五年级奥数—长方体和正方体(一)
五年级下册长方体和正方体挑战奥数习题
挑战奥数【例1】一个长30厘米、宽20厘米、高25厘米的纸盒,按下图那样的捆绑方式用绳子捆绑起来,接头处长15厘米),一共要用多长的绳子?分析:观察图形可以发现,绳子的长度实际上是纸盒的1个右面与1个前面的长方形的周长之和。
1个右面的周长:(20+25)×2=90(厘米)一个前面的周长:(30+25)×2=110(厘米)绳子长度:90+110+15=215(厘米)答:一共要用215厘米长的绳子。
变式练习1一个长8厘米、宽5厘米、高3厘米的盒子,用3根铁丝捆起来,每个打结处要用2厘米的铁丝,那么50厘米长的铁丝够吗?(5+3)×2×2=32(厘米)(8+3)×2=22(厘米)32+22+2×3=60(厘米)60>50答:50厘米长的铁丝不够。
【例2】有一个长方体,底面是正方形,高24厘米,侧面展开是一个正方形,这个长方体的体积是多少立方厘米?分析:由侧面展开是一个正方形可以知道,长方体的底面周长与高相等,求出底面边长。
知道底面边长和高,利用体积计算公式就可求出长方体的体积。
长方体的底面边长:24÷4=6(厘米)长方体的体积:6×6×24=864(立方厘米)答:这个长方体的体积是864立方厘米。
变式练习2有一个长方体,底面是正方形,高是16厘米,侧面展开是一个长方形,长是宽的2倍。
求这个长方体的体积。
16×2=32(厘米)32÷4=8(厘米)8×8×16=1024(立方厘米)答:这个长方体的体积是1024立方厘米。
变式练习3有一个长方体,体积是576立方厘米,高是9厘米,底面是一个正方形,这个长方体的底面周长是多少厘米?576÷9=64(平方厘米)64=828×4=32(厘米)答:这个长方体的底面周长是32厘米。
五年级下册数学 奥数经典培训讲义——长方体和正方体 基础部分 全国通用
长方体和正方体姓名:一、长方体和正方体的认识1、长方体的特征:长方体是由6个长方形围成的立体图形。
○1观察长方体,长方体有几个面?每个面都是什么形状?比一比相对面是不是完全相同?○2两个面相交的边叫做棱。
数一数,长方体有几条棱?这些棱可以分成几组?每组中的几条棱是不是相等?○3三条棱相交的点叫做顶点。
长方体有几个顶点?2、长方体通常画成下图那样:相交于通一丁点的三条棱分别叫做长方体的长、宽、高。
3、正方体的特征:正方体是有6个完全相同的正方形围成的立体图形。
你也能从面、棱、顶点角度,说说可见,正方体是一种特殊的长方体。
如图1图1 图另外,还有一种特殊的长方体,如图2。
它的长厘米,宽厘米,高厘米,它的左面和面完全相同,都是正方形。
其余四个面。
都是长厘米,宽厘米的形。
4、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12练一练:1、请你画一个长方体和一个正方体。
长方体:正方体:2、一个长方体长4厘米,宽3厘米,高2厘米,它的前面是()形,长是()厘米,宽是()厘米;它的右面是()形,长是(),宽是();长方体的下面、左面、前面分别和()面、()面、()面完全相同。
3、小学数学课本的长是21厘米,宽14.5厘米,高0.8厘米,则它的底面是(),面积是()。
4、用一根48厘米的铁丝围成一个正方体,其棱长是()厘米。
5、李师傅用两根一样长的铁丝分别围成一个长方体和一个正方体,已知长方体的长10厘米,宽6厘米,高5厘米。
那么正方体的棱长是()厘米。
6、一个长方体是由3个棱长4厘米的正方体拼成的,这个长方体的长是(),宽是(),高是()。
他最多有()面完全相同,面积为()。
7、用一根长为60厘米的铁丝扎成一个正方体框架,长7厘米,宽5厘米,高是()厘米。
8、用5个完全一样的正方体拼成一个长方体,这个长方体所有棱长总和是112厘米,求长方体的底面积是(),原来一个正方体的棱长总和是()厘米。
五年级奥数之长方体和正方体的表面积
五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
4月1日五年级奥数题
图27—4五年级(长方体和正方体) 1、一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是 立方厘米.2(1)有一个正方体,如果高增加4cm ,就成为一个长方体,这个长方体的表面积正好比原正方体的表面积增加80平方cm ,求原正方体的体积。
(2)一个长方体的高如果增加2cm ,就成为一个正方体,这时表面积就比原来增加了48平方cm 。
原来长方体的体积是( )?3.一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是( ) 4、一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.(结果以分数形式出现)5、在棱长为3cm 的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1cm 的正方形(见右图)。
