ln x增长的要快.答案:y=x27.一种专门侵占内存的计算机病毒,开机时占据内存2 KB,然后每3分钟自身复制一次,复制后所占内存是原来的2倍,那么开机后经过________分钟,该病毒占据64 MB内存(1 MB=210 KB).解析:设开机后经过n个3分钟后,该病毒占据64 MB内存,则2×2n=64×210=216,∴n=15,故时间为15×3=45(分).答案:458.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在下图中请选择与容器相匹配的图象,A对应______;B对应_____;C对应______;D对应______.解析:A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器水高度变化快,与(3)对应,D容器水高度变化慢,与(2)对应.答案:(4)(1)(3)(2)9.画出函数f(x)=x与函数g(x)=14x2-2的图象,并比较两者在[0,+∞)上的大小关系.解:函数f(x)与g(x)的图象如图所示.根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)<g(x).10.每年的3月12日是植树节,全国各地在这一天都会开展各种形式、各种规模的义务植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,有两种方案如下:方案一:每年植树1万平方米;方案二:每年树木面积比上一年增加9%.你觉得哪种方案较好.(参考数据:(1+9%)5≈1.538 6)解:方案一:5年后树木面积是10+1×5=15(万平方米).方案二:5年后树木面积是10×(1+9%)5≈15.386(万平方米).∵15.386>15,∴方案二较好.11.当0<x<1时,f(x)=x2,g(x)=x 12,h(x)=x-2的大小关系是()A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x) C.g(x)<h(x)<f(x) D.f(x)<g(x)<h(x)解析:选D在同一坐标下作出函数f(x)=x2,g(x)=x 12,h(x)=x-2的图象.由图象知,D正确.12.某地发生地震后,地震专家对该地区发生的余震进行了监测,记录的部分数据如下表:地震强度(J)1.6×10193.2×10194.5×1019 6.4×1019震级(里氏) 5.0 5.2 5.3 5.4地震强度x(×1019)和震级y的模拟函数关系可以选用y=a lg x+b(其中a,b 为常数).利用散点图可得a=________,b=________.(取lg 2=0.3进行计算)解析:由模拟函数及散点图得a lg 1.6+b=5,a lg 3.2+b=5.2,两式相减得a(lg 3.2-lg 1.6)=0.2,所以a lg 2=0.2,解得a=2 3,所以b=5-23lg 1.6=5-23(4lg 2-1)=5-23×15=7315.答案:23731513.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来拟合h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7解:在坐标轴上标出t (年)与h (米)之间的关系如图所示.由图象可以看出增长的速度越来越慢,用一次函数模型拟合不合适,则选用对数函数模型比较合理.不妨将(2,1)代入h =log a (t +1)中,得1=log a 3,解得a =3. 故可用函数h =log 3(t +1)来拟合这个实际问题.当t =8时,求得h =log 3(8+1)=2,故可预测第8年松树的高度为2米. 14.假设有一套住房的房价从2011年的20万元上涨到2021年的40万元.下表给出了两种价格增长方式,其中P 1是按直线上升的房价,P 2是按指数增长的房价,t 是2011年以来经过的年数.t 0 5 10 15 20 P 1/万元 20 40 P 2/万元2040(1)求函数P 1=f (t )的解析式; (2)求函数P 2=g (t )的解析式;(3)完成上表空格中的数据,并在同一直角坐标系中画出两个函数的图象,然后比较两种价格增长方式的差异.解:(1)设f (t )=kt +b (k ≠0), 则⎩⎨⎧b =20,10k +b =40⇒⎩⎨⎧b =20,k =2. ∴P 1=f (t )=2t +20.(2)设g (t )=ma t (a >0,且a ≠1), 则⎩⎨⎧m =20,ma 10=40⇒⎩⎪⎨⎪⎧m =20,a =102.∴P 2=g (t )=20×(102)t =20×2t 10.(3)图象如图.表格中的数据如下表所示:t 05101520P1/万元2030405060P2/万元20202404028012增长的价格,但10年后,P2价格增长速度很快,远远超出P1的价格并且时间越长,差别越大.2、形形色色的函数模型1.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N +),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x解析:选D经过1年,y=a(1+5%),经过2年,y=a(1+5%)2,…,经过x年,y=a(1+5%)x.2.