7.导数压轴选择题精编(1)
导数压轴题

导数压轴题
导数压轴题是指在求导数的过程中遇到的较为复杂或具有一定难度的题目,常常用于考察学生对导数的理解和运用能力。
这些题目通常包含多个函数复合、隐函数求导、参数方程求导等内容,需要学生运用导数的基本性质和求导法则进行推导和计算。
举个例子,考虑以下的导数压轴题:已知函数y = f(g(x)),其中f(x)和g(x)分别为可导函数,求函数y = f(g(x))的导数。
在解决这个问题之前,我们首先需要理解复合函数的求导法则。
根据链式法则,如果函数y = f(u)和u = g(x)都是可导函数,那么复合函数y = f(g(x))的导函数可以表示为:
dy/dx = dy/du * du/dx
根据这个法则,我们可以将函数y = f(g(x))的导数分解为两个部分。
首先,我们求导f(u)关于u的导数,即df/du。
然后,我们求导g(x)关于x的导数,即dg/dx。
最后,将这两个导数相乘,即可得到函数y = f(g(x))的导数。
这个例子只是导数压轴题的一种,实际上,导数压轴题的难度和形式多种多样。
有些题目可能涉及到更多的函数复合和多个导数的乘
积,或者需要运用其他的求导规则如隐函数求导、参数方程求导等。
解决导数压轴题需要对导数的基本概念和求导法则有扎实的理解,同时需要灵活运用数学知识和技巧。
通过解决这些题目,可以加深对导数的理解和运用能力,提高数学问题解决的能力。
导数综合练习题压轴(含详细答案)精华

导数练习题1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=.(I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ).(I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值. 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立.已知函数.1,ln )1(21)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题(B )答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f得 ⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分) (II )依题意 3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a 解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分)(III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点;2',()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点, 故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I ))0()1()('>-=x xx a x f (2分) 当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a 当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II )32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得 2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m(12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分)(II 依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间[-2,2]有:230368)2(,7)1(,7430368)2(=+-==-=---=-f f f,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .…………(14分)4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=.(I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分)∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )a x a x ax x g )22)(22(22)(-+=-=',由0)(='x g ,得2a x =,列表当2x )222 …………(6分)由(I )a e a >,∵⎪⎩⎪⎨⎧>>22a a e e aa ,∴22a e a>,∴22a e a >01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8分) (i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii )当122>a,即2>a 时 若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-aa ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-aa ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)ae 上,我们有结论: 当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;解:(I )当1k =时,2()1xf x x -'=- )(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分) ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<,∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点, ∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分) 令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k '∈++∞<时,∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)xf x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I )求实数a 的值;(II )求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)∵2x =是函数()f x 的一个极值点,∴(2)0f '=∴2(5)0a e +=,解得5a =- ……………(6分)(II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=- ∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间;(II )求函数)(x f 在区间],[2e e 上的最小值.解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x 注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4, 注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(.综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分(Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-= 所以xax x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2 当0<a 时,有△=16+4×208)2(<=-a a ,此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分当0>a 时,△=08)2(2416>=-⨯-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或221a x -<; 令0)('<x f ,即02422<-+-a x x ,解得221a -221ax +<<. ①若221a +≥2e ,即a ≥22)1(2-e 时, )(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.②若2221e ae <+<,即222)1(2)1(2-<<-e a e 时间, )(x f 在区间]221,[a e +上单调递减,在区间],221[2e a +上单调递增,所以min )(x f )221(a f +=)221ln()2(322aa a a +-+--=.③若221a +≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增,所以a e e e f x f -+-==24)()(2min综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=;当222)1(2)1(2-<<-e a e 时,)221ln()2(322)(min aa a a x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min14分 8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x'=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立. 解:(I )226()26a x x af x x x x-+'=-+=, ………………(2分)∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32x =,开口向上的抛物线,∴222620y a =⋅-⋅+< 的实数a 的取值范围(,4)-∞ ………………(6分) (II )由(I )22()2a g x x x x =+-, 方法1:2222()()62(0)a g x f x x x x x x '=-+=+->, ∵4a <,∴323233444244()22a x x g x x x x x x -+'=-+>-+=,…………(8分)设2344()2h x x x =-+,3448124(23)()x h x x x x -'=-=()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值3827∴从而()g x '3827>,∴38(())027g x x '->,函数38()27y g x x =-是增函数,12x x 、是两个不相等正数,不妨设12x x <,则22113838()()2727g x x g x x ->-∴212138()()()27g x g x x x ->-,∵210x x ->,∴1212()()3827g x g x x x ->- ∴1212()()g x g x x x --3827>,即121238|()()|||27g x g x x x ->- ………………(12分)方法2: 11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,121222121212()()2()2g x g x x x ax x x x x x -+=+--,12x x +>4a <12221212122()22x x a a x x x x x x +∴+->1242x x > ………(8分)设0t t =>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-,由()0u t '>,得2,3t >由()0u t '<得20,3t << ()u t ∴在)32,0(上是减函数,在),32(+∞上是增函数,)(t u ∴在32=t 处取极小值2738,38()27u t ∴≥,∴所以1212()()g x g x x x --3827>即121238|()()|||27g x g x x x ->- ………………(12分) 9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I )讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意(1))(x f 的定义域为),0(+∞,xa x x x a ax x x a a x x f )1)(1(11)('2-+-=-+-=-+-= 2分(i )若2,11==-a a 即,则 .)1()('2xx x f -=故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即单调增加.(II )考虑函数x x f x g +=)()( .ln )1(212x x a ax x +-+-=由 .)11(1)1(121)1()('2---=---⋅≥-+--=a a xa x x a a x x g由于单调增加在即故),0()(,0)(',5+∞><x g x g a a ,从而当021>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即故1)()(2121->--x x x f x f ,当210x x <<时,有1)()()()(12122121->--=--x x x f x f x x x f x f10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-. (I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围;(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.解:(I )(),()1af x xg x a x''=+=+, ……………(2分)∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,∴当[1,3]x ∈时,2(1)()()()0a x a f x g x x++''⋅=≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立,∴21a a x >-⎧⎨≥-⎩在[1,3]x ∈时恒成立,或21a a x <-⎧⎨≤-⎩在[1,3]x ∈时恒成立, ∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分) (II )21()ln ,(1)2F x x a x a x =+-+,()(1)()(1)a x a x F x x a x x--'=+-+=∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数∴当1x =时,()F x 取极大值1(1)2M F a ==--,当x a =时,()F x 取极小值21()ln 2m F a a a a a ==--, ………………(8分)∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分)设211()ln 22G a M m a a a =-=--,则()ln 1G a a a '=--, ∴1[()]1G a a''=-,∵(1,]a e ∈,∴[()]0G a ''> ∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=∴211()ln 22G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)∴()()G a G e ≤,即2211(1)()1222e G a e e -≤--=-, 而22211(1)(31)1112222e e e ----=-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分)11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数.(I )求函数()f x 的极值;(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )11()0exf x e x x-'=-==,得1x e =当x 变化时,()f x '与()f x 变化情况如下表:∴当1x e =时,()f x 取得极大值()2f e=-,没有极小值; …………(4分)(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201ln 0x x xx x --=即20211ln ()0x x x x x --=,设2211()ln ()xg x x x x x =--211211()ln ()x g x x x x x =--,1/211()ln 10x x g x x =->,1()g x 是1x 的增函数,∵12x x <,∴2122222()()ln ()0xg x g x x x x x <=--=;222211()ln ()x g x x x x x =--,2/221()ln 10x x g x x =->,2()g x 是2x 的增函数,∵12x x <,∴1211111()()ln ()0xg x g x x x x x >=--=,∴函数2211()ln ()xg x x x x x =--在12(,)x x 内有零点0x , …………(10分)又∵22111,ln 0x x x x >∴>,函数2211()ln ()xg x x x x x =--在12(,)x x 是增函数,∴函数2121()ln x x xg x x x -=-在12(,)x x 内有唯一零点0x ,命题成立…………(12分)(方法2)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分) ∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分) 注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分. 12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y,(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分)得函数()f x 的定义域是(1,3)-, ……………………(4分)(II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++设曲线00(41)C x x -<<-在处有斜率为-8的切线,又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++∴存在实数b 使得⎪⎩⎪⎨⎧>+++-<<--=++1114823020300020bx ax x x b ax x 有解, ……………………(6分)由①得,238020ax x b ---=代入③得082020<---ax x ,200028041x ax x ⎧++>⎪∴⎨-<<-⎪⎩由有解, ……………………(8分) 方法1:0082()()a x x <-+-,因为041x -<<-,所以0082()[8,10)()x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线………………(10分)方法2:得08)1()1(208)4()4(222>+-⨯+-⨯>+-⨯+-⨯a a 或,1010,10.a a a ∴<<∴<或 ………………(10分) 方法3:是222(4)(4)802(1)(1)80a a ⎧⨯-+⨯-+≤⎪⎨⨯-+⨯-+≤⎪⎩的补集,即10a < ………………(10分)(III )令2)1ln(1)(,1,)1ln()(x x x xx h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=x x x x x p 0)1(11)1(1)(22<+-=+-+='∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有),1[)(+∞∴在x h 单调递减,x y y x y x x y yy x x y x )1()1(),1ln()1ln(,)1ln()1ln(,1+>+∴+>+∴+>+<≤∴有时,).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)①②③。