求挖洞后木块的体积( )。
6.如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是( )立方厘米?7.一个长方体的棱长总和是48cm ,己知长是宽的1.5倍,宽是高的2倍,求它的体积( )。
8.一个正方体木块的表面积是96平方cm ,把它锯成体积相等的8个正方体小木块,每个小木块的表面积是 ( )9..从一棱长10厘米正方体木块上挖去一长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是( )10..把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?11.把19个棱长为3厘米的正方体重叠起来,如下右图图27-4所示,拼成一个立体图形,求这个立体图形的表面积。
12..在一个长50厘米、宽40厘米、高10厘米的长方体容器中,盛有5厘米深的水。
现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?13.在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。
五年级奥数长方体和正方体
长方体和正方体一【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
2.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?练习3:1.把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,- 1 -而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?2.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?3.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题4】把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
练习4:1.一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?2.一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。
3.有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?用图画出来。
【例题5】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?练习5:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?2.一个长方体的长、宽、高是三个连续偶数,体积是96立方厘米,求它的表面积。
学而思奥数5年级秋季班:第1讲《长方体与正方体》讲义
D
【解析】 1、 8 、12 、 6 ; 2、 6 、正方形、相等; 3、 (5 3 4) 4 48 (厘米) ; 4、 6 12 72 (厘米) ; 5、 C .
例2
⑴对长、宽、高分别为 3 厘米、 2 厘米、1厘米的长方体木 块喷漆,喷漆的面积是多大? ⑵制作一个无盖的长方体鱼缸, 长、 宽、 高分别为 3 分米、 2 分米、1分米,需要多少平方分米的玻璃?(不计玻璃之 间粘合的部分) ⑶对左右联通的长方体热水管包一层保护罩,长、宽、高 分别为 3 米、 2 米、1米,需要多少平方米的保护罩?
例4
有一个长方体形状的零件, 中间挖去一个正方体 (如下图, 单位为厘米) . ⑴挖掉这个正方体之后这个长方体的表面积是增大了还 是减小了? ⑵这个挖去一块后得到的图形的表面积为_____平方厘米.
6 2 2 5 8
2
五年级秋季
基础
第 1 讲
【解析】 ⑴这个长方体挖掉一块之后表面积增大了. 挖掉的这个小 正方体的下底面拼在原长方体上表面缺掉的部分恰好可 以拼成完整的长方体, 因此增加的面积可以看成是挖掉的 这个小正方体的四个侧面,它们的面积是 (2 2) 4 16 (平方厘米) ; ⑵原长方体的表面积为: (5 8 5 6 6 8) 2 236 (平 方厘米) .所以挖掉一块的长方体的表面积为 236+16=252 (平方厘米) .
五年级秋季
基础
3
【解析】 ⑴表面积: S表 S长方体 S正方体 S粘贴面积 118 24 4 2 134 (平方 厘米) ; ⑵体积:V V正方体 V长方体 2 2 2 7 5 2 8 70 78 (立方厘米) .