某种放射性元素,每年在前一年的基础上按相同比例衰减,100年后只剩原来的一半,现有这种元素1克,3年后剩下()A.0.015克B.(1-0.5%)3克C.0.925克D.1000.125 克解析:选D设每年减少的比例为x,因此1克这种放射性元素,经过100年后剩余1×(1-x)100克,依题意得(1-x)100=0.5,所以x=1-1000.5,3年后剩余为(1-x)3,将x的值代入,得结果为1000.125,故选D.3.某商场2020年在销售某种空调旺季的4天内的利润如下表所示,时间t 123 4利润y(千元)2 3.988.0115.99现构建一个销售这种空调的函数模型,应是下列函数中的()A.y=log2t B.y=2tC.y=t2D.y=2t解析:选B作出散点图如图所示.由散点图可知,图象不是直线,排除选项D;图象不符合对数函数的图象特征,排除选项A;把t=1,2,3,4代入B,C选项的函数中,函数y=2t的函数值最接近表格中的对应值,故选B.4.(多选)如图,某池塘里浮萍的面积y(单位:m2)与时间t(单位:月)的关系为y=a t.关于下列说法正确的是()A.浮萍每月的增长率为1B.第5个月时,浮萍面积就会超过30 m2C.浮萍每月增加的面积都相等D.若浮萍蔓延到2 m2,3m2,6 m2所经过的时间分别是t1,t2,t3,则t1+t2=t3解析:选ABD图象过(1,2)点,∴2=a1,即a=2,∴y=2t.∵2t+1-2t2t=2t(2-1)2t=1,∴每月的增长率为1,A正确.当t=5时,y=25=32>30,∴B正确.∵第二个月比第一个月增加y 2-y 1=22-2=2(m 2),第三个月比第二个月增加y 3-y 2=23-22=4(m 2)≠y 2-y 1,∴C 不正确.∵2=2t 1,3=2t 2,6=2t 3, ∴t 1=log 22,t 2=log 23,t 3=log 26,∴t 1+t 2=log 22+log 23=log 26=t 3,D 正确.故选A 、B 、D.5.我们处在一个有声世界里,不同场合,人们对声音的音量会有不同要求.音量大小的单位是分贝(dB),对于一个强度为I 的声波,其音量的大小η可由如下公式计算:η=10·lg I I 0(其中I 0是人耳能听到的声音的最低声波强度),设η1=70 dB的声音强度为I 1,η2=60 dB 的声音强度为I 2,则I 1是I 2的( )A.76倍 B .10倍 C .1076倍D .ln 76倍解析:选B 依题意可知,η1=10·lg I 1I 0,η2=10·lg I 2I 0,所以η1-η2=10·lg I 1I 0-10·lg I 2I 0,则1=lg I 1-lg I 2,所以I 1I 2=10.故选B.6.在一场足球比赛中,一球员从球门正前方10 m 处将球踢起射向球门,当球飞行的水平距离是6 m 时,球到达最高点,此时球高3 m ,已知球门高2.44 m 并且球按抛物线飞行,球________踢进球门(填“能”或“不能”).解析:建立如图所示的坐标系,抛物线经过点(0,0),顶点为(6,3). 设其解析式为y =a (x -6)2+3,把x =0,y =0代入,得a =-112, ∴y =-112(x -6)2+3.当x =10时,y =-112(10-6)2+3=53<2.44. ∴球能踢进球门. 答案:能7.在不考虑空气阻力的情况下,火箭的最大速度v m/s 和燃料的质量M kg ,火箭(除燃料外)的质量m kg 的函数关系式是v =2 000·ln ⎝ ⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s.解析:当v =12 000 m/s 时,2 000·ln ⎝ ⎛⎭⎪⎫1+M m =12 000,所以ln ⎝ ⎛⎭⎪⎫1+M m =6,所以Mm =e 6-1.答案:e 6-18.我们知道,燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解:(1)由题知,当燕子静止时,它的速度v =0,代入函数关系式可得0=5log 2Q10,解得Q =10.即燕子静止时的耗氧量是10个单位. (2)将耗氧量Q =80代入函数关系式,得 y =5log 28010=5log 28=15.即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.9.某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2015年为第1年,且前4年中,第x 年与年产量f (x )(万件)之间的关系如下表所示:若f (x )近似符合以下三种函数模型之一:f (x )=ax +b ,f (x )=2x +a ,f (x )=log 12x +a .(1)找出你认为最适合的函数模型,并说明理由,然后选取2015年和2017年的数据求出相应的解析式;(2)因遭受某国对该产品进行反倾销的影响,2021年的年产量比预计减少30%,试根据所建立的函数模型,确定2021年的年产量.