函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。
新高考数学高考数学压轴题 导数及其应用多选题分类精编附解析

新高考数学高考数学压轴题 导数及其应用多选题分类精编附解析一、导数及其应用多选题1.已知函数()21xx x f x e+-=,则下列结论正确的是( ) A .函数()f x 存在两个不同的零点 B .函数()f x 既存在极大值又存在极小值C .当0e k -<<时,方程()f x k =有且只有两个实根D .若[),x t ∈+∞时,()2max 5f x e=,则t 的最小值为2 【答案】ABC 【分析】首先求函数的导数,利用导数分析函数的单调性和极值以及函数的图象,最后直接判断选项. 【详解】对于A .2()010f x x x =⇒+-=,解得152x -±=,所以A 正确; 对于B .22(1)(2)()x xx x x x f x e e--+-=-=-', 当()0f x '>时,12x -<<,当()0f x '<时,1x <-或2x >,所以(,1),(2,)-∞-+∞是函数的单调递减区间,(1,2)-是函数的单调递增区间, 所以(1)f -是函数的极小值,(2)f 是函数的极大值,所以B 正确.对于C .当x →+∞时,0y →,根据B 可知,函数的最小值是(1)f e -=-,再根据单调性可知,当0e k -<<时,方程()f x k =有且只有两个实根,所以C 正确;对于D :由图象可知,t 的最大值是2,所以D 不正确. 故选:ABC.【点睛】易错点点睛:本题考查了导数分析函数的单调性,极值点,以及函数的图象,首先求函数的导数,令导数为0,判断零点两侧的正负,得到函数的单调性,本题易错的地方是(2,)+∞是函数的单调递减区间,但当x →+∞时,0y →,所以图象是无限接近轴,如果这里判断错了,那选项容易判断错了.2.已知(0,1)x ∈,则下列正确的是( ) A .cos 2x x π+<B .22xx <C .22sin 24x x x >+D .1ln 1x x <- 【答案】ABC 【分析】构造函数()sin f x x x =-证明其在0,2π⎛⎫⎪⎝⎭单调递减,即可得sin 22x x ππ⎛⎫-<-⎪⎝⎭即可判断选项A ;作出2yx 和2x y =的函数图象可判断选项B ;作出()sin2xf x =,()224x h x x =+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.【详解】对于选项A :因为()0,1x ∈,所以022x ππ<-<,令()sin f x x x =-,()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫⎪⎝⎭单调递减,所以()()00f x f <=,即sin x x <,所以sin 22x x ππ⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正确, 对于选项B :由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;对于选项C :要证22sin 24xx x >+ 令()sin 2x f x =,()224xh x x =+()()f x f x -=-,()sin2xf x =是奇函数, ()()h x h x -=,()224x h x x =+是偶函数, 令2224144x t x x ==-++ ,则y t = 因为24y x =+在()0,∞+单调递增,所以2414t x =-+在()0,∞+单调递增,而y t =调递增,由符合函数的单调性可知()224x h x x =+在()0,∞+单调递增, 其函数图象如图所示:由图知当()0,1x ∈时22sin 24xx x >+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()221110x g x x x x-'=-=<, 所以()1ln 1x g x x=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x+->,可得1ln 1x x >-,故选项D 不正确.故选:ABC 【点睛】思路点睛:证明不等式恒成立(或能成立)一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.3.函数()()320ax bx d a f x cx =+++≠有两个极值点1x 、()212x x x <,则下列结论正确的是( ) A .230b ac ->B .()f x 在区间()12,x x 上单调递减C .若()10af x <,则()f x 只有一个零点D .存在0x ,使得()()()1202f x f x f x +=【答案】ACD 【分析】利用极值点与导数的关系可判断A 选项的正误;取0a <,利用函数的单调性与导数的关系可判断B 选项的正误;分0a >、0a <两种情况讨论,分析函数()f x 的单调性,结合图象可判断C 选项的正误;计算出函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称,可判断D 选项的正误.【详解】()()320f x ax bx cx d a =+++≠,则()232f x ax bx c '=++.对于A 选项,由题意可知,关于x 的二次方程()23200ax bx c a ++=≠有两个不等的实根,则24120b ac ∆=->,可得230b ac ->,A 选项正确;对于B 选项,当0a <时,且当()12,x x x ∈时,()0f x '>,此时函数()f x 在区间()12,x x 上单调递增,B 选项错误;对于C 选项,当0a >时,由()0f x '>,可得1x x <或2x x >;由()0f x '<,可得12x x x <<.所以,函数()f x 的单调递增区间为()1,x -∞、()2,x +∞,单调递减区间为()12,x x , 由()10af x <,可得()10<f x ,此时,函数()f x 的极大值为()10<f x ,极小值为()2f x ,且()()210f x f x <<,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内; 当0a <时,由()0f x '<,可得1x x <或2x x >;由()0f x '>,可得12x x x <<. 所以,函数()f x 的单调递减区间为()1,x -∞、()2,x +∞,单调递增区间为()12,x x , 由()10af x <,可得()10f x >,此时,函数()f x 的极小值为()10f x >,极大值为()2f x ,且()()210f x f x >>,如下图所示:由图可知,此时函数()f x 有且只有一个零点,且零点在区间()2,x +∞内,C 选项正确; 对于D 选项,由题意可知,1x 、2x 是方程2320ax bx c ++=的两根, 由韦达定理可得1223bx x a +=-,123c x x a=, ()()()()()()()()3232f t x f t x a t x b t x c t x d a t x b t x c t x d ⎡⎤⎡⎤-++=-+-+-++++++++⎣⎦⎣⎦()()()()()(322322322322332332a t t x tx x b t tx x c t x d a t t x tx x b t tx x c ⎡⎤⎡=-+-+-++-+++++++++⎣⎦⎣()()322223222a t tx b t x ct d =+++++,取3bt a=-,则322223222333333b b b b b b f x f x a x b x c d a a a a a a ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+-+=-+⨯-+-++⋅-+⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦32222223333b b b b a b c d fa a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-+⋅-+⋅-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,函数()f x 的图象关于点,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭对称, 1223bx x a+=-,()()1223b f x f x f a ⎛⎫∴+=- ⎪⎝⎭,D 选项正确.故选:ACD. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.4.下列不等式正确的有( )A 2ln 3<B .ln π<C .15<D .3ln 2e <【答案】CD 【分析】构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.5.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x xπ⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t = 【答案】ACD 【分析】化简函数解析式为()2cos 1f x x ⎛=--+ ⎝⎭,利用二次函数的基本性质可判断A 选项的正误;令sin cos t x x =+,可得()()3231t t f x g t t -==-,利用导数法可判断B 选项的正误;利用导数与函数单调性的关系可判断C 选项的正误;计算出()()2f x f x t +-=,利用函数的对称性可判断D 选项的正误. 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛=--=-+=--+ ⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-,()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D 选项,()2222cos tx x x xf x x x⎫+++⎪⎝⎭=+ ()()2222cos sin sin 2cos 2cos t x x t x x t x x t x xx x++⋅+⋅+==+++, 所以,()()()()22sin sin 2cos 2cos t x x t x xf x t t x xx x --+-=+=-+⋅-+-,()()2f x f x t ∴+-=,所以,函数()f x 的图象关于点()0,t 对称,所以,22a b t +==,可得1t =,D 对. 故选:ACD. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立;(5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.6.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数D .若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.7.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+- C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩; 即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增;对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②;因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)8.已知函数()21ln 2f x ax ax x =-+的图象在点()()11,x f x 处与点()()22,x f x 处的切线均平行于x 轴,则( )A .()f x 在1,上单调递增B .122x x +=C .()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭D .若163a =,则()f x 只有一个零点 【答案】ACD 【分析】求导,根据题意进行等价转化,得到a 的取值范围;对于A ,利用导数即可得到()f x 在()1,+∞上的单调性;对于B ,利用根与系数的关系可得121x x =+;对于C ,化简()()121212x x x x f x f x ++++,构造函数,利用函数的单调性可得解;对于D ,将163a =代入()f x ',令()0f x '=,可得()f x 的单调性,进而求得()f x 的极大值小于0,再利用零点存在定理可得解. 【详解】 由题意可知,函数()f x 的定义域为()0,∞+,且()211ax ax ax a x x xf -+=-+=',则1x ,2x 是方程210ax ax -+=的两个不等正根,则212401a a x x a ⎧∆=->⎪⎨=>⎪⎩,解得4a >, 当()1,x ∈+∞时,函数210y ax ax =-+>,此时()0f x '>,所以()f x 在()1,+∞上单调递增,故A 正确;因为1x ,2x 是方程210ax ax -+=的两个不等正根,所以121x x =+,故B 错误; 因为()()221212121112221111ln ln 22x x x x f x f x x ax ax x ax ax a ++++=+++-++- 1112111ln 1ln 22a a a a a a a a⎛⎫=+++--=--+ ⎪⎝⎭, 易知函数()11ln 2h a a a a=--+在()4,+∞上是减函数, 则当4a >时,()()742ln 24h a h <=--, 所以()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭,故C 正确;当163a =时,()1616133f x x x '=-+,令()0f x '=,得14x =或34, 则()f x 在10,4⎛⎫ ⎪⎝⎭上单调递增,在13,44⎛⎫⎪⎝⎭上单调递减,在3,4⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()f x 在14x =取得极大值,且104f ⎛⎫< ⎪⎝⎭,()2ln 20f =>, 所以()f x 只有一个零点,故D 正确. 故选:ACD. 【点睛】关键点点睛:导数几何意义的应用主要抓住切点的三个特点: ①切点坐标满足原曲线方程; ②切点坐标满足切线方程;③切点的横坐标代入导函数可得切线的斜率.9.当1x >时,()41ln ln 3k x x x x --<-+恒成立,则整数k 的取值可以是( ). A .2- B .1-C .0D .1【答案】ABC 【分析】将()41ln ln 3k x x x x --<-+,当1x >时,恒成立,转化为13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,.当1x >时,恒成立,令()()3ln ln 1xF x x x x x=++>,利用导数法研究其最小值即可. 【详解】因为当1x >时,()41ln ln 3k x x x x --<-+恒成立, 所以13ln ln 4x k x x x ⎛⎫<++ ⎪⎝⎭,当1x >时,恒成立, 令()()3ln ln 1xF x x x x x=++>, 则()222131ln 2ln x x x F x x x x x---'=-+=. 令()ln 2x x x ϕ=--, 因为()10x x xϕ-'=>,所以()x ϕ在()1,+∞上单调递增. 因为()10ϕ<,所以()0F x '=在()1,+∞上有且仅有一个实数根0x , 于是()F x 在()01,x 上单调递减,在()0,x +∞上单调递增,所以()()000min 00ln 3ln x F x F x x x x ==++.(*) 因为()1ln 3309F -'=<,()()21ln 22ln 4401616F --'==>,所以()03,4x ∈,且002ln 0x x --=, 将00ln 2x x =-代入(*)式, 得()()0000min 00023121x F x F x x x x x x -==-++=+-,()03,4x ∈. 因为0011t x x =+-在()3,4上为增函数, 所以713,34t ⎛⎫∈⎪⎝⎭,即()min 1713,41216F x ⎛⎫∈ ⎪⎝⎭.因为k 为整数,所以0k ≤. 故选:ABC 【点睛】本题主要考查函数与不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于较难题.10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a cb d -+-的值可能是( ) A .7 B .8C .9D .10【答案】BCD 【分析】由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12xf x e '∴=-由1121cd c d -=⇒=-+-,令()2g x x =-+ 则()()22a cb d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),Ncd 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y 由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD. 【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