长方体与正方体奥数题及答案
1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。
80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。
78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。
五年级奥数讲义第13讲--长方体和正方体(一)
五年级奥数讲义第13讲--长方体和正方体(一)work Information Technology Company.2020YEAR第13讲长方体和正方体(一)一、知识要点在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3.求一些不规则的物体体积时,可以通过变形的方法来解决。
二、精讲精练【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米表面积是多少平方厘米(单位:厘米)【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80×2=160(立方厘米);(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。
因此,此零件的表面积就是(10×6+10×4+2×2)×2=232(平方厘米)。
想一想:你还能用别的方法来计算它的体积吗?练习1:1.一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?2.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
3.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去了一个孔,所以体积减少了2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米);(2)长方体完整的表面积是(8×5+8×6+6×5)×2=236(平方厘米),但由于挖去了一个孔,它的表面积减少了一个(2×2)平方厘米的面,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+2×2×4=252(平方厘米)。
(小学奥数)长方体与正方体(一)
對於小學幾何而言,立體圖形的表面積和體積計算,既可以很好地考查學生的空間想像能力,又可以具體考查學生在公式應用中處理相關數據的能力,所以,很多重要考試都很重視對立體圖形的考查.如右圖,長方體共有六個面(每個面都是長方形),八個頂點,十二條棱. c b a H G F ED CB A ①在六個面中,兩個對面是全等的,即三組對面兩兩全等.(疊放在一起能夠完全重合的兩個圖形稱為全等圖形.)②長方體的表面積和體積的計算公式是:長方體的表面積:2()S ab bc ca =++长方体;長方體的體積:V abc =长方体.③正方體是各棱相等的長方體,它是長方體的特例,它的六個面都是正方形. 如果它的棱長為a ,那麼:26S a =正方体,3V a =正方体.板塊一 長方體與正方體的表面積【例 1】 右圖中共有多少個面?多少條棱?后面前面右面左面下面上面例題精講長方體與正方體(一)【鞏固】右圖中共有多少個面?多少條棱?【例 2】如右圖,在一個棱長為10的立方體上截取一個長為8,寬為3,高為2的小長方體,那麼新的幾何體的表面積是多少?【鞏固】在一個棱長為50釐米的正方體木塊,在它的八個角上各挖去一個棱長為5釐米的小正方體,問剩下的立體圖形的表面積是多少?【例 3】如右圖,有一個邊長是5的立方體,如果它的左上方截去一個邊分別是5,3,2的長方體,那麼它的表面積減少了多少?【例 4】如圖,有一個邊長是5的立方體,如果它的左上方截去一個邊分別是5,3,2的長方體,那麼它的表面積減少了百分之幾?【例 5】右圖是一個邊長為4釐米的正方體,分別在前後、左右、上下各面的中心位置挖去一個邊長l釐米的正方體,做成一種玩具.它的表面積是多少平方釐米?(圖中只畫出了前面、右面、上面挖去的正方體)【例 6】如圖,有一個邊長為20釐米的大正方體,分別在它的角上、棱上、面上各挖掉一個大小相同的小立方體後,表面積變為2454平方釐米,那麼挖掉的小立方體的邊長是多少釐米?【例 7】下圖是一個棱長為2釐米的正方體,在正方體上表面的正中,向下挖一個棱長為1釐米的正方體小洞,接著在小洞的底面正中向下挖一個棱長為12釐米的正方形小洞,第三個正方形小洞的挖法和前兩個相同為1釐米,那4麼最後得到的立體圖形的表面積是多少平方釐米?【例 8】從一個棱長為10釐米的正方形木塊中挖去一個長10釐米、寬2釐米、高2釐米的小長方體,剩下部分的表面積是多少?(寫出符合要求的全部答案)【例 9】一個正方體木塊,棱長是15.從它的八個頂點處各截去棱長分別是1、2、3、4、5、6、7、8的小正方體.這個木塊剩下部分的表面積最少是多少?【例 10】從一個長8釐米、寬7釐米、高6釐米的長方體中截下一個最大的正方體(如下圖),剩下部分的表面積之和是平方釐米.86667【鞏固】一個長、寬、高分別為21釐米、15釐米、12釐米的長方形,現從它的上面盡可能大的切下一個正方體,然後從剩餘的部分再盡可能大的切下一個正方體,最後再從第二次剩餘的部分盡可能大的切下一個正方體,剩下的體積是多少平方釐米?