解:(1)符合条件的是f (x )=ax +b , 若模型为f (x )=2x +a , 则由f (1)=21+a =4,得a =2, 即f (x )=2x +2,此时f (2)=6,f (3)=10,f (4)=18,与已知相差太大,不符合. 若模型为f (x )=log 12x +a ,则f (x )是减函数,与已知不符合. 由已知得⎩⎨⎧a +b =4,3a +b =7,解得⎩⎪⎨⎪⎧a =32,b =52.所以f (x )=32x +52,x ∈N .故最适合的函数模型解析式为f (x )=32x +52,x ∈N . (2)2021年预计年产量为f (7)=32×7+52=13, 2021年实际年产量为13×(1-30%)=9.1. 故2021年的年产量为9.1万件.10.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (单位:μg)与时间t (单位:h)之间近似满足如图所示的曲线.(1)写出服药后每毫升血液中的含药量y 与时间t 之间的函数关系式y =f (t );(2)据进一步测定:每毫升血液中含药量不少于0.25 μg 时,对治疗疾病有效,求服药一次治疗疾病的有效时间.解:(1)当0≤t <1时,y =kt ,由点M (1,4)在直线上,得4=k ,故y =4t ; 当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a ,由点M (1,4)在曲线上,得4=⎝ ⎛⎭⎪⎫121-a,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3.故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1.(2)由题意知f (t )≥0.25,则⎩⎨⎧4t ≥0.25,0≤t <1或⎩⎨⎧⎝ ⎛⎭⎪⎫12t -3≥0.25,t ≥1,解得116≤t ≤5. 所以服药一次治疗疾病的有效时间为5-116=7916(h).11.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度D (分贝)由公式D =a lg I +b (a ,b 为非零常数)给出,其中I (W/cm 2)为声音能量.(1)当声音强度D 1,D 2,D 3满足D 1+2D 2=3D 3时,求对应的声音能量I 1,I 2,I 3满足的等量关系式;(2)当人们低声说话,声音能量为10-13 W/cm 2时,声音强度为30分贝;当人们正常说话,声音能量为10-12 W/cm 2时,声音强度为40分贝.当声音强度大于60分贝时属于噪音,一般人在100~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪.解:(1)∵D 1+2D 2=3D 3,∴a lg I 1+b +2(a lg I 2+b )=3(a lg I 3+b ), ∴lg I 1+2lg I 2=3lg I 3,∴I 1·I 22=I 33.(2)由题意得⎩⎨⎧-13a +b =30,-12a +b =40,⎩⎨⎧a =10,b =160,∴100<10lg I +160<120, ∴10-6<I <10-4.故当声音能量I ∈(10-6,10-4)时,人会暂时性失聪.12.中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近70%,居全球首位.中国又属赣州钨矿资源最为丰富,其素有“世界钨都”之称.某科研单位在研发钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y 与这种新合金材料的含量x (单位:克)的关系为:当0≤x <6时,y 是x 的二次函数;当x ≥6时,y =⎝ ⎛⎭⎪⎫13x -t.测得数据如表(部分).(1)求y 关于x 的函数关系式y =f (x ); (2)求函数f (x )的最大值. 解:(1)当0≤x <6时,由题意, 设f (x )=ax 2+bx +c (a ≠0),由题中表格数据可得⎩⎪⎨⎪⎧f (0)=c =0,f (1)=a +b +c =74,f (2)=4a +2b +c =3,解得⎩⎪⎨⎪⎧a =-14 ,b =2,c =0.所以当0≤x <6时,f (x )=-14x 2+2x . 当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -t,由题中表格数据可得,f (9)=⎝ ⎛⎭⎪⎫139-t =19,解得t =7,所以当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7.综上,f (x )=⎩⎪⎨⎪⎧-14x 2+2x ,0≤x <6,⎝ ⎛⎭⎪⎫13x -7,x ≥6.(2)当0≤x <6时,f (x )=-14x 2+2x =-14(x -4)2+4, 所以当x =4时,函数f (x )取得最大值,为4;当x ≥6时,f (x )=⎝ ⎛⎭⎪⎫13x -7单调递减,所以f (x )的最大值为f (6)=⎝ ⎛⎭⎪⎫136-7=3,因为4>3,所以函数f (x )的最大值为4.。