高考数学压轴专题新备战高考《函数与导数》全集汇编及答案

数学《函数与导数》复习资料一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( ) A .[0,1] B .[1,1]- C .(0,1)(1,)⋃+∞ D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax a y b t=⎧⎨==-⎩ ,即2xy t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.3.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2 B .﹣1C .2D .4【答案】C 【解析】 【分析】根据对称性即可求出答案. 【详解】解:∵点(5,f (5))与点(﹣1,f (﹣1))满足(5﹣1)÷2=2, 故它们关于点(2,1)对称,所以f (5)+f (﹣1)=2, 故选:C . 【点睛】本题主要考查函数的对称性的应用,属于中档题.4.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .5.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法:由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫=⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.6.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.7.函数()2sin 2xf x x x x=+-的大致图象为( )A .B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
2019年高考数学导数压轴题专项训练(一)

2019年高考数学导数压轴题专项训练(一)1、已知函数().,22R a x ax e x f x ∈--=(Ⅰ)求函数()x f 的图像恒过的定点的坐标;(Ⅱ)若()1'--≥ax x f 恒成立,求a 的值;(Ⅲ)在(Ⅱ)成立的条件下,证明:()x f 存在唯一的极小值点0x ,且()412-0-<<x f .2、已知函数()x x x g ln sin 1+=θ在),1[+∞上为增函数,且),(πθ0∈,()().ln 1R m x xm mx x f ∈---=(Ⅰ)求θ的值;(Ⅱ)若()()x g x f -在),1[+∞上为单调函数,求m 的取值范围;(Ⅲ)设()xe x h 2=,若在],1[e 上至少存在一个0x ,使得()()()000x h x g x f >-成立,求m 的取值范围.3、已知函数()()R c b c bx x x f ∈++=,2,并设()()x e x f x F =.(Ⅰ)若()x F 图像在0=x 处的切线方程为0=-y x ,求c b ,的值;(Ⅱ)若()x F 是()∞+∞,-上的单调递增函数,则:(ⅰ)当0≥x 时,判断()x f 与()2c x +的大小关系,并证明;(ⅱ)对于满足题设条件的任意c b ,,不等式()()22Mb b f Mc c f -≤-恒成立,求M 的取值范围.4、已知函数()x f 是定义在],0()0,[e e -上的奇函数,当],0(e x ∈时,()x ax x f ln +=(其中R a ∈).(Ⅰ)求()x f 的解析式;(Ⅱ)设())0,[,ln e x x xx g -∈=,求证:当1-=a 时,()()21+>x g x f ;(Ⅲ)是否存在实数a ,使得当)0,[e x -∈时,()x f 的最小值是3?如果存在,求出实数a 的值;若果不存在,请说明理由.5、已知()()2211,,,y x B y x A 是函数()⎪⎪⎩⎪⎪⎨⎧=-≠-=21,121,212x x x x f 的图像上的任意两点(可以重合),点M 在直线21=x 上,且MB AM =.(Ⅰ)求21x x +以及21y y +的值;(Ⅱ)已知01=S ,当2≥n 时,⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=n f n f n f S n 321 ,求n S ;(Ⅲ)在(Ⅱ)成立的条件下,设n S n a 2=,n T 为数列{}n a 的前n 项和,若存在正整数m c ,,使得不等式211<--+c T c T m m 成立,求m c ,的值.6、已知函数()()0>+=x xt x x f ,过点()0,1P 做曲线()x f y =的两条切线PN PM ,,切点分别为N M ,.(Ⅰ)当2=t 时,求函数()x f 的单调递增区间;(Ⅱ)设()t g MN =,试求函数()t g 的表达式;(Ⅲ)在(Ⅱ)成立的条件下,若对任意的正整数n ,在区间]64,2[n n +内,总存在1+m 个数121.,,+m a a a ,使得不等式()()()()121+<+++m m a g a g a g a g 成立,求m 的最大值.7、已知函数()()1log +=x x f a ,()()t x x g a +=2log 2()R t ∈,其中]15,0[∈x ,0>a ,且1≠a .(Ⅰ)若1=x 是关于x 的方程()()0=-x g x f 的一个解,求t 的值;(Ⅱ)当10<<a 时,不等式()()x g x f ≥恒成立,求t 的取值范围;(Ⅲ)当]56,26[∈t 时,函数()()()x f x g x F -=2的最小值为()t h ,试求()t h 的解析式.8、设函数()c bx x x f n n ++=()R c b N n ∈∈+,,.(Ⅰ)设1,1,2-==≥c b n ,证明:()x f n 在区间)1,21(内存在唯一零点;(Ⅱ)设n 为偶数,()()11,11≤≤-f f ,求c b 3+的最小值和最大值;(Ⅲ)设2=n ,若对任意]1,1[,21-∈x x ,有()()421≤-x f x f ,求b 的取值范围.9、给出定义在),0(+∞上的三个函数:()()()()x a x x h x af x x g x x f -=-==,,ln 2,已知()x g 在1=x 处取得极值.(Ⅰ)确定函数()x h 的单调性;(Ⅱ)求证:当21e x <<时,恒有()()x f x f x -+<22成立;(Ⅲ)把函数()x h 的图像向上平移6个单位得到函数()x h 1的图像,试确定函数()()x h x g y 1-=的零点个数,并说明理由.10、已知函数()()02≠++=a c bx ax x f 满足()00=f ,且对任意R x ∈都有()x x f ≥,且⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+-x f x f 2121,令()()()01>--=λλx x f x g .(Ⅰ)求函数()x f 的表达式;(Ⅱ)求函数()x g 的单调区间;(Ⅲ)研究函数()x g 在区间)1,0(上的零点个数.11、对于定义在区间D 上的函数()x f 和()x g ,如果对任意D x ∈,都有()()1≤-x g x f 成立,那么称函数()x f 在区间D 上可被函数()x g 替代.(Ⅰ)若()()x x g x x f ln ,12=-=,试判断在区间],1[e 上()x f 能否被()x g 替代;(Ⅱ)记()()x x g x x f ln ,==,证明:()x f 在),1(m m ()1>m 上不能被()x g 替代;(Ⅲ)设()()x x x g ax x a x f +-=-=221,ln ,若()x f 在区间],1[e 上能被()x g 替代,求实数a 的取值范围.【参考答案】1、9、10、11、。
高中数学:导数压轴30道解答题(含解析与考点)

高中数学:导数压轴30道解答题(含解析与考点)
昨天我们说了,关于导数的30道选择题,不少家长都纷纷私信我说,很实用。
今天,要和大家分享的,仍然是关于导数这部分的内容。
导数是历年高考压轴最后一题,而这道题也是高分同学和一般同学的一个分水岭。
想要考高分,想要占领数学制高点,那么,我们必须得突破导数瓶颈。
昨天我们已经提到了,导数这部分主要的考点,如果没有看过的家长们,大家可以翻看我昨天的文章。
同样,今天这部分也为大家整理了电子完整打印版,私信“数学”,即可免费领取。
导数和圆锥曲线并称高考数学两大难点,在过去的文章里,我们都已经逐一地去分析总结。
大家需要掌握的是方法,深刻理解和体会,每道题所考察的知识点,了解了出题人的意图,这对我们来说,是非常重要的。
不仅如此,我们能够立刻想到该运用哪块的知识点或公式,还会大大提高我们的解题速度。
希望各位家长给自己的孩子看,转发并收藏。
导数压轴大题大招(精华)

导数压轴大题方法总结一、零点问题(隐零点压轴)【压轴1】已知函数f(x)=e x ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【压轴2】已知函数ln ()x f x x=.(Ⅰ)求函数()y f x =在点(1,0)处的切线方程;(Ⅱ)设实数k 使得()f x kx <恒成立,求k 的取值范围;(Ⅲ)设()() (R)g x f x kx k =-∈,求函数()g x 在区间21[,e ]e上的零点个数.【压轴3】已知函数1()x x f x xe ae -=-,且'(1)f e =.(Ⅰ)求a 的值及()f x 的单调区间;(Ⅱ)若关于x 的方程2()2(2)f x kx k =->存在两个不相等的正实数根12,x x ,证明:124ln x x e->.二、零点问题(放缩法压轴)【压轴1】设函数2)(--=ax e x f x.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值.【压轴2】已知函数+3()e x m f x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值;(Ⅱ)当1m ≥时,证明:()3()f x g x x >-.【压轴3】已知函数221ln )(-+-=a ax x x f ,R a ∈.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若2)()(+=x xf x g ,求证:当a <e2ln 时,)(x g >a 2.【压轴4】已知函数121ln )(2+++=x ax x x f .(Ⅰ)当2-=a 时,求)(x f 的极值点;(Ⅱ)当0=a 时,证明:对任意的x >0,不等式x xe ≥)(x f 恒成立.【压轴5】已知对任意的x >0,不等式1ln 2---x kx xe x ≥0恒成立,求实数k 的取值范围.【压轴6】已知函数x x x x f ln +=)(,当x >1时,不等式)∈(),()1(Z k x f x k <-恒成立,则的最大值为多少?三、対数平均【压轴1】【压轴2】已知函数2ln )(-+=xa x x f .(I)讨论)(x f 的单调性;(II)若函数)(x f y =的两个零点为)(,2121x x x x <,证明:a x x 221>+.【压轴3】已知函数()()ln f x x ax b a b =-+∈R ,有两个不同的零点12x x ,.(I)求()f x 的最值;(II)证明:1221x x a < 【压轴4】已知函数()()ln ,x a f x m a m R x-=-∈在x e =(e 为自然对数的底)时取得极值且有两个零点.(I)求实数m 的取值范围;(II)记函数()f x 的两个零点为12,x x ,证明:212x x e >.四、极值点偏移【压轴1】已知函数2)1()2()(-+-=x a e x x f x 有两个零点.(I)求a 的取值范围(II)设21,x x 是)(x f 的两个零点,求证:221<+x x 【压轴2】已知函数()()21ln 12f x x ax a x =-++-.(Ⅰ)若1a >-,讨论()f x 的单调性;(Ⅱ)若01x <<,求证:()()11f x f x +<-;(Ⅲ)若0a >,设1x ,2x 为函数()f x 的两个零点,记1202x x x +=,()'f x 为函数()f x 的导函数,求证:()0'0f x >.【压轴3】已知函数(),x f x x e x R -=⋅∈.(Ⅰ)求()f x 的单调区间与极值;(Ⅱ)已知()g x 与()f x 关于1x =对称,求证:1x >时,()()f x g x >;(Ⅲ)若12x x ≠且()()12f x f x =,求证:122x x +>.【压轴4】已知函数()()2ln +2f x x ax a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设0a >,求证:当10x a <<时,11f x f x a a ⎛⎫⎛⎫+>- ⎪ ⎪⎝⎭⎝⎭;(Ⅲ)若函数()y f x =的图像与x 轴交与A ,B 两点,线段AB 重点的横坐标为0x ,求证:()0'0f x <.【压轴5】已知函数()xf x e ax =+.(Ⅰ)若()f x 在0x =处切线过点()2,1-,求a 的值;(Ⅱ)讨论()f x 在()1,+∞内的单调性;(Ⅲ)令1a =,()()2F x xf x x =-,且12x x ≠求证:122x x +<-.【压轴6】已知函数()x f x e x a =-+,21()x g x x a e=++,a R ∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若存在[]0,2x ∈,使得()()f x g x <成立,求a 的取值范围;(Ⅲ)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.【压轴7】已知函数21()ln (1)2f x x ax a x =-+-)0(<a .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()y F x =的图象为曲线C .设点11(,)A x y ,22(,)B x y 是曲线C 上的不同两点.如果在曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在“中值相依切线”,请说明理由.【压轴8】已知函数()()11ln 0f x a x x a a x ⎛⎫=++-> ⎪⎝⎭.(Ⅰ)求()f x 的极值点;(Ⅱ)若曲线()y f x =上总存在不同两点()()()()1122,,,P x f x Q x f x ,使得曲线()y f x =在,P Q 两点处的切线互相平行,证明:122x x +>五、二次求导【压轴1】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(Ⅰ)求a ,b 的值;(Ⅱ)求()f x 的单调区间.【压轴2】设a 为实数,函数()22,xf x e x a x R =-+∈。
高考导数压轴题---函数与导数核心考点(精编完美版)