【例 11】一個正方體木塊,棱長是1米,沿著水準方向將它鋸成2片,每片又鋸成3長條,每條又鋸成4小塊,共得到大大小小的長方體24塊,那麼這24塊長方體的表面積之和是多少?【鞏固】如右圖,一個正方體形狀的木塊,棱長l米,沿水準方向將它鋸成3片,每片又鋸成4長條,每條又鋸成5小塊,共得到大大小小的長方體60塊.那麼,這60塊長方體表面積的和是多少平方米?【鞏固】一個表面積為256cm的長方體如圖切成27個小長方體,這27個小長方體表面積的和是2cm.【例 12】右圖是一個表面被塗上紅色的棱長為10釐米的正方體木塊,如果把它沿虛線切成8個正方體,這些小正方體中沒有被塗上紅色的所有表面的面積和是多少平方釐米?【例 13】有n個同樣大小的正方體,將它們堆成一個長方體,這個長方體的底面就是原正方體的底面.如果這個長方體的表面積是3096平方釐米,當從這個長方體的頂部拿去一個正方體後,新的長方體的表面積比原長方體的表面積減少144平方釐米,那麼n為多少?【例 14】邊長分別是3、5、8的三個正方體拼在一起,在各種拼法中,表面積最小多少?【例 15】如圖,25塊邊長為1的正方體積木拼成一個幾何體,表面積最小是多少?25块积木【例 16】由六個棱長為1的小正方體拼成如圖所示立體,它的表面積是.【例 17】將15個棱長為1的正方體堆放在桌子上,噴上紅色後再將它們分開。
五年级奥数—长方体和正方体(一)
五年级奥数训练——长方体和正方体(一)姓名:例题1一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习一一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?例题2有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习二有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
例题 3 一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?例题4把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
练习四一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?例题5 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?练习五有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?1、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?2、如果把上题中挖下的小正方体粘在另一个面上(如图),那么得到的物体的体积和表面积各是多少?3、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?4、有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?用图画出来。
五年级下册数学奥数试题 -- 长方体与正方体 全国通用 含答案
长方体与正方体一、走进来:大科学家伽里略说:“大自然用数学语言讲话。
这个语言的字母是:圆、三角形还有长方体及其它各种形体。
”圆、三角形等是平面图形;长方体、正方体等是立体图形平面图形是研究同一个平面内的各数量之间的关系;而立体图形研究的是若干个面内的数量和数量之间的关系。
长方体和正方体是我们最熟悉的几何体。
我国国家游泳中心就是一个巨大的长方体,它的长、宽、高分别为 177米、 177米、30米,又被称为“水立方”,2008年奥运会主要的游泳赛事将在这个巨大的长方体建筑内举行!本章我们将进一步认识长方体、正方体及其组合而成的立体图形的特征,学习其体积和表面积的计算方法和技巧。
提高作图能力、观察能力、计算能力和空间想象力。
二、一起做:【例1】有一个长6厘米,宽4厘米,高8厘米的长方体木块,表面被刷上了红油漆,把它截成棱长是2厘米的若干个小正方体教具,然后把各个小正方体教具中没有刷上红油漆面也刷上红油漆,问还要刷多少平方厘米的红油漆?提示:先画出图形,然后借助图形观察分析,弄清没有刷上红油漆的面处在大正方体的何位置。
【例2】老师为了考核同学们的空间想象能力,用若干个棱长为1cm的小正方体摆成如图所示的立体图形。
你能计算出这个立方体的体积和表面积吗?提示:求体积关键是数一数小正方体的个数,注意数正方体时要讲究顺序性。
数一数相对的面,看看你有什么发现?【例3】有一个六个面都涂满巧克力的长方体的大蛋糕,长4分米,宽4分米,高6分米,把它切成棱长是1分米的若干个小正方体蛋糕分给幼儿园的小朋友,问:(1)没有吃到巧克力的小朋友共有多少人?(2)吃到三个面、两个面、一个面涂有巧克力蛋糕的小朋友各有多少人?提示:动手画一画图,看看三面、二面、一面涂巧克力及没有涂巧克力的小正方各在长方体的什么位置。