人教版高一数学必修一电子课本1

人教版高一数学必修一电子课本1

第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示1.1.2 集合间的基本关系1.1.3 集合的基本运算1.2 函数及其表示1.2.1 函数的概念1.2.2 函数的表示法1.3 函数的基本性质1.3.2 奇偶性第二章基本初等函数2.1 指数函数2.1.1 指数与指数幂的运算2.1.2 指数函数及其性质2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.1.1 方程的根与函数的零点3.1.2 用二分法求方程的近似解3.2 函数模型及其应用rjniug垢丁梢W苗百軒HUF*目士申',. ifJUVJl^^ i V > 卩心J !;TW >11 t,ST U l'射环 * + V fl * ' i WUv)pjBJ}E丁枷下H即r?3脚”11韋£#叫丰赳丁申**苹Ell uUi A虫抄上写厲啟¥*古MF£L摩暂•屮胡计翠聃劭¥・d ii-E-jr+B-If/UvH*301(g)讯时t (V»F m(»fflV)F B• T^^*+#w:-wnv■耳*刼卓百强耳粧剪第■ -f/Uv-韦%如帑*卑收铤罩削卜M *爭杰串*皆寻中刊对龈>=1「亦'»■tFiri苗1山描甲#¥奉对卵丁弭比声主芒公"口■*7>(fifiJ\ )1坤•’"旧屮”''ruw"岁*硏号龜前童专埒导d卵竽毎畫印幼LH'即弘•爭嚣炖!■鸟箱黑窃寻片弟节询罕” ■耳您邸千曲鼻*常寻界事耶皿輩”补'itff**胡4■邸琴啓舉护凰’¥£#■<>出令聲部悴孰羊* '*◎卡啊亍罚擘曲母刘他耶舌祢黒一丄帝春塔•![盲出R# g伞并亲■無尅鱼野栖苯L』伞审爭讲人播h(HUt'Jl UE±-<U2卩十IV回料=阳仃冲严的# “ 5导¥刊加十凰拿科4 •科琦十*- ci/Uviiy^■p-dTAVlpJ^if-jfZ'i i>ijf¥T##W^tfTUV)F™ ■(HflFlF™ (flJF1' <1 屮⑴、■怕U肿出, 子H曲+优如E 则*4t常卯XOIP書鼻皿 7 士昭心甲-国门1。