导数与函数核心考点目录题型一切线型1.求在某处的切线方程2.求过某点的切线方程3.已知切线方程求参数题型二单调型1.主导函数需“二次求导”型2.主导函数为“一次函数”型3.主导函数为“二次函数”型4.已知函数单调性,求参数范围题型三极值最值型1.求函数的极值2.求函数的最值3.已知极值求参数4.已知最值求参数题型四零点型1.零点(交点,根)的个数问题2.零点存在性定理的应用3.极值点偏移问题题型五恒成立与存在性问题1.单变量型恒成立问题2.单变量型存在性问题3.双变量型的恒成立与存在性问题4.等式型恒成立与存在性问题题型六与不等式有关的证明问题1.单变量型不等式证明2.含有e x与lnx的不等式证明技巧3.多元函数不等式的证明4.数列型不等式证明的构造方法题型一 切线型1.求在某处的切线方程例1.【2015重庆理20】求函数f (x )=3x ²e x 在点(1,f (1))处的切线方程. 解:由f (x )=3x ²e x ,得f ′(x )=6x -3x ²e x ,切点为(1,3e ) ,斜率为f ′(1)=3e由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3e ;∴切线方程为y -3e =3e (x -1),即3x -ey =0.例2.求f (x )=e x (1x +2)在点(1,f (1))处的切线方程.解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x ²+1x +2)由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ; ∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x1+x 在点(0,f (0))处的切线方程.解:由f (x )=ln1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -11+x由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2;∴切线方程为y =-2x ,即2x +y =0.例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x ²4与直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程.解:由题意得:a =x ²4,则x =±2a ,即M (-2a ,a ),N (2a ,a ),由f (x )=x ²4,得f ′(x )=x2,当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0;当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0; 解题模板一 求在某处的切线方程 ⑴写出f (x );⑵求出f ′(x );⑶写出切点(x 0,f (x 0)); ⑷切线斜率k =f ′(x 0);⑸切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 2.求过某点的切线方程Step 1 设切点为(x 0,f (x 0)),则切线斜率f ′(x 0),切线方程为: y -f (x 0)=f ′(x 0)(x -x 0)Step 2 因为切线过点(a ,b ),所以b -f (x 0)=f ′(x 0)(a -x 0),解得x 0=x 1或x 0=x 2 Step 2 当x 0=x 1时,切线方程为y -f (x 1)=f ′(x 0)(x -x 1) 当x 0=x 2时,切线方程为y -f (x 2)=f ′(x 0)(x -x 2)例1.求f (x )=13x 3+43过点P (2,4)的切线方程.解:设切点为(x 0,13x 03+43),则切线斜率f ′(x 0)=x 0²,所以切线方程为:y -13x 03+43=x 0² (x -x 0),由切线经过点P (2,4),可得4-13x 03+43=x 0² (2-x 0),整理得:x 03-3x 0²+4=0,解得x 0=-1或x 0=2当x 0=-1时,切线方程为:x -y +2=0; 当x 0=2时,切线方程为:4x -y -4=0. 例2.求f (x )=x 3-4x ²+5x -4过点 (2,-2)的切线方程. 解:设切点为(x 0,x 03-4x 0²+5x 0-4),则切线斜率f ′(x 0)=3x 0²-8x 0+5,所以切线方程为:y -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5) (x -x 0), 由切线经过点P (2,4),可得4-(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5) (2-x 0), 解得x 0=1或x 0=2当x 0=1时,切线方程为:2x +y -2=0; 当x 0=2时,切线方程为:x -y -4=0.例3.过A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线,求m 的取值范围. 解:设切点为(x 0,x 03-3x 0),则切线斜率f ′(x 0)=3x 0²-3,切线方程为y -(x 03-3x 0)=(3x 0²-3)(x -x 0)∵切线经过点P (1,m ), ∴m -(x 03-4x 0²+5x 0-4)=(3x 0²-8x 0+5) (1-x 0), 即:-2x 03+3x 0²-3-m =0,即m =-2x 03+3x 0²-3 ∵过点A (1,m )(m ≠2)可作f (x )=x 3-3x 的三条切线, ∴方程m =-2x 03+3x 0²-3,有三个不同的实数根.点P 不在曲线上 点P 在曲线上 点P 在曲线上∴曲线H (x 0)=-2x 03+3x 0²-3与直线y =m 有三个不同交点, H ′(x 0)=-6x 0²+6x 0=-6x 0(x 0-1)令H ′(x 0)>0,则0<x 0<1;令H ′(x 0)<0,则x 0<0或x 0>1 ∴H (x 0)在(-∞,0)递减,在(0,1)递增,在(1,+∞)递减, ∴H (x 0)的极小值=H (0)=-3,H (x 0)的极大值=H (1)=-2, 由题意得-3<x <-2.例4.由点(-e ,e -2)可向曲线f (x )=lnx -x -1作几条切线,并说明理由.解:设切点为(x 0,lnx 0-x 0-1),则切线斜率f ′(x 0)=1x 0-1,切线方程为y -(lnx 0-x 0-1)=(1x 0-1)(x -x 0),∵切线经过点(-e ,e -2),∴e -2-(lnx 0-x 0-1)=(1x 0-1)(-e -x 0),即lnx 0=ex 0∵y =lnx 与y =ex 只有一个交点∴方程lnx 0=ex 0有唯一的实数根∴由点(-e ,e -2)可向曲线f (x )=lnx -x -1作一条切线. 解题模板二 求过某点的切线方程⑴设切点为(x 0,f (x 0)),则切线斜率f ′(x 0),切线方程为: y -f (x 0)=f ′(x 0)(x -x 0)⑵因为切线过点(a ,b ),所以b -f (x 0)=f ′(x 0)(a -x 0),解得x 0=x 1或x 0=x 2 ⑶当x 0=x 1时,切线方程为y -f (x 1)=f ′(x 0)(x -x 1) 当x 0=x 2时,切线方程为y -f (x 2)=f ′(x 0)(x -x 2) 3.已知切线方程求参数解题模板三 已知切线方程求参数已知直线Ax +By +C =0与曲线y =f (x )相切 ⑴设切点横坐标为x 0,则⎩⎪⎨⎪⎧切点纵坐标=切点纵坐标切线斜率=切线斜率即⎩⎪⎨⎪⎧f (x 0)=-Ax 0+CBf ′(x 0)=-A B⑵解方程组得x 0及参数的值.例1.函数f (x )=alnx x +1+bx 在(1,f (1))处的切线方程为x +2y -3=0,求a ,b 的值.解:∵f (x )=alnx x +1+bx ,∴f ′(x )=a (x +1)x -alnx (x +1)²-b x ²由题意知:⎩⎪⎨⎪⎧f (1)=1f ′(1)=-12,即⎩⎪⎨⎪⎧b =1a 2-b =-12 ∴a =b =1例2.f (x )=ae x lnx +bex -1 x 在(1,f (1))处的切线方程为y =e (x -1)+2,求a ,b 的值.解:∵f (x )=ae x lnx +be x -1 x ,∴f ′(x )=ae x (1x +lnx )+be x -1(-1x ²+1x )由题意知:⎩⎪⎨⎪⎧f (1)=2f ′(1)=-e ,即⎩⎪⎨⎪⎧b =2ae =e∴a =1,b =2例3.若直线y =kx +b 是y =lnx +2的切线,也是y =ln (x +1)的切线,求b .解:设y =kx +b 与y =lnx +2相切的切点横坐标为x 1,y =kx +b 与y =ln (x +1)相切的切点横坐标为x 2,⎩⎪⎨⎪⎧lnx 1+2=kx 1+b ①1x 1=k ②ln (x 2+1)=kx 2+b ③1x 2+1=k ④,由②③得:x 1=x 2+1,由①-③得:lnx 1-ln (x 2+1)+2=k (x 1-x 2),将上式代入得:k =2∴x 1=12,代入①得:-ln 2+2=1+b ∴b =1-ln 2.例4.若f (x )=x 与g (x )=a lnx 相交,且在交点处有共同的切线,求a 和该切线方程.解:设切点横坐标为x 0,则⎩⎪⎨⎪⎧x 0=alnx 0 ①12x 0=a x 0 ②,由②得x 0=2a , 代入①得:x 0=e ²,∴a =e2∵切点为(e ²,e ),切线斜率为12e,∴切线方程为x -2ey +e ²=0.例5.已知函数f (x )=x 3+ax +14,当a 为何值时,x 轴为曲线方程y =f (x )的切线.例6.已知函数f (x )=x ²+ax +b 和g (x )=e x (cx +d )都过点P (0,2)且在P 处有相同切线y =4x +2,求a ,b ,c ,d 的值.题型二单调型1.主导函数需“二次求导”型I 不含参求单调区间例1.求函数f(x)=x(e x-1)-12x²的单调区间.解:f(x)的定义域为Rf ′(x)=e x(1+x)-1-x=(x+1)(e x+1)令f ′(x)>0,得x<-1或x>0;令f ′(x)<0,得-1<x<0 f(x)的增区间为(-∞,-1)和(0,+∞),减区间为(-1,0)。
高中数学导数大题压轴高考题选(可编辑修改word版)

函数与导数高考压轴题选一.选择题(共2小题)1.(2013•安徽)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3 B.4 C.5 D.62.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④二.选择题(共1小题)3.(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m=.三.选择题(共23小题)4.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.5.(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.6.(2013•四川)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.7.(2013•湖南)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.8.(2013•辽宁)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.9.(2013•陕西)已知函数f(x)=e x,x∈R.(Ⅰ)若直线y=kx+1与f (x)的反函数g(x)=lnx的图象相切,求实数k的值;(Ⅱ)设x>0,讨论曲线y=f (x)与曲线y=mx2(m>0)公共点的个数.(Ⅲ)设a<b,比较与的大小,并说明理由.10.(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.11.(2012•辽宁)设f(x)=ln(x+1)++ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=x在(0,0)点相切.(I)求a,b的值;(II)证明:当0<x<2时,f(x)<.12.(2012•福建)已知函数f(x)=axsinx﹣(a∈R),且在上的最大值为,(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.13.(2012•湖北)设函数f(x)=ax n(1﹣x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的最大值;(Ⅲ)证明:f(x)<.14.(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.15.(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.16.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=f(x)﹣h(x),求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程log4[f(x﹣1)﹣]=log2h(a﹣x)﹣log2h(4﹣x);(Ⅲ)试比较f(100)h(100)﹣与的大小.17.(2011•陕西)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.18.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=18f(x)﹣x2[h(x)]2,求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程lg[f(x﹣1)﹣]=2lgh(a﹣x)﹣2lgh(4﹣x);(Ⅲ)设n∈N n,证明:f(n)h(n)﹣[h(1)+h(2)+…+h(n)]≥.19.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.20.(2010•全国卷Ⅱ)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.21.(2010•陕西)已知函数f(x)=,g(x)=alnx,a∈R,(Ⅰ)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅲ)对(Ⅱ)中的φ(a)和任意的a>0,b>0,证明:φ′()≤≤φ′().22.(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.23.(2009•湖北)在R上定义运算:(b、c∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)24.(2009•湖北)已知关于x的函数f(x)=﹣x3+bx2+cx+bc,其导函数为f′(x).令g(x)=|f′(x)|,记函数g(x)在区间[﹣1、1]上的最大值为M.(Ⅰ)如果函数f(x)在x=1处有极值﹣,试确定b、c的值:(Ⅱ)若|b|>1,证明对任意的c,都有M>2(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.25.(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).26.(2008•天津)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(Ⅰ)当时,讨论函数f(x)的单调性;(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;(Ⅲ)若对于任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,求b的取值范围.四.解答题(共4小题)27.(2008•福建)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n(i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.28.(2007•福建)已知函数f(x)=e x﹣kx,(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;(3)设函数F(x)=f(x)+f(﹣x),求证:F(1)F(2)…F(n)>(n∈N*).29.(2006•四川)已知函数,f(x)的导函数是f′(x).对任意两个不相等的正数x1、x2,证明:(Ⅰ)当a≤0时,;(Ⅱ)当a≤4时,|f′(x1)﹣f′(x2)|>|x1﹣x2|.30.(2006•辽宁)已知f0(x)=x n,其中k≤n(n,k∈N+),设F(x)=C n0f0(x2)+C n1f1(x2)+…+C n n f n(x2),x∈[﹣1,1].(1)写出f k(1);(2)证明:对任意的x1,x2∈[﹣1,1],恒有|F(x1)﹣F(x2)|≤2n﹣1(n+2)﹣n﹣1.函数与导数高考压轴题选参考答案与试题解析一.选择题(共2小题)1.(2013•安徽)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为()A.3 B.4 C.5 D.6【解答】解:∵函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取0<x1<x2,f(x1)>0.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选:A.2.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④【解答】解:在①中,反例:f(x)=在[1,3]上满足性质P,但f(x)在[1,3]上不是连续函数,故①不成立;在②中,反例:f(x)=﹣x在[1,3]上满足性质P,但f(x2)=﹣x2在[1,]上不满足性质P,故②不成立;在③中:在[1,3]上,f(2)=f()≤,∴,故f(x)=1,∴对任意的x1,x2∈[1,3],f(x)=1,故③成立;在④中,对任意x1,x2,x3,x4∈[1,3],有=≤≤=[f(x1)+f(x2)+f(x3)+f(x4)],∴[f(x1)+f(x2)+f(x3)+f(x4)],故④成立.故选D.二.选择题(共1小题)3.(2012•新课标)设函数f(x)=的最大值为M,最小值为m,则M+m= 2.【解答】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三.选择题(共23小题)4.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).5.(2013•新课标Ⅱ)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f (x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.6.(2013•四川)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.【解答】解:(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(﹣∞,﹣1)上单调递减,在[﹣1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴,∴(2x1+2)(2x2+2)=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln(2x1+2)在区间(﹣1,0)上单调递减,∴a(x1)=在(﹣1,0)上单调递减,且x1→﹣1时,ln(2x1+2)→﹣∞,即﹣ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→﹣1﹣ln2.