相信你一定能发现其中的规律!【例4】在一个棱长为9厘米的正方体的钢坯上、下底面正中间打一个对穿孔,制成一个机器零件。
已知这个对穿孔是底面边长为2厘米的正方形,这个机器零件的体积和表面积各是多少?如果在前、后、左、右面正中间也各打一个同样的对穿孔,你能算出这个零件的体积和表面积吗?提示:你能画出相应的图形吗?体积的计算可采用相减的办法,当打三个对穿孔时需注意如何处理三个孔的交汇处的立方体。
长方体与正方体奥数题及答案
长方体与正方体奥数题及答案1、一个长方体的棱长之和为80厘米。
将其平均截成两段后,得到两个大小相等的正方体。
求这个长方体的表面积和体积。
解:每个正方体的棱长为80÷2÷8=5厘米。
因此,这个长方体的表面积为5×5×5×2=250平方厘米,体积为5×5×5=125立方厘米。
2、将3个完全相等的正方体拼成一个长方体,这个长方体的表面积为350平方厘米。
每个正方体的表面积是多少平方厘米?解:这个长方体的长、宽、高分别为a、b、c,且有2(ab+bc+ac)=350,即___将长方体分成3个正方体之后,得到2(a²+b²+c²)=3(ab+bc+ac)=525,即a²+b²+c²=262.5.因此,每个正方体的表面积为262.5÷6=150平方厘米。
3、将一个长方体的木块截成两段,得到两个完全相等的正方体。
这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米。
原来那个长方体的体积是多少立方厘米?解:设原来长方体的长、宽、高分别为a、b、c,且有a+b+c=2x,其中x为每个正方体的棱长。
则有x=(a+b+c)÷4+10.因此,原来那个长方体的体积为a×b×c=(2x-b-c)×b×c=(a+b+c)×(a+b+c-2x)×x÷8=250立方厘米。
4、将一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大。
这时表面积之和是多少平方厘米?解:设第一个长方体的长、宽、高分别为x、y、z,第二个长方体的长、宽、高分别为7-x、6-y、5-z。
则这两个长方体的表面积之和为2(xy+xz+yz)+2((7-x)(6-y)+(7-x)(5-z)+(6-y)(5-z))=298平方厘米。
五年级长方体和正方体奥数
长方体和正方体1.一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)2.个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?3.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)4.一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?5.有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。
如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?6.有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。
如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?7.将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。
8.长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?9.一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?10.有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?11.有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
12.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?13.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?14.一个长方体的长、宽、高是三个连续偶数,体积是96立方厘米,求它的表面积。
15.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。
小学奥数 长方体与正方体(一) 精选例题练习习题(含知识点拨)