《函数模型及其应用(第2课时)》教学设计与反思

《函数模型及其应用(第2课时)》教学设计与反思
量之 间的一种关 系,并给 出近似 的数学 表达式的一种方法 .
前面 学习过一次 函数 、二次 函数 、指数 函数 、对数 函数 以
遍基础较好 ,之前 已较系统地学 习了指数 函数 、对数 函数 、幂 及幂 函数,(几何画板 图像展示)它们都 与现实世 界有着 紧密
函数 等初 等 函数 ,对 其 图像 和性质 已掌 握较好 ,但 对如何 建 的联 系,有着 广泛 的应 用.数 学源 于生 活,又服务 于生 活,它
用第 4课时
学生认识 到函数是描 述客观世界变 化规律 的基本 数学模型,
【教学对象 】佛山市第一 中学高一 16班 (重点班学生) 并能初步运用 函数 思想解决现实生活 中的一些 简单问题,培
1教材 分 析
养学生应 用数学 的意识 和能力,提升学 生的数学 抽象 、数学
1.1教 材 内容 分 析
问题,是属 于数学 应用题 的范 畴,强 调利用 已知模 型解决 问
1.3.2过 程 与 方 法
题 ,但 例 4的价值 很容易发 挥不充 分,即仅仅 视作是 利用所
(1)经历解决 实 际问题 的全过程,初 步掌握 函数模 型 的
给与数 据来求参数,而没有进一步挖掘 自然增长 函数 的价值. 思想 和方法:
并对 上课教师提 出了教学及专业发 展的建议.何教授 的数学
1-3教 学 目标分 析
教 育情怀 、敬业爱 岗精神 深深感染 了与会 数学 同行们,何教
结合上述 的教材和 内容分 析,我们 认为 “3.2.2函数模 型
授专业 、幽默风趣而精彩 的点评更是不 时博得 与会教师们 的 的应用举例”的主要教学 目标是:
“函数模 型及其应 用”的同课异 构课 ,两节课都 获与会 同行们 的高度好评 .“同课异构”的教研方 式,可 以引发参与者智慧 的

高一上学期数学必修内容总结

高一上学期数学必修内容总结

高一上学期数学必修内容总结高一上学期数学必修内容总结必修一第一章集合与函数概念1。

1集合1.2函数及其表示1。

3 函数的基本性质第二章基本初等函数(Ⅰ)2。

1指数函数2.2 对数函数2。

3幂函数第三章函数的应用3。

1 函数与方程3.2函数模型及其应用必修二第一章空间几何体1.1 空间几何体的结构1.2空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3。

2 直线的方程3。

3 直线的交点坐标与距离公式第四章圆与方程4。

1 圆的方程4.2 直线、圆的位置关系4。

3 空间直角坐标系必修四第一章函数1.1 任意角和弧度制1。

2任意角的函数1.3函数的诱导公式1。

4函数的图象和性质1。

5 函数的图象1.6 函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3平面向量的基本定理及坐标表示2。

4 平面向量的数量积2。

5平面向量应用举例第三章恒等变换3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的恒等变换必修五第一章解形1.1正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4等比数列2。

5 等比数列的前n项和第三章不等式3。

1 不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题 3。

4基本不等式。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1 函数模型及其应用(1)
【学习导航】
知识网络
学习要求
1.了解解实际应用题的一般步骤;
2.初步学会根据已知条件建立函数关系式的方法; 3.渗透建模思想,初步具有建模的能力.
自学评价
1.数学模型就是把 实际问题 用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述. 2. 数学建模就是把实际问题加以 抽象概括
建立相应的 数学模型 的过程,是数学地解决问题的关键. 3. 实际应用问题建立函数关系式后一般都要考察 定义域 .
【精典范例】
例1.写出等腰三角形顶角y (单位:度)与底角x 的函数关系. 【解】1802y x =- ()090x <<
点评: 函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义.
例2.某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元.分别写出总成本C (万元)、单位成本P (万元)、销售收入R (万元)以及利润L (万元)关于总产量x (台)的函数关系式.
分析:销售利润()L x =销售收入()R x -成本()C x ,其中成本()C x = (固定成本+可变成本).
【解】总成本与总产量的关系为
2000.3,C x x N *=+∈.
单位成本与总产量的关系为
200
0.3,P x N x
*=
+∈. 销售收入与总产量的关系为
0.5,R x x N *=∈.
利润与总产量的关系为
0.2200,L R C x x N *=-=-∈ .
例3.大气温度()y C 随着离开地面的高度()x km 增大而降低,到上空11km 为止,大约每上升1km ,气温降低6C ,而在更高的上空气温却几乎没变(设地面温度为22C ). 求:(1)y 与x 的函数关系式; (2) 3.5x km =以及12x km =处的气温. 【解】(1)由题意,
当011x ≤≤时,226y x =-, ∴当11x =时,2261144y =-⨯=-, 从而当11x >时,44y =-. 综上,所求函数关系为
[]226,0,1144,(11,)
x x y x ⎧-∈⎪
=⎨
-∈+∞⎪⎩; (2)由(1)知, 3.5x km =处的气温为
226 3.51y =-⨯=C ,
12x km =处的气温为44C -.
点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题.
追踪训练一
1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企
业生产某种产品的数量为x 件时的成本函数

()2
120010
2
C x x x =++
(元)
,若每售出一件这种商品的收入是200元,那么生产并销售这种商品的数量是200件时,该企业所得的利润可达

17800
元.
2.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监与时间t (小时)之间近似测,服药后每毫升血液中的含药量y (微克)满足如图所示的曲线.(OA 为线段,AB 为某
二次函数图象的一部分,
O 为原点).
()y f x =;
(1)写出服药后y 与t 之间的函数关系式少于
4
9
微克时,对治疗有(2)据进一步测定:每毫升血液中含药量不效,求服药一次治疗疾病有效的时间.
解:(1)由已知得2
4011(5),154
t t y t t ≤≤⎧⎪
=⎨-<≤⎪⎩ (2)当01t ≤≤时,449t ≥,得1
19t ≤≤; 当15t <≤时,2
14(5)49
t -≥,
得 1911,33t t ≥≤或, ∴11
13
t <≤ ∴
11193
t ≤≤, ∴11132399
-=, 因此服药一次治疗疾病有效的时间约为3.5
小时.
听课随笔
【选修延伸】
一、函数与图象
高考热点1: (2002年高考上海文,理16)一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图所示,图(1)表示某年12个月中每月的平均气温.图(2)表示某家庭在这年12个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是()
A.气温最高时,用电量最多
B.气温最低时,用电量最少
C.当气温大于某一值时,用电量随气温增高而增加
D.当气温小于某一值时,用电量随气温渐低而增加
答案:C
分析:该题考查对图表的识别和理解能力.
【解】经比较可发现,2月份用电量最多,而2月份气温明显不是最高.因此A项错误.同理可判断出B项错误.由5、6、7三个月的气温和用电量可得出C项正确.
思维点拔:
数学应用题的一般求解程序
(1)审题:弄清题目意,分清条件和结论,理顺数量关系;
(2)建模:将题目条件的文字语言转化成数学语言,用数学知识建立相应的数学模型;(3)解模:求解数学模型,得到数学结论;
(4)结论:将用数学方法得到的结论还原为实际问题的意义,并根据题意下结论.
追踪训练二
1.有一块半径为R的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O 的直径,上底CD的端点在圆周上,写出这个梯形周长y和腰长x间的函数关系式,并求出它的定义域.
分析:关键是用半径R 与腰长x
出AE . 解:设腰长AD BC x ==,作DE AB ⊥垂足为∴Rt ADE ∆∽Rt ABD ∆∆,
∴2
AD AE AB =⨯,2
2x AE R =,
∴2
22x CD AB AE R R
=-=-
∴周长
2
2
22(2)
24x y R x R R
x
x R
R
=++-=-++, ∵ABCD 是圆内接梯形 ∴0,0,0AD AE CD >>>,
即22
0020x x R x R R

⎪>⎪⎪>⎨⎪⎪->⎪⎩,解得02x R <<, 即函数y 的定义域为{
}
02x x <<
【师生互动】。

相关文档
最新文档