∴a的取值范围是(﹣1﹣ln2,+∞).7.(2013•湖南)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.【解答】解:(Ⅰ)易知函数的定义域为R.==,当x<0时,f′(x)>0;当x>0时,f′(x)<0.∴函数f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).(Ⅱ)当x<1时,由于,e x>0,得到f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(Ⅰ)可知:x1∈(﹣∞,0),x2∈(0,1).下面证明:∀x∈(0,1),f(x)<f(﹣x),即证<.此不等式等价于.令g(x)=,则g′(x)=﹣xe﹣x(e2x﹣1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.即.∴∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),∴f(x2)<f(﹣x2).从而,f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,∴x1<﹣x2,即x1+x2<0.8.(2013•辽宁)已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.【解答】(I)证明:①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h(x)=(1+x)e﹣x﹣(1﹣x)e x,则h′(x)=x(e x﹣e﹣x).当x∈[0,1)时,h′(x)≥0,∴h(x)在[0,1)上是增函数,∴h(x)≥h(0)=0,即f(x)≥1﹣x.②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,则u′(x)=e x﹣1.当x∈[0,1)时,u′(x)≥0,∴u(x)在[0,1)单调递增,∴u(x)≥u(0)=0,∴f(x).综上可知:.(II)解:设G(x)=f(x)﹣g(x)=≥=.令H(x)=,则H′(x)=x﹣2sinx,令K(x)=x﹣2sinx,则K′(x)=1﹣2cosx.当x∈[0,1)时,K′(x)<0,可得H′(x)是[0,1)上的减函数,∴H′(x)≤H′(0)=0,故H(x)在[0,1)单调递减,∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.∴当a≤﹣3时,f(x)≥g(x)在[0,1)上恒成立.下面证明当a>﹣3时,f(x)≥g(x)在[0,1)上不恒成立.f(x)﹣g(x)≤==﹣x.令v(x)==,则v′(x)=.当x∈[0,1)时,v′(x)≤0,故v(x)在[0,1)上是减函数,∴v(x)∈(a+1+2cos1,a+3].当a>﹣3时,a+3>0.∴存在x0∈(0,1),使得v(x0)>0,此时,f(x0)<g(x0).即f(x)≥g(x)在[0,1)不恒成立.综上实数a的取值范围是(﹣∞,﹣3].9.(2013•陕西)已知函数f(x)=e x,x∈R.(Ⅰ)若直线y=kx+1与f (x)的反函数g(x)=lnx的图象相切,求实数k的值;(Ⅱ)设x>0,讨论曲线y=f (x)与曲线y=mx2(m>0)公共点的个数.(Ⅲ)设a<b,比较与的大小,并说明理由.【解答】解:(I)函数f(x)=e x的反函数为g(x)=lnx,∴.设直线y=kx+1与g(x)的图象相切于点P(x0,y0),则,解得,k=e﹣2,∴k=e﹣2.(II)当x>0,m>0时,令f(x)=mx2,化为m=,令h(x)=,则,则x∈(0,2)时,h′(x)<0,h(x)单调递减;x∈(2,+∞)时,h′(x)>0,h(x)单调递增.∴当x=2时,h(x)取得极小值即最小值,.∴当时,曲线y=f (x)与曲线y=mx2(m>0)公共点的个数为0;当时,曲线y=f (x)与曲线y=mx2(m>0)公共点的个数为1;当时,曲线y=f (x)与曲线y=mx2(m>0)公共点个数为2.(Ⅲ)===,令g(x)=x+2+(x﹣2)e x(x>0),则g′(x)=1+(x﹣1)e x.g′′(x)=xe x>0,∴g′(x)在(0,+∞)上单调递增,且g′(0)=0,∴g′(x)>0,∴g(x)在(0,+∞)上单调递增,而g(0)=0,∴在(0,+∞)上,有g(x)>g(0)=0.∵当x>0时,g(x)=x+2+(x﹣2)•e x>0,且a<b,∴,即当a<b时,.10.(2013•湖北)设n是正整数,r为正有理数.(Ⅰ)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;(Ⅱ)证明:;(Ⅲ)设x∈R,记[x]为不小于x的最小整数,例如.令的值.(参考数据:.【解答】解;(Ⅰ)由题意得f'(x)=(r+1)(1+x)r﹣(r+1)=(r+1)[(1+x)r﹣1],令f'(x)=0,解得x=0.当﹣1<x<0时,f'(x)<0,∴f(x)在(﹣1,0)内是减函数;当x>0时,f'(x)>0,∴f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处,取得最小值为f(0)=0.(Ⅱ)由(Ⅰ),当x∈(﹣1,+∞)时,有f(x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有(1+x)r+1>1+(r+1)x,①在①中,令(这时x>﹣1且x≠0),得.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即,②当n>1时,在①中令(这时x>﹣1且x≠0),类似可得,③且当n=1时,③也成立.综合②,③得,④(Ⅲ)在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由[S]的定义,得[S]=211.11.(2012•辽宁)设f(x)=ln(x+1)++ax+b(a,b∈R,a,b为常数),曲线y=f(x)与直线y=x在(0,0)点相切.(I)求a,b的值;(II)证明:当0<x<2时,f(x)<.【解答】(I)解:由y=f(x)过(0,0),∴f(0)=0,∴b=﹣1∵曲线y=f(x)与直线在(0,0)点相切.∴y′|x=0=∴a=0;(II)证明:由(I)知f(x)=ln(x+1)+由均值不等式,当x>0时,,∴①令k(x)=ln(x+1)﹣x,则k(0)=0,k′(x)=,∴k(x)<0∴ln(x+1)<x,②由①②得,当x>0时,f(x)<记h(x)=(x+6)f(x)﹣9x,则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)﹣9<<=∴h(x)在(0,2)内单调递减,又h(0)=0,∴h(x)<0∴当0<x<2时,f(x)<.12.(2012•福建)已知函数f(x)=axsinx﹣(a∈R),且在上的最大值为,(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,π)内的零点个数,并加以证明.【解答】解:(I)由已知得f′(x)=a(sinx+xcosx),对于任意的x∈(0,),有sinx+xcosx >0,当a=0时,f(x)=﹣,不合题意;当a<0时,x∈(0,),f′(x)<0,从而f(x)在(0,)单调递减,又函数在上图象是连续不断的,故函数在上上的最大值为f(0)=﹣,不合题意;当a>0时,x∈(0,),f′(x)>0,从而f(x)在(0,)单调递增,又函数在上图象是连续不断的,故函数在上上的最大值为f()==,解得a=1,综上所述,得(II)函数f(x)在(0,π)内有且仅有两个零点.证明如下:由(I)知,,从而有f(0)=﹣<0,f()=>0,又函数在上图象是连续不断的,所以函数f(x)在(0,)内至少存在一个零点,又由(I)知f(x)在(0,)单调递增,故函数f(x)在(0,)内仅有一个零点.当x∈[,π]时,令g(x)=f′(x)=sinx+xcosx,由g()=1>0,g(π)=﹣π<0,且g (x)在[,π]上的图象是连续不断的,故存在m∈(,π),使得g(m)=0.由g′(x)=2cosx﹣xsinx,知x∈(,π)时,有g′(x)<0,从而g(x)在[,π]上单调递减.当x∈(,m),g(x)>g(m)=0,即f′(x)>0,从而f(x)在(,m)内单调递增故当x∈(,m)时,f(x)>f()=>0,从而(x)在(,m)内无零点;当x∈(m,π)时,有g(x)<g(m)=0,即f′(x)<0,从而f(x)在(,m)内单调递减.又f(m)>0,f(π)<0且f(x)在[m,π]上的图象是连续不断的,从而f(x)在[m,π]内有且仅有一个零点.综上所述,函数f(x)在(0,π)内有且仅有两个零点.13.(2012•湖北)设函数f(x)=ax n(1﹣x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的最大值;(Ⅲ)证明:f(x)<.【解答】解:(Ⅰ)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.因为f′(x)=anx n﹣1﹣a(n+1)x n,所以f′(1)=﹣a.又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.(Ⅱ)由(Ⅰ)知,f(x)=x n(1﹣x),则有f′(x)=(n+1)x n﹣1(﹣x),令f′(x)=0,解得x=在(0,)上,导数为正,故函数f(x)是增函数;在(,+∞)上导数为负,故函数f(x)是减函数;故函数f(x)在(0,+∞)上的最大值为f()=()n(1﹣)=,(Ⅲ)令φ(t)=lnt﹣1+,则φ′(t)=﹣=(t>0)在(0,1)上,φ′(t)<0,故φ(t)单调减;在(1,+∞),φ′(t)>0,故φ(t)单调增;故φ(t)在(0,+∞)上的最小值为φ(1)=0,所以φ(t)>0(t>1)则lnt>1﹣,(t>1),令t=1+,得ln(1+)>,即ln(1+)n+1>lne所以(1+)n+1>e,即<由(Ⅱ)知,f(x)≤<,故所证不等式成立.14.(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.【解答】解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.15.(2012•四川)已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设f(n)为该抛物线在点A处的切线在y轴上的截距.(Ⅰ)用a和n表示f(n);(Ⅱ)求对所有n都有成立的a的最小值;(Ⅲ)当0<a<1时,比较与的大小,并说明理由.【解答】解:(Ⅰ)∵抛物线与x轴正半轴相交于点A,∴A()对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵f(n)为该抛物线在点A处的切线在y轴上的截距,∴f(n)=a n;(Ⅱ)由(Ⅰ)知f(n)=a n,则成立的充要条件是a n≥2n3+1即知,a n≥2n3+1对所有n成立,特别的,取n=2得到a≥当a=,n≥3时,a n>4n=(1+3)n≥1+=1+2n3+>2n3+1当n=0,1,2时,∴a=时,对所有n都有成立∴a的最小值为;(Ⅲ)由(Ⅰ)知f(k)=a k,下面证明:首先证明:当0<x<1时,设函数g(x)=x(x2﹣x)+1,0<x<1,则g′(x)=x(x﹣)当0<x<时,g′(x)<0;当时,g′(x)>0故函数g(x)在区间(0,1)上的最小值g(x)min=g()=0∴当0<x<1时,g(x)≥0,∴由0<a<1知0<a k<1,因此,从而=≥=>=16.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=f(x)﹣h(x),求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程log4[f(x﹣1)﹣]=log2h(a﹣x)﹣log2h(4﹣x);(Ⅲ)试比较f(100)h(100)﹣与的大小.【解答】解:(Ⅰ)由F(x)=f(x)﹣h(x)=x+﹣(x≥0)知,F′(x)=,令F′(x)=0,得x=.当x∈(0,)时,F′(x)<0;当x∈(,+∞)时,F′(x)>0.故x∈(0,)时,F(x)是减函数;故x∈(,+∞)时,F(x)是增函数.F(x)在x=处有极小值且F()=.(Ⅱ)原方程可化为log4(x﹣1)+log2 h(4﹣x)=log2h(a﹣x),即log 2(x﹣1)+log2=log2,⇔⇔①当1<a≤4时,原方程有一解x=3﹣;②当4<a<5时,原方程有两解x=3;③当a=5时,原方程有一解x=3;④当a≤1或a>5时,原方程无解.(Ⅲ)设数列{a n}的前n项和为s n,且s n=f(n)g(n)﹣从而有a1=s1=1.当2<k≤100时,a k=s k﹣s k﹣1=,a k﹣=[(4k﹣3)﹣(4k﹣1)]==>0.即对任意的2<k≤100,都有a k>.又因为a1=s1=1,所以a1+a2+a3+…+a100>=h(1)+h(2)+…+h(100).故f(100)h(100)﹣>.17.(2011•陕西)设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.【解答】解:(Ⅰ)由题设易知f(x)=lnx,g(x)=lnx+,∴g′(x)=,令g′(x)=0,得x=1,当x∈(0,1)时,g′(x)<0,故g(x)的单调递减区间是(0,1),当x∈(1,+∞)时,g′(x)>0,故g(x)的单调递增区间是(1,+∞),因此x=1是g(x)的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g(1)=1;(Ⅱ)=﹣lnx+x,设h(x)=g(x)﹣=2lnx﹣x+,则h′(x)=,当x=1时,h(1)=0,即g(x)=,当x∈(0,1)∪(1,+∞)时,h′(x)<0,h′(1)=0,因此,h(x)在(0,+∞)内单调递减,当0<x<1,时,h(x)>h(1)=0,即g(x)>,当x>1,时,h(x)<h(1)=0,即g(x)<,(Ⅲ)满足条件的x0 不存在.证明如下:证法一假设存在x0>0,使|g(x)﹣g(x0)|<成立,即对任意x>0,有,(*)但对上述x0,取时,有Inx1=g(x0),这与(*)左边不等式矛盾,因此,不存在x0>0,使|g(x)﹣g(x0)|<成立.证法二假设存在x0>0,使|g(x)﹣g(x0)|成<立.由(Ⅰ)知,的最小值为g(x)=1.又>Inx,而x>1 时,Inx 的值域为(0,+∞),∴x≥1 时,g(x)的值域为[1,+∞),从而可取一个x1>1,使g(x1)≥g(x0)+1,即g(x1)﹣g(x0)≥1,故|g(x1)﹣g(x0)|≥1>,与假设矛盾.∴不存在x0>0,使|g(x)﹣g(x0)|<成立.18.(2011•四川)已知函数f(x)=x+,h(x)=.(Ⅰ)设函数F(x)=18f(x)﹣x2[h(x)]2,求F(x)的单调区间与极值;(Ⅱ)设a∈R,解关于x的方程lg[f(x﹣1)﹣]=2lgh(a﹣x)﹣2lgh(4﹣x);(Ⅲ)设n∈N n,证明:f(n)h(n)﹣[h(1)+h(2)+…+h(n)]≥.【解答】解:(Ⅰ)F(x)=18f(x)﹣x2[h(x)]2=﹣x3+12x+9(x≥0)所以F′(x)=﹣3x2+12=0,x=±2且x∈(0,2)时,F′(x)>0,当x∈(2,+∞)时,F′(x)<0所以F(x)在(0,2)上单调递增,在(2,+∞)上单调递减.故x=2时,F(x)有极大值,且F(2)=﹣8+24+9=25.(Ⅱ)原方程变形为lg(x﹣1)+2lg=2lg,⇔⇔,①当1<a<4时,原方程有一解x=3﹣,②当4<a<5时,原方程有两解x=3±,③当a=5时,原方程有一解x=3,④当a≤1或a>5时,原方程无解.(Ⅲ)由已知得h(1)+h(2)+…+h(n)=,f(n)h(n)﹣=,从而a1=s1=1,当k≥2时,a n=s n﹣s n﹣1=,又===>0即对任意的k≥2,有,又因为a1=1=,所以a1+a2+…+a n≥,则s n≥h(1)+h(2)+…+h(n),故原不等式成立.19.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.【解答】解:(1)由题意,得a x=>0故g(x)=,x∈(﹣∞,﹣1)∪(1,+∞)由得t=(x﹣1)2(7﹣x),x∈[2,6]则t′=﹣3x2+18x﹣15=﹣3(x﹣1)(x﹣5)列表如下:x 2 (2,5)5 (5,6)6t' + ﹣t 5 递增递减25极大值32所以t最小值=5,t最大值=32所以t的取值范围为[5,32](5分)(Ⅱ)=ln()=﹣ln令u(z)=﹣lnz2﹣=﹣2lnz+z﹣,z>0则u′(z)=﹣=(1﹣)2≥0所以u(z)在(0,+∞)上是增函数又因为>1>0,所以u()>u(1)=0即ln>0即(9分)(3)设a=,则p≥1,1<f(1)=≤3,当n=1时,|f(1)﹣1|=≤2<4,当n≥2时,设k≥2,k∈N*时,则f(k)=,=1+所以1<f(k)≤1+,从而n﹣1<≤n﹣1+=n+1﹣<n+1,所以n<<f(1)+n+1≤n+4,综上所述,总有|﹣n|<4.20.(2010•全国卷Ⅱ)设函数f(x)=1﹣e﹣x.(Ⅰ)证明:当x>﹣1时,f(x)≥;(Ⅱ)设当x≥0时,f(x)≤,求a的取值范围.【解答】解:(1)当x>﹣1时,f(x)≥当且仅当e x≥1+x令g(x)=e x﹣x﹣1,则g'(x)=e x﹣1当x≥0时g'(x)≥0,g(x)在[0,+∞)是增函数当x≤0时g'(x)≤0,g(x)在(﹣∞,0]是减函数于是g(x)在x=0处达到最小值,因而当x∈R时,g(x)≥g(0)时,即e x≥1+x所以当x>﹣1时,f(x)≥(2)由题意x≥0,此时f(x)≥0当a<0时,若x>﹣,则<0,f(x)≤不成立;当a≥0时,令h(x)=axf(x)+f(x)﹣x,则f(x)≤当且仅当h(x)≤0因为f(x)=1﹣e﹣x,所以h'(x)=af(x)+axf'(x)+f'(x)﹣1=af(x)﹣axf(x)+ax﹣f (x)(i)当0≤a≤时,由(1)知x≤(x+1)f(x)h'(x)≤af(x)﹣axf(x)+a(x+1)f(x)﹣f(x)=(2a﹣1)f(x)≤0,h(x)在[0,+∞)是减函数,h(x)≤h(0)=0,即f(x)≤(ii)当a>时,由(i)知x≥f(x)h'(x)=af(x)﹣axf(x)+ax﹣f(x)≥af(x)﹣axf(x)+af(x)﹣f(x)=(2a﹣1﹣ax)f(x)当0<x<时,h'(x)>0,所以h'(x)>0,所以h(x)>h(0)=0,即f(x)>综上,a的取值范围是[0,]21.