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面下面上面【巩固】右图中共有多少个面?多少条棱?例题精讲长方体与正方体(一)【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【例 10】从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是平方厘米.86667【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【例 11】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【巩固】一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【例 13】有n个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n为多少?【例 14】边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【例 15】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【例 16】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【例 17】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
五年级数学从课本到奥数举一反三第二学期第4周长方体和正方体(共5小节)图文详解
五年级数学同步课本延伸奥数
五年级数学同步课本延伸奥数 思路点拨
五年级数学同步课本延伸奥数 思路点拨
五年级数学同步课本延伸奥数
答案详解
五年级数学同步课本延伸奥数
奥赛训练
答案详解
五年级数学同步课本延伸奥数
奥赛训练
答案详解
五年级数学从课本知识到奥数(第二学期)
3.长方体和正方体的表面积(一)
奥赛训练
答案详解
五年级数学从课本知识到奥数(第二学期)
2.长方体和正方体的特征(二)
五年级数学同步课本延伸奥数 典型例题
五年级数学同步课本延伸奥数 思路点拨
五年级数学同步课本延伸奥数 举一反三
答案详解
五年级数学同步课本延伸奥数 举一反三
答案详解
五年级数学同步课本延伸奥数 举一反三
答案详解
答案详解
五年级数学同步课本延伸奥数
奥赛训练
答案详解
五年级数学同步课本延伸奥数
奥赛训练
答案详解
五年级数学从课本知识到奥数(第二学期)
4.长方体和正方体的表面积(二)
五年级数学同步课本延伸奥数 典型例题
五年级数学同步课本延伸奥数 思路点拨
五年级数学同步课本延伸奥数 举一反三
答案详解
五年级数学同步课本延伸奥数 举一反三
五年级数学同步课本延伸奥数 典型例题
五年级数学同步课本延伸奥数 思路点拨
五年级数学同步课本延伸奥数 举一反三
答案详解
ห้องสมุดไป่ตู้
五年级数学同步课本延伸奥数 举一反三
答案详解
五年级数学同步课本延伸奥数 举一反三
答案详解
五年级数学同步课本延伸奥数
五年级数学同步课本延伸奥数 思路点拨
五年级奥数长方体与正方体(一)学生版
五年级奥数长方体与正方体(一)学生版如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面上面例题精讲长方体与正方体(一)【巩固】右图中共有多少个面?多少条棱?【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【例 10】从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是平方厘米.86667【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【例 11】一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【巩固】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【巩固】一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【例 13】有n个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n为多少?【例 14】边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【例 15】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【例 16】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【例 17】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
人教版五年级下从课本到奥数长方体和正方体1-1电子教案
⼈教版五年级下从课本到奥数长⽅体和正⽅体1-1电⼦教案长⽅体和正⽅体1.⼀个长⽅体棱长总和是60厘⽶,已知长是宽的1.5倍,宽是⾼的2倍,求这个长⽅体的长、宽、⾼.2.⼀个长⽅体棱长总和是96厘⽶,已知长是宽的1.5倍,宽是⾼的2倍,求这个长⽅体的长、宽、⾼.3.⼀个长⽅体棱长总和是103.2厘⽶,已知长是宽的1.2倍,宽是⾼的1.5倍,求这个长⽅体的长、宽、⾼.4.⼀个正⽅体的棱长总和是93.6厘⽶,它的棱长是多少?5.⼀个长25厘⽶、宽20厘⽶、⾼18厘⽶的长⽅体盒⼦,如果按如图所⽰的虚线⽤绳⼦捆起来,不计接头处绳⼦的长度,需要多长的绳⼦?(5)(6)(7)6.⼀个长2.2⽶、宽1.8⽶、⾼2⽶的长⽅体⽊箱,按如图所⽰的虚线⽤绳⼦捆起来,不计接头处绳⼦的长度,需要多长的绳⼦?7.⼀个棱长6分⽶的正⽅体物品,按如图所⽰的虚线⽤绳⼦捆起来,接头处是40厘⽶,那么⾄少需要多长的绳⼦?8.如图所⽰这是⼀个长6分⽶、宽4分⽶、⾼2分⽶的⽊箱,⽤三根铁丝捆起来,打结处⽤1分⽶铁丝.这三根铁丝总长⾄少是多少⽶?(8)9.⽤棱长1厘⽶的⼩正⽅体摆成稍⼤⼀些的正⽅体,⾄少需要多少个⼩正⽅体?10.⽤棱长1厘⽶的⼩正⽅体摆成棱长是3厘⽶的⼤正⽅体,需要多少个⼩正⽅体?7.⽤棱长1厘⽶的⼩正⽅体摆成⼀个⼤正⽅体,需要()个⼩正⽅体.A.4B.16C.50D.6412.⽤边长1厘⽶的⼩正⽅形摆成⼀个⼤正⽅形,需要()⼩正⽅形A.8B.27C.49D.7213.把⼀个长6厘⽶、宽4厘⽶、⾼5厘⽶的长⽅体⽊块表⾯全部涂成红⾊,然后切成棱长1厘⽶的⼩正⽅体⽊块.(1)切开后有多少个⼩正⽅体⽊块分别有三个⾯、两个⾯、⼀个⾯被涂成红⾊?(2)切开后有多少个⼩正⽅体⽊块没有染上红⾊(切⾯都是⽩⾊)?14.把⼀个长6厘⽶、宽3厘⽶、⾼5厘⽶的长⽅体⽊块表⾯全部涂成红⾊,然后切成棱长1厘⽶的⼩正⽅体⽊块.问:(1)切开后有多少个⼩正⽅体⽊块分别有三个⾯、两个⾯、⼀个⾯被涂成红⾊?(2)切开后有多少个⼩正⽅体⽊块没有染上⾊?15.⼀个表⾯涂满红⾊的⼩正⽅体,在它的每个⾯都等距离地切两⼑.三个⾯、两个⾯、⼀个⾯上涂红⾊的⼩正⽅体各有⼏个?16.把⼀个长6厘⽶、宽4厘⽶、⾼3厘⽶的长⽅体⽊块表⾯全部涂成红⾊,然后切成棱长1厘⽶的⼩正⽅体⽊块,这些⼩正⽅体恰好有两个⾯涂上红⾊的有多少个?17.⼀个长⽅体的长、宽、⾼分别是9厘⽶、8厘⽶、7厘⽶,把长、宽、⾼都扩⼤⾄原来的2倍,它的表⾯积扩⼤为原来的多少倍?18. ⼀个长⽅体的长、宽、⾼分别是10厘⽶、8厘⽶、6厘⽶,把长、宽、⾼都扩⼤⾄原来的3倍,它的表⾯积扩⼤为原来的多少倍?19. ⼀个长⽅体棱长总和是172厘⽶,已知长是宽的1.2倍,宽是⾼的1.5倍,求这个长⽅体的表⾯积.20.⼀个正⽅体的棱长总和84厘⽶,它的体积和表⾯积分别是多少?21.如图所⽰,这个⽴体图形由20个棱长为1厘⽶的⼩正⽅体⽊块堆积⽽成,求它的表⾯积.(21)(22)(23)22. 如图所⽰,这个⽴体图形由13个棱长为1厘⽶的⼩正⽅体⽊块堆积⽽成,求它的表⾯积.23.如图是⼀个⽤棱长1厘⽶的⼩正⽅体摆成的物体.(1)这个物体的表⾯积是多少?(2)要把这个物体补成⼀个⼤正⽅体,这个⼤正⽅体的表⾯积⾄少是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数训练——长方体和正方体(一)
姓名:
例题1一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
练习一
一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?
例题2有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)
练习二
有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
例题 3 一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?
把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?
例题4把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
练习四
一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?
例题5 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?
练习五
有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?
1、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如图),求切掉正方体后的表面积和体积各是多少?
2、如果把上题中挖下的小正方体粘在另一个面上(如图),那么得到的物体的体积和表面积各是多少?
3、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?
4、有24个正方体,每个正方体的体积都是1立方厘米,用这些正方体可以拼成几种不同的长方体?用图画出来。
5、一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、高分别是6分米、4分米、25分米,求正方体体积。
1、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。
2、有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?
3、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?
4、一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。
5、一个长方体的长、宽、高是三个连续偶数,体积是96立方厘米,求它的表面积。