(2010•陕西)已知函数f(x)=,g(x)=alnx,a∈R,(Ⅰ)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有共同的切线,求a的值和该切线方程;(Ⅱ)设函数h(x)=f(x)﹣g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅲ)对(Ⅱ)中的φ(a)和任意的a>0,b>0,证明:φ′()≤≤φ′().【解答】解:(Ⅰ)f'(x)=,g'(x)=有已知得解得:a=,x=e2∴两条曲线的交点坐标为(e2,e)切线的斜率为k=f'(e2)=∴切线的方程为y﹣e=(x﹣e2)(Ⅱ)由条件知h(x)=﹣alnx(x>0),∴h′(x)=﹣=,①当a>0时,令h′(x)=0,解得x=4a2.∴当0<x<4a2时,h′(x)<0,h(x)在(0,4a2)上单调递减;当x>4a2时,h′(x)>0,h(x)在(4a2,+∞)上单调递增.∴x=4a2是h(x)在(0,+∞)上的惟一极值点,且是极小值点,从而也是h(x)的最小值点.∴最小值φ(a)=h(4a2)=2a﹣aln(4a2)=2a[1﹣ln (2a)].②当a≤0时,h′(x)=>0,h(x)在(0,+∞)上单调递增,无最小值.故h(x)的最小值φ(a)的解析式为φ(a)=2a[1﹣ln (2a)](a>0).(Ⅲ)证明:由(Ⅱ)知φ′(a)=﹣2ln2a对任意的a>0,b>0=﹣=﹣ln4ab,①φ′()=﹣2ln(2×)=﹣ln(a+b)2≤﹣ln4ab,②φ′()=﹣2ln(2×)=﹣2ln=﹣ln4ab,③故由①②③得φ′()≤≤φ′().22.(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.23.(2009•湖北)在R上定义运算:(b、c∈R是常数),已知f1(x)=x2﹣2c,f2(x)=x﹣2b,f(x)=f1(x)f2(x).①如果函数f(x)在x=1处有极值,试确定b、c的值;②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;③记g(x)=|f′(x)|(﹣1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3﹣3bx2+4b3=(x+b)(x﹣2b)2)【解答】解:①依题意,解得或.若,,′(x)=﹣x2+2x﹣1=﹣(x﹣1)2≤0f(x)在R上单调递减,在x=1处无极值;若,,f′(x)=﹣x2﹣2x+3=﹣(x﹣1)(x+3),直接讨论知,f(x)在x=1处有极大值,所以为所求.②解f′(t)=c得t=0或t=2b,切点分别为(0,bc)、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有(0,0),b≠0时,斜率为c的切线有两条,与曲线的公共点分别为(0,bc)、(3b,4bc)和、.③g(x)=|﹣(x﹣b)2+b2+c|.若|b|>1,则f′(x)在[﹣1,1]是单调函数,M=max{|f′(﹣1)|,|f′(1)|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′(1)与f′(﹣1)之差的绝对值|f′(1)﹣f′(﹣1)|=|4b|>4,所以M>2.若|b|≤1,f′(x)在x=b∈[﹣1,1]取极值,则M=max{|f′(﹣1)|,|f′(1)|,|f′(b)|},f′(b)﹣f′(±1)=(b∓1)2.若﹣1≤b<0,f′(1)≤f′(﹣1)≤f′(b;若0≤b≤1,f′(﹣1)≤f′(1)≤f′(b),M=max{|f′(﹣1)|,|f′(b)|}=.当b=0,时,在[﹣1,1]上的最大值.所以,k的取值范围是.24.(2009•湖北)已知关于x的函数f(x)=﹣x3+bx2+cx+bc,其导函数为f′(x).令g(x)=|f′(x)|,记函数g(x)在区间[﹣1、1]上的最大值为M.(Ⅰ)如果函数f(x)在x=1处有极值﹣,试确定b、c的值:(Ⅱ)若|b|>1,证明对任意的c,都有M>2(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.【解答】(Ⅰ)解:∵f'(x)=﹣x2+2bx+c,由f(x)在x=1处有极值可得解得,或若b=1,c=﹣1,则f'(x)=﹣x2+2x﹣1=﹣(x﹣1)2≤0,此时f(x)没有极值;若b=﹣1,c=3,则f'(x)=﹣x2﹣2x+3=﹣(x+3)(x﹣1)当x变化时,f(x),f'(x)的变化情况如下表:x (﹣∞,﹣3)﹣3 (﹣3,1)1(1,+∞)f'(x)﹣0 + 0 ﹣↘f(x)↘极小值﹣12 ↗极大值∴当x=1时,f(x)有极大值,故b=﹣1,c=3即为所求.(Ⅱ)证法1:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|当|b|>1时,函数y=f'(x)的对称轴x=b位于区间[﹣1.1]之外.∴f'(x)在[﹣1,1]上的最值在两端点处取得故M应是g(﹣1)和g(1)中较大的一个,∴2M≥g(1)+g(﹣1)=|﹣1+2b+c|+|﹣1﹣2b+c|≥|4b|>4,即M>2证法2(反证法):因为|b|>1,所以函数y=f'(x)的对称轴x=b位于区间[﹣1,1]之外,∴f'(x)在[﹣1,1]上的最值在两端点处取得.故M应是g(﹣1)和g(1)中较大的一个假设M≤2,则M=maxg{(﹣1),g(1),g(b)}将上述两式相加得:4≥|﹣1﹣2b+c|+|﹣1+2b+c|≥4|b|>4,导致矛盾,∴M>2(Ⅲ)解法1:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|(1)当|b|>1时,由(Ⅱ)可知f'(b)﹣f'(±1)=b(∓1)2≥0;(2)当|b|≤1时,函数y=f'(x)的对称轴x=b位于区间[﹣1,1]内,此时M=max{g(﹣1),g(1),g(b)}由f'(1)﹣f'(﹣1)=4b,有f'(b)﹣f'(±1)=b(∓1)2≥0①若﹣1≤b≤0,则f'(1)≤f'(﹣1)≤f'(b),∴g(﹣1)≤max{g(1),g(b)},于是②若0<b≤1,则f'(﹣1)≤f'(1)≤f'(b),∴g(1)≤maxg(﹣1),g(b)于是综上,对任意的b、c都有而当时,在区间[﹣1,1]上的最小值故M≥k对任意的b、c恒成立的k的最大值为.解法2:g(x)=|f'(x)|=|﹣(x﹣b)2+b2+c|(1)当|b|>1时,由(Ⅱ)可知M>2(2)当|b|≤1y=f'(x)时,函数的对称轴x=b位于区间[﹣1,1]内,此时M=max{g(﹣1),g(1),g(b)}4M≥g(﹣1)+g(1)+2g(b)=|﹣1﹣2b+c|+|﹣1+2b+c|+2|b2+c|≥|﹣1﹣2b+c+(﹣1+2b+c)﹣2(b2+c)|=|2b2+2|≥2,即下同解法125.(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).【解答】证明:(1)在等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n两边对x求导得n(1+x)n ﹣1=C n1+2C n2x+…+(n﹣1)C n n﹣1x n﹣2+nC n n x n﹣1移项得(*)(2)(i)在(*)式中,令x=﹣1,整理得所以(ii)由(1)知n(1+x)n﹣1=C n1+2C n2x+…+(n﹣1)C n n﹣1x n﹣2+nC n n x n﹣1,n≥3两边对x求导,得n(n﹣1)(1+x)n﹣2=2C n2+3•2C n3x+…+n(n﹣1)C n n x n﹣2在上式中,令x=﹣1,得0=2C n2+3•2C n3(﹣1)+…+n(n﹣1)C n2(﹣1)n﹣2即,亦即(1)又由(i)知(2)由(1)+(2)得(iii)将等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n两边在[0,1]上对x积分由微积分基本定理,得所以26.(2008•天津)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(Ⅰ)当时,讨论函数f(x)的单调性;(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;(Ⅲ)若对于任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,求b的取值范围.【解答】解:(Ⅰ)f'(x)=4x3+3ax2+4x=x(4x2+3ax+4).当时,f'(x)=x(4x2﹣10x+4)=2x(2x﹣1)(x﹣2).令f'(x)=0,解得x1=0,,x3=2.当x变化时,f'(x),f(x)的变化情况如下表:2 (2,+∞)x (﹣∞,0)0(0,)(,2)f′(x)﹣0 + 0 ﹣0 +f(x)↘极小值↗极大值↘极小值↗所以f(x)在,(2,+∞)内是增函数,在(﹣∞,0),内是减函数.(Ⅱ)f'(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根.为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2﹣64≤0.解些不等式,得.这时,f(0)=b是唯一极值.因此满足条件的a的取值范围是.(Ⅲ)由条件a∈[﹣2,2],可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.当x<0时,f'(x)<0;当x>0时,f'(x)>0.因此函数f(x)在[﹣1,1]上的最大值是f(1)与f(﹣1)两者中的较大者.为使对任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,当且仅当,即,在a∈[﹣2,2]上恒成立.所以b≤﹣4,因此满足条件的b的取值范围是(﹣∞,﹣4].四.解答题(共4小题)27.(2008•福建)已知函数f(x)=ln(1+x)﹣x(1)求f(x)的单调区间;(2)记f(x)在区间[0,n](n∈N*)上的最小值为b n令a n=ln(1+n)﹣b n(i)如果对一切n,不等式恒成立,求实数c的取值范围;(ii)求证:.【解答】解:(1)因为f(x)=ln(1+x)﹣x,所以函数定义域为(﹣1,+∞),且f′(x)=﹣1=.由f′(x)>0得﹣1<x<0,f(x)的单调递增区间为(﹣1,0);由f’(x)<0得x>0,f(x)的单调递减区间为(0,+∞).(2)因为f(x)在[0,n]上是减函数,所以b n=f(n)=ln(1+n)﹣n,则a n=ln(1+n)﹣b n=ln(1+n)﹣ln(1+n)+n=n.(i)因为对n∈N*恒成立.所以对n∈N*恒成立.则对n∈N*恒成立.设,n∈N*,则c<g(n)对n∈N*恒成立.考虑.因为=0,所以g(x)在[1,+∞)内是减函数;则当n∈N*时,g(n)随n的增大而减小,又因为=1.所以对一切n∈N,g(n)>1因此c≤1,即实数c的取值范围是(﹣∞,1].(ⅱ)由(ⅰ)知.下面用数学归纳法证明不等式(n∈N+)①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.28.(2007•福建)已知函数f(x)=e x﹣kx,(1)若k=e,试确定函数f(x)的单调区间;(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;(3)设函数F(x)=f(x)+f(﹣x),求证:F(1)F(2)…F(n)>(n∈N*).【解答】解:(Ⅰ)由k=e得f(x)=e x﹣ex,所以f'(x)=e x﹣e.由f'(x)>0得x>1,故f(x)的单调递增区间是(1,+∞),由f'(x)<0得x<1,故f(x)的单调递减区间是(﹣∞,1).(Ⅱ)由f(|﹣x|)=f(|x|)可知f(|x|)是偶函数.于是f(|x|)>0对任意x∈R成立等价于f(x)>0对任意x≥0成立.由f'(x)=e x﹣k=0得x=lnk.①当k∈(0,1]时,f'(x)=e x﹣k>1﹣k≥0(x>0).此时f(x)在[0,+∞)上单调递增.故f(x)≥f(0)=1>0,符合题意.②当k∈(1,+∞)时,lnk>0.当x变化时f'(x),f(x)的变化情况如下表:x (0,lnk)lnk (lnk,+∞)f′(x)﹣0 +f(x)单调递减极小值单调递增由此可得,在[0,+∞)上,f(x)≥f(lnk)=k﹣klnk.依题意,k﹣klnk>0,又k>1,∴1<k<e.综合①,②得,实数k的取值范围是0<k<e.(Ⅲ)∵F(x)=f(x)+f(﹣x)=e x+e﹣x,∴F(x1)F(x2)=,∴F(1)F(n)>e n+1+2,F(2)F(n﹣1)>e n+1+2,F(n)F(1)>e n+1+2.由此得,[F(1)F(2)F(n)]2=[F(1)F(n)][F(2)F(n﹣1)][F(n)F(1)]>(e n+1+2)n故,n∈N*.29.(2006•四川)已知函数,f(x)的导函数是f′(x).对任意两个不相等的正数x1、x2,证明:(Ⅰ)当a≤0时,;(Ⅱ)当a≤4时,|f′(x1)﹣f′(x2)|>|x1﹣x2|.【解答】解:证明:(Ⅰ)由得=而①又(x1+x2)2=(x12+x22)+2x1x2>4x1x2∴②∵∴∵a≤0,aln≥aln(③由①、②、③得(x 12+x22)++aln>()2++aln,即.(Ⅱ)证法一:由,得∴=下面证明对任意两个不相等的正数x1,x2,有恒成立即证成立∵设,则,令u′(x)=0得,列表如下:tu′(t)﹣0 +□u(t)□极小值∴∴对任意两个不相等的正数x1,x2,恒有|f'(x1)﹣f'(x2)|>|x1﹣x2|证法二:由,得∴=∵x1,x2是两个不相等的正数∴设,u(t)=2+4t3﹣4t2(t>0)则u′(t)=4t(3t﹣2),列表:tu′(t)﹣0 +□u(t)□极小值∴即∴即对任意两个不相等的正数x1,x2,恒有|f′(x1)﹣f′(x2)|>|x1﹣x2|30.(2006•辽宁)已知f0(x)=x n,其中k≤n(n,k∈N+),设F(x)=C n0f0(x2)+C n1f1(x2)+…+C n n f n(x2),x∈[﹣1,1].(1)写出f k(1);(2)证明:对任意的x1,x2∈[﹣1,1],恒有|F(x1)﹣F(x2)|≤2n﹣1(n+2)﹣n﹣1.【解答】解:(1)由已知推得f k(x)=(n﹣k+1)x n﹣k,从而有f k(1)=n﹣k+1(2)证法1:当﹣1≤x≤1 时,F(x)=x2n+nc n1x2(n﹣1)+(n﹣1)c n2x2(n﹣2)+…+(n﹣k+1)c n k x2(n﹣k)+…+2c n n﹣1x2+1当x>0时,F′(x)>0所以F(x)在[0,1]上为增函数因函数F(x)为偶函数,所以F(x)在[﹣1,0]上为减函数所以对任意的x1,x2∈[﹣1,1],|F(x1)﹣F(x2)|≤F(1)﹣F(0)F(1)﹣F(0)=C n0+nc n1+(n﹣1)c n2+…+(n﹣k+1)c n k+…+2c n n﹣1=nc n n﹣1+(n﹣1)c n n﹣2+…+(n﹣k+1)c n n﹣k+…+2c n1+c n0∵(n﹣k+1)c n n﹣k=(n﹣k)c n n﹣k+c n k=nc n﹣1k+c n k(k=1,2,3,…,n﹣1)F(!)﹣F(0)=n(c n﹣11+c n﹣12+…+c n﹣1k﹣1)+(c n1+c n2+…+c n n﹣1)+c n0=n(2n﹣1﹣1)+2n﹣1=2n﹣1(n+2)﹣n﹣1因此结论成立.证法2:当﹣1≤x≤1 时,F(x)=x2n+nc n1x2(n﹣1)+(n﹣1)c n2x2(n﹣2)+…+(n﹣k+1)c n k x2(n﹣k)+…+2c n n﹣1x2+1当x>0时,F′(x)>0所以F(x)在[0,1]上为增函数因函数F(x)为偶函数所以F(x)在[﹣1,0]上为减函数所以对任意的x1,x2∈[﹣1,1],|F(x1)﹣F(x2)|≤F(!)﹣F(0)F(!)﹣F(0)=c n0+nc n1+(n﹣1)c n2+…+(n﹣k+1)c n k+…+2c n n﹣1又因F(1)﹣F(0)=2c n1+3c n2+…+kc n k﹣1+…+nc n n﹣1+c n0所以2[F(1)﹣F(0)]=(n+2)[c n1+c n2+…+c n k﹣1+…+c n n﹣1]+2c n0F(1)﹣F(0)=[c n1+c n2+…+c n k﹣1+…+c n n﹣1]+c n0=因此结论成立.证法3:当﹣1≤x≤1时,F(x)=x2n+nc n1x2(n﹣1)+(n﹣1)c n2x2(n﹣2)+…+(n﹣k+1)c n k x2(n ﹣k)+…+2c n n﹣1x2+1当x>0时,F′(x)>0所以F(x)在[0,1]上为增函数因函数F(x)为偶函数所以F(x)在[﹣1,0]上为减函数所以对任意的x1,x2∈[﹣1,1],|F(x1)﹣F(x2)|≤F(!)﹣F(0)F(!)﹣F(0)=c n0+nc n1+(n﹣1)c n2+…+(n﹣k+1)c n k+…+2c n n﹣1由x[(1+x)n﹣x n]=x[c n1x n﹣1+c n2x n﹣2+…+c n k x n﹣k+…+c n n﹣1+1]=c n1x n+c n2x n﹣1+…+c n k x n﹣k+1+…+c n n﹣1x2+x对上式两边求导得(1+x)n﹣x n+nx(1+x)n﹣1﹣nx n=nc n1x n﹣1+(n﹣1)c n2x n﹣2+…+(n﹣k+1)c n k x n﹣k+…+2c n n﹣1x+1F(x)=(1+x2)n+nx2(1+x2)n﹣1﹣nx2n∴F(1)﹣F(0)=2n+n2n﹣1﹣n﹣1=(n+2)2n﹣1﹣n﹣1.因此结论成立.。
导数压轴小题必刷100题

,
2 e2
【答案】B
【解析】因为 f ( x) 与 g ( x) 互为“1距零点函数”.且当 f ( x) = log2020 ( x −1) = 0 时, x = 2
设 g ( x) = x2 − aex = 0 的解为 x0 ,由定义 − n 可知, 2 − x0 1
解得1 x0
3 ,而当 g ( x) = x2 − aex
A.
B.
C.
D.
【答案】A
【解析】因为 不满足方程
,所以原方程化为化为
,
,令
, 时, ,令
; ,
时,
+
0
-
当 要使
递增
,即 时,
无解,则
,
递减
,综上可得, 的值域为
,
即使关于 的方程
3
,
4
+ ln 6
2
【答案】D
【解析】由题意,函数 f ( x) = ln x − ax2 − (a − 2) x 的定义域为 (0, +),
不等式 f ( x) 0 ,即 ln x − ax2 − (a − 2) x 0 ,即 ln x ax2 + (a − 2) x ,
两边除以 x ,可得 ln x a(x +1) − 2 , x
,
+
时,
g
(
x
)
0
,
所以
g
(
x
)
在
e−1
,
−
e
2 3
−2
时增函数,在 e 3 , + 时减函数,且
f
−2 e 3
=
e2 3,f Nhomakorabea1 e
(完整word版)高中数学导数压轴题专题训练

高中数学导数尖子生指导(填选压轴)一.选择题(共 30 小题)1.( 2013?文昌模拟)如图是322+x 2 2的值是()f ( x ) =x +bx +cx+d 的图象,则 x 1 A . B . C .D .考点 : 利用导数研究函数的极值;函数的图象与图象变化. 专题 : 计算题;压轴题;数形联合.剖析: 先利用图象得: f (x ) =x ( x+1 )( x ﹣ 2)=x 3﹣ x 2﹣2x ,求出其导函数,利用 x 1, x 2 是原函数的极值点,求出 x 1+x 2= ,,即可求得结论.解答: 解:由图得: f ( x ) =x ( x+1 )(x ﹣ 2) =x 3﹣ x 2﹣ 2x ,∴ f'( x ) =3x 2﹣ 2x ﹣ 2∵ x 1, x 2 是原函数的极值点所以有 x 1+x 2= ,,222.故 x 1 +x 2 =(x 1+x 2) ﹣ 2x 1x 2== 应选 D .评论: 本题主要考察利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考察,属于基础题.2.( 2013?乐山二模)定义方程 f ( x ) =f ′( x )的实数根 x 0 叫做函数 f ( x )的 “新驻点 ”,若函数 g ( x ) =x , h ( x )=ln ( x+1), φ( x )=x 3﹣ 1 的 “新驻点 ”分别为 α, β, γ,则 α, β,γ的大小关系为( ) A .α> β> γB . β> α> γC . γ> α>βD .β> γ>α考点 : 导数的运算. 专题 : 压轴题;新定义.剖析: 分别对 g ( x ),h (x ),φ( x )求导,令g ′( x ) =g ( x ),h ′( x )=h ( x ),φ′( x ) =φ( x ),则它们的根分别32为 α, β, γ,即 α=1, ln ( β+1) =, γ﹣ 1=3γ,而后分别议论 β、 γ的取值范围即可.解答:解: ∵ g ′( x ) =1, h ′( x ) =, φ′(x ) =3x 2,由题意得:α=1, ln ( β+1) = 32, γ﹣ 1=3γ,① ∵ ln ( β+1) =,β+1∴ ( β+1 ) =e ,当 β≥1时, β+1≥2, ∴ β<1,这与 β≥1矛盾,∴ 0< β< 1;32② ∵ γ﹣ 1=3 γ,且 γ=0 时等式不行立,2∴ 3γ>3∴ γ> 1, ∴ γ> 1.∴ γ> α> β. 应选 C .评论: 函数、导数、不等式密不行分,本题就是一个典型的代表,此中对对数方程和三次方程根的范围的议论是一个难点.3.( 2013?山东)抛物线 C 1:的焦点与双曲线C 2: 的右焦点的连线交C 1 于第一象限的点 M .若 C 1 在点 M 处的切线平行于 C 2 的一条渐近线,则p=()A .B .C .D .考点 : 利用导数研究曲线上某点切线方程;双曲线的简单性质. 专题 : 压轴题;圆锥曲线的定义、性质与方程.剖析: 由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在 x 取直线与抛物线交点 M 的横坐标时的导数值,由其等于双曲线渐近线的斜率获得交点横坐标与 p 的关系,把 M 点的坐标代入直线方程即可求得 p 的值.解答:解:由,得 x 2=2py ( p > 0),所以抛物线的焦点坐标为 F ().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为 ,即① .设该直线交抛物线于M ( ),则 C 1 在点 M 处的切线的斜率为 .由题意可知,得 ,代入 M 点得 M ( )把 M 点代入 ① 得:.解得 p=.应选 D .评论: 本题考察了双曲线的简单几何性质,考察了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.( 2013?安徽) 已知函数3 2 +bx+c 有两个极值点1211 2 ,则对于 x 的方程 3( f (x )) f ( x )=x +axx,x,若 f ( x)=x < x2+2af (x ) +b=0 的不一样实根个数为( )A .3B . 4C . 5D .6考点 : 利用导数研究函数的极值;根的存在性及根的个数判断.专题 : 压轴题;导数的综合应用.剖析: 由函数 f ( x )=x 32′ 2有两个不相等的实数根,必有+ax +bx+c 有两个极值点 x 1, x 2,可得 f ( x )=3x +2ax+b=0 △ =4a 2﹣ 12b > 0.而方程 3(f ( x ))2+2af ( x )+b=0 的 △ 1=△ >0,可知此方程有两解且 f ( x )=x 1 或 x 2.再分别议论利用平移变换即可解出方程f ( x ) =x 1 或 f ( x )=x 2 解得个数.解答: 解: ∵ 函数 f ( x ) =x 3 212+ax +bx+c 有两个极值点 x, x ,′2∴ f ( x )=3x +2ax+b=0 有两个不相等的实数根,∴ △ =4a 2﹣ 12b > 0.解得= .∵ x 1< x 2,∴,.而方程 3(f (x ))21=△ > 0, ∴ 此方程有两解且1 2+2af (x ) +b=0的△f ( x ) =x 或 x .不如取 0<x 1< x 2, f ( x 1)> 0.y=f ( x )﹣ x 的图象, ∵ f ( x )=x ,可知方程 f ( x )=x① 把 y=f ( x )向下平移 x个单位即可获得1有两1 1 1 1 解.② 把 y=f ( x )向下平移 x 2 个单位即可获得y=f ( x )﹣ x 2 的图象, ∵f (x 1) =x 1, ∴f (x 1)﹣ x 2<0,可知方程 f ( x ) =x 2 只有一解.综上 ①② 可知:方程 f ( x )=x 1 或 f ( x )=x 2.只有 3 个实数解. 即对于 x 的方程 3(f (x ))2+2af ( x )+b=0的只有 3 不一样实根.应选 A .评论: 本题综合考察了利用导数研究函数得单一性、极值及方程解得个数、平移变换等基础知识,考察了数形联合的思想方法、推理能力、分类议论的思想方法、计算能力、剖析问题和解决问题的能力.5.( 2013?湖北)已知 A .a 为常数,函数 B .f ( x ) =x ( lnx ﹣ ax )有两个极值点C .x 1,x 2( x 1< x 2)(D .)考点 : 利用导数研究函数的极值;函数在某点获得极值的条件.专题 : 压轴题;导数的综合应用.剖析: 先求出 f ′( x ),令 f ′( x )=0,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x ) =lnx+1 ﹣ 2ax 有且只有两个零点 ? g ′( x )在( 0, +∞)上的独一的极值不等于 0.利用导数与函数极值的关系即可得出.解答:解: ∵=lnx+1 ﹣ 2ax ,( x >0)令 f ′( x )=0 ,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x )=lnx+1 ﹣ 2ax 有且只有两个零点? g ′( x )在( 0, +∞)上的独一的极值不等于 0..① 当 a ≤0 时, g ′( x )> 0, f ′(x )单一递加,所以 g ( x ) =f ′(x )至多有一个零点,不切合题意,应舍去.② 当 a > 0 时,令 g ′( x ) =0 ,解得 x= ,∵ x, g ′( x )> 0,函数 g ( x )单一递加;时, g ′( x )< 0,函数 g ( x )单一递减.∴ x=是函数 g ( x )的极大值点,则> 0,即> 0,∴ ln ( 2a )< 0,∴ 0< 2a <1,即.∵, f ′( x ) =lnx +1﹣2ax =0, f ′( x ) =lnx +1﹣ 2ax 2=0.11122且 f ( x 1) =x 1( lnx 1﹣ ax 1) =x 1(2ax 1﹣ 1﹣ ax 1) =x 1( ax 1 ﹣1)< x 1(﹣ ax 1) =< 0,f (x 2) =x 2( lnx 2﹣ ax 2) =x 2( ax 2﹣1)>=﹣.().应选 D .评论: 娴熟掌握利用导数研究函数极值的方法是解题的要点.6.( 2013?辽宁)设函数 f ( x )知足 x 2f ′(x ) +2xf ( x ) =,f (2) = ,则 x >0 时, f ( x )()A .有 极大值,无极小值B . 有极小值,无极大值C . 既有极大值又有极小值D .既 无极大值也无极小值考点 : 函数在某点获得极值的条件;导数的运算.专题 : 压轴题;导数的综合应用.剖析: 先利用导数的运算法例,确立 f (x )的分析式,再结构新函数,确立函数的单一性,即可求得结论.解答:,解: ∵ 函数 f ( x )知足∴∴ x > 0 时,dx∴∴令 g ( x )=,则令 g ′(x ) =0,则 x=2 , ∴x ∈( 0, 2)时, 数单一递加∴ g ( x )在 x=2 时获得最小值g ′( x )< 0,函数单一递减,x ∈( 2, +∞)时,g ′( x )> 0,函∵ f ( 2) =, ∴ g (2) = =0∴ g ( x ) ≥g ( 2) =0∴≥0即 x > 0 时, f ( x )单一递加∴ f ( x )既无极大值也无极小值应选 D .评论: 本题考察导数知识的运用,考察函数的单一性与极值,考察学生剖析解决问题的能力,难度较大.7.( 2013?安徽)若函数f ( x )=x 3+ax 2+bx+c 有极值点 x 1,x 2,且 f ( x 1)=x 1,则对于 x 的方程 3( f ( x ))2+2af ( x ) +b=0 的不一样实根个数是( )A .3B . 4C . 5D .6考点 : 函数在某点获得极值的条件;根的存在性及根的个数判断. 专题 : 综合题;压轴题;导数的综合应用.剖析: 求导数 f ′( x ),由题意知 x 1, x 2 是方程 3x 2+2ax+b=0 的两根,从而对于 f ( x )的方程 3( f ( x ))2+2af ( x )+b=0 有两个根,作出草图,由图象可得答案.解答: 解: f ′( x ) =3x 2+2ax+b , x 1, x 2 是方程 3x 2+2ax+b=0 的两根,不如设 x 2>x 1,由 3( f ( x ))2+2af ( x ) +b=0,则有两个 f ( x )使等式成立, x 1=f ( x 1),x 2> x 1=f ( x 1),以下表示图象:如图有三个交点,应选 A .评论: 考察函数零点的观点、以及对嵌套型函数的理解,考察数形联合思想.8.( 2014?海口二模)设f (x )是定义在R 上的奇函数,且f ( 2) =0,当x > 0 时,有恒成立,则不等式 x 2f ( x )> 0 的解集是()A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣2, 0) ∪ ( 0, 2)C . (﹣ ∞,﹣2)∪(2,+∞)D .(﹣ ∞,﹣ 2) ∪ ( 0,2)考点 : 函数的单一性与导数的关系;奇偶函数图象的对称性;其余不等式的解法. 专题 : 综合题;压轴题.剖析:第一依据商函数求导法例,把 化为 [] ′< 0;而后利用导函数的正负性, 可判断函数y=在( 0, +∞)内单一递减;再由f ( 2)=0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得f ( x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因 当 x > 0 ,有 恒成立,即 [ ]′<0 恒成立,所以在( 0, +∞)内 减.因 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0.又因 f ( x )是定 在R 上的奇函数,所以在( ∞, 2)内恒有 f ( x )> 0;在( 2, 0)内恒有f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案 ( ∞, 2)∪ ( 0,2).故 D .点 :本 主要考 函数求 法 及函数 性与 数的关系,同 考 了奇偶函数的 象特色.9.( 2014?重 三模) 于三次函数 f ( x )=ax 3+bx 2+cx+d ( a ≠0), 出定 : f ′(x )是函数 y=f ( x )的 数, f ″ ( x )是 f ′( x )的 数,若方程 f ′′(x )=0 有 数解 x 0, 称点( x 0, f (x 0)) 函数 y=f ( x )的 “拐点 ”.某同学研究 :任何一个三次函数都有 “拐点 ”;任何一个三次函数都有 称中心,且“拐点 ”就是 称中心. 函数g ( x ) =, g ( ) +=()A .2011B . 2012C . 2013D .2014考点 : 数的运算;函数的 ;数列的乞降. : ; 数的观点及 用.剖析: 正确求出 称中心,利用 称中心的性 即可求出.解答: 解:由 意,′2 ″g (x ) =x x+3 , ∴ g ( x ) =2x 1, ″,解得,令 g ( x )=0又, ∴ 函数 g ( x )的 称中心 .∴,, ⋯∴ g ( ) +=2012 .故 B .点 : 正确求出 称中心并掌握 称中心的性 是解 的关 .10.( 2014?上海二模) 已知 f ( x )=alnx+ 2x 1,x 2,都有x ( a > 0),若 随意两个不等的正 数 > 2 恒成立, a 的取 范 是( )A .( 0, 1]B . ( 1, +∞)C . (0, 1)D .[1, +∞)考点 : 数的几何意 ;利用 数研究函数的 性.: 算 ; .剖析:先将条件 “ 随意两个不等的正 数 x 1,x 2,都有> 2 恒成立 ” 成当 x > 0 ,f'( x )≥2 恒成立,而后利用参 量分别的方法求出a 的范 即可.解答:解:对随意两个不等的正实数x 1, x 2,都有> 2 恒成立则当 x > 0 时, f'( x )≥2 恒成立f' ( x ) = +x ≥2 在( 0, +∞)上恒成立则 a ≥( 2x ﹣ x 2) max =1 应选 D .评论: 本题主要考察了导数的几何意义,以及函数恒成立问题,同时考察了转变与划归的数学思想,属于基础题.11.(2012?桂林模拟)已知在(﹣ ∞, +∞)上是增函数,则实数 a 的取值范围是()A .(﹣ ∞, 1]B . [﹣ 1, 4]C . [﹣ 1,1]D .(﹣ ∞, 1)考点 : 利用导数研究函数的单一性.专题 : 计算题;压轴题.剖析: 假如一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要知足递加,当于 0 时,要使的函数是一个减函数,求导此后导函数横小于0,注意两个端点处的大小关系.解答: 解: ∵ 假如一个分段函数在实数上是一个增函数.x 小需要两段都是增函数且两个函数的交点处要知足递加,当 x < 0 时, y ′=3x 2﹣( a ﹣1)> 0 恒成立,∴ a ﹣ 1< 3x 2∴ a ﹣ 1≤0∴ a ≤1,当 x=0 时, a 2﹣ 3a ﹣ 4≤0 ∴ ﹣ 1≤a ≤4,综上可知﹣ 1≤a ≤1 应选 C .评论: 本题考察函数的单一性,分段函数的单一性,解题的要点是在两个函数的分界处,两个函数的大小关系必定要写清楚.12.( 2012?河北模拟)定义在 [1, +∞)上的函数 f ( x )知足: ① f ( 2x ) =cf ( x )( c 为正常数);② 当 2≤x ≤4 时,f ( x ) =1﹣( x ﹣ 3) 2,若函数 f ( x )的图象上全部极大值对应的点均落在同一条直线上,则 c 等于( ) A .1 B . 2 C . 1 或 2 D .4 或 2 考点 : 利用导数研究函数的极值;抽象函数及其应用. 专题 : 计算题;压轴题.剖析: 由已知可得分段函数f ( x )的分析式,从而求出三个函数的极值点坐标,依据三点共线,则任取两点确立的直线斜率相等,能够结构对于c 的方程,解方程可得答案.解答: 解: ∵ 当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3)2当 1≤x < 2 时, 2≤2x < 4,则 f ( x ) = f ( 2x ) = [1﹣( 2x ﹣ 3) 2]此时当 x= 时,函数取极大值当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3) 2此时当 x=3 时,函数取极大值 1当 4< x≤8 时, 2<x≤4则f( x) =cf ( x) =c (1﹣( x﹣ 3)2,此时当 x=6 时,函数取极大值c∵ 函数的全部极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴解得 c=1 或 2.应选 C评论:本题考察的知识点是三点共线,函数的极值,此中依据已知剖析出分段函数 f ( x)的分析式,从而求出三个函数的极值点坐标,是解答本题的要点.13.( 2012?桂林模拟)设x﹣xf ′( x),且 f′( x)是奇函数.若曲线y=f ( x)的a∈R,函数 f ( x) =e+a?e 的导函数是一条切线的斜率是,则切点的横坐标为()A .ln2B .﹣ ln2C. D .考点:简单复合函数的导数.专题:压轴题.剖析:已知切线的斜率,要求切点的横坐标一定先求出切线的方程,我们可从奇函数下手求出切线的方程.解答:解:对f( x) =e x+a?e﹣x求导得 f ′( x) =e x﹣ ae﹣x又 f′( x)是奇函数,故f′( 0) =1﹣ a=0解得 a=1,故有f′( x) =e x﹣ e﹣x,设切点为( x0, y0),则,得或(舍去),得 x0=ln2 .评论:熟习奇函数的性质是求解本题的要点,奇函数定义域若包括x=0,则必定过原点.14.( 2012?太原模拟)已知定义在 R 上的函数 y=f( x﹣ 1)的图象对于点( 1,0)对称,且 x∈(﹣∞,0)时, f( x)+xf(′x)<0 成立,(此中 f(′x)是(f x)的导函数),a=( 30.3)(f 30.3),b=( log π3).(f logπ3),则 a, b, c 的大小关系是()A .a> b> cB . c> b>a C. c> a>b D .a> c> b 考点:利用导数研究函数的单一性;函数单一性的性质;导数的乘法与除法法例.专题 : 计算题;压轴题.剖析: 由 “当 x ∈(﹣ ∞, 0)时不等式f ( x )+xf ′(x )< 0 成立 ”知只需比较的大小即可.解答: 解: ∵ 当 x ∈(﹣ ∞, 0)时不等式 f ( x ) +xf ′(x )< 0 成立即:( xf ( x )) ′< 0,∴ xf ( x )在 (﹣ ∞, 0)上是减函数.又 ∵ 函数 y=f ( x ﹣ 1)的图象对于点( 1,0)对称,∴ 函数 y=f (x )的图象对于点( 0, 0)对称, xf ( x )是减函数,要获得a ,b ,c 的大小关系,∴ 函数 y=f (x )是定义在 R 上的奇函数∴ xf ( x )是定义在 R 上的偶函数∴ xf ( x )在 ( 0, +∞)上是增函数.又 ∵=﹣ 2,2=.∴> 30.3 0.3)>( log π π?f ( 3 3)?f ( log 3) 即> 30.3 0.3)>( log π π?f ( 33) ?f ( log 3) 即: c > a >b 应选 C .评论: 本题考察的考点与方法有: 1)全部的基本函数的奇偶性; 2)抽象问题详细化的思想方法,结构函数的思想; 3)导数的运算法例: ( uv )′=u ′v+uv ′; 4)指对数函数的图象; 5)奇偶函数在对称区间上的单一性:奇 函数在对称区间上的单一性同样;偶函数在对称区间上的单一性相反.本题联合已知结构出 h (x )是正确解答的要点所在.15.( 2012?广东模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,且e 为自然对数的底,则()A .f ( 1)> e?f (0), f ( 2012)> e2012?f ( 0) B . f (1)< e?f ( 0), f ( 2012)> e 2012?f ( 0)C . f ( 1)> e?f (0), f ( 2012)< e 2012?f ( 0)D .f (1)< e?f ( 0), f ( 2012)< e2012?f ( 0)考点 : 导数的运算. 专题 : 计算题;压轴题. 剖析:结构函数 y=的导数形式,并判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0即> 0,所以函数 y= 单一递加,故当 x > 0 时,=f ( 0),整理得出 f ( x )> e xf (0)当 x=1 时 f ( 1)> e?f ( 0),当x=2012 时 f( 2012)> e 2012?f( 0).应选 A .评论: 本题主要考察函数的单一性与其导函数的关系,函数单一性的关系,考察转变、结构、计算能力.16.( 2012?无为县模拟)已知定义在R 上的函数 f ( x )、g ( x )知足 ,且 f ′( x )g ( x )< f ( x )g ′(x ),,如有穷数列( n ∈N *)的前 n 项和等于,则 n 等于 ()A .4B . 5C . 6D .7考点 : 导数的运算;数列的乞降.专题 : 压轴题.剖析: 利用导数研究函数的单一性获得a 的范围,再利用等比数列前n 项和公式即可得出.解答:解: ∵=′′, f ( x ) g ( x )< f ( x ) g ( x ),∴= <0,即函数单一递减, ∴ 0<a < 1.又,即 ,即 ,解得 a=2(舍去)或 .∴,即数列 是首项为 ,公比 的等比数列,∴= = ,由解得 n=5 ,应选 B .评论: 娴熟掌握导数研究函数的单一性、等比数列前n 项和公式是解题的要点.17.( 2012?福建)函数 (f x )在[a ,b] 上有定义,若对随意 x1,x ∈[a ,b],有2则称 f ( x )在 [a , b] 上拥有性质 P .设 f ( x )在 [1, 3]上拥有性质 P ,现给出以下命题:① f ( x )在 [1, 3]上的图象是连续不停的;② f ( x 2)在 [1, ] 上拥有性质 P ;③ 若 f ( x )在 x=2 处获得最大值 1,则 f ( x )=1, x ∈[1, 3] ;④ 对随意 x 1,x 2, x 3, x 4∈[1, 3] ,有[f ( x 1) +f ( x 2) +f (x 3) +f ( x 4)]此中真命题的序号是( )A .① ②B . ① ③C . ② ④D .③ ④考点 : 利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题 : 压轴题;新定义.剖析: 依据题设条件,分别举出反例,说明 ① 和② 都是错误的;同时证明 ③ 和④ 是正确的.解答:解:在 ① 中,反例: f ( x ) =在 [1, 3] 上知足性质 P ,但 f ( x )在 [1, 3] 上不是连续函数,故 ① 不行立;在 ② 中,反例: f ( x ) =﹣ x 在 [1, 3]上知足性质 P ,但 f (x 2) =﹣ x 2在 [1, ] 上不知足性质 P ,故 ②不行立;在 ③ 中:在 [1 , 3] 上, f (2) =f () ≤ ,∴,故 f ( x ) =1,∴ 对随意的 x 1, x 2∈[1,3] , f ( x ) =1, 故 ③ 成立;在 ④ 中,对随意 x 1,x 2, x 3, x 4∈[1 ,3] ,有=≤≤= [f ( x 1) +f (x 2) +f ( x 3) +f ( x 4 )] ,∴[f (x 1) +f ( x 2) +f (x 3) +f ( x 4) ],故 ④ 成立. 应选 D .评论: 本题考察的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对全部的状况都成立.18.( 2013?文昌模拟)设动直线 x=m 与函数 f ( x ) =x 3,g ( x ) =lnx 的图象分别交于点M 、N ,则 |MN| 的最小值为 ( )A .B .C .D .l n3﹣ 1考点 : 利用导数求闭区间上函数的最值. 专题 : 计算题;压轴题.剖析: 结构函数 F ( x ) =f ( x )﹣ g ( x ),求出导函数,令导函数大于 0 求出函数的单一递加区间,令导函数小于0 求出函数的单一递减区间,求出函数的极小值即最小值.解答: 解:绘图能够看到 |MN| 就是两条曲线间的垂直距离.设 F ( x ) =f (x )﹣ g (x ) =x 3﹣lnx ,求导得: F'( x )=.令 F ′( x )> 0 得 x >;令 F ′( x )< 0 得 0< x < ,所以当 x=时, F (x )有最小值为 F ( ) = + ln3=( 1+ln3 ),应选 A评论: 求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.( 2011?枣庄二模)设 f ′( x )是函数 f ( x )的导函数,有以下命题: ① 存在函数 f ( x ),使函数 y=f ( x )﹣ f ′( x )为偶函数;② 存在函数 f ( x ) f ′( x ) ≠0,使 y=f ( x )与 y=f ′( x )的图象同样;③ 存在函数 f ( x ) f ′( x ) ≠0 使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称.此中真命题的个数为( )A .0B . 1C . 2D .3考点 : 导数的运算;函数奇偶性的判断.专题 : 计算题;压轴题.剖析: 对于三个命题分别找寻知足条件的函数,三个函数分别是x, f ( x )=e ﹣ x,从而获得结f ( x ) =0, f ( x )=e 论.解答: 解:存在函数 f ( x ) =0,使函数 y=f ( x )﹣ f ′( x )=0 为偶函数,故 ① 正确存在函数 f (x ) =e x,使 y=f ( x )与 y=f ′( x )的图象同样,故 ② 正确存在函数 f (x ) =e ﹣x使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称,故 ③ 正确. 应选 D .评论: 本题主要考察了函数的奇偶性以及函数图象的对称性,解题的要点就是找寻知足条件的函数,属于基础题.20.( 2011?武昌区模拟)已知f ( x )是定义域为R 的奇函数,f (﹣ 4)=﹣ 1, f ( x )的导函数f ′( x )的图象如图所示.若两正数a ,b 知足f ( a+2b )< 1,则的取值范围是()A .B .C . (﹣ 1, 10)D .(﹣ ∞,﹣ 1)考点 : 函数的单一性与导数的关系;斜率的计算公式.专题 : 计算题;压轴题;数形联合.剖析: 先由导函数 f ′( x )是过原点的二次函数下手,再联合f ( x )是定义域为 R 的奇函数求出f ( x );而后依据a 、b 的拘束条件画出可行域,最后利用的几何意义解决问题.解答: 解:由 f ( x )的导函数f ′( x )的图象,设 f ′( x ) =mx 2,则∵ f ( x )是定义域为 R 的奇函数, ∴ f ( 0) =0,即 n=0 .f ( x )=+n .又 f (﹣ 4) = m ×(﹣ 64) =﹣ 1, ∴ f ( x ) =x 3=.且 f ( a+2b ) =又 a > 0, b > 0,则画出点(< 1, ∴< 1,即 a+2b <4.b ,a )的可行域以以下图所示.而可视为可行域内的点(b, a)与点 M (﹣ 2,﹣ 2)连线的斜率.又因为 k AM =3,k BM = ,所以<< 3.应选 B .评论:数形联合是数学的基本思想方法:碰到二元一次不定式组要考虑线性规划,碰到的代数式要考虑点(x,y)与点( a, b)连线的斜率.这都是由数到形的转变策略.21.(2011?雅安三模)以下命题中:①函数, f ( x) =sinx+( x∈( 0,π))的最小值是 2;② 在△ ABC 中,若 sin2A=sin2B ,则△ ABC 是等腰或直角三角形;③假如正实数a, b, c 知足 a + b> c 则+>;④ 如果 y=f ( x)是可导函数,则f′( x0) =0 是函数 y=f (x)在 x=x 0处取到极值的必需不充足条件.此中正确的命题是()A .① ②③④B .① ④C.② ③④ D .② ③考点:函数在某点获得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:惯例题型;压轴题.剖析:依据基本不等式和三角函数的有界性可知真假,利用题设等式,依据和差化积公式整理求得cos(A+B )=0或 sin(A ﹣B ) =0,推测出 A+B=或 A=B ,则三角形形状可判断出.结构函数y=,依据函数的单一性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:① f ( x)=sinx+≥2 ,当 sinx=时取等号,而 sinx 的最大值是 1,故不正确;② ∵ sin2A=sin2B ∴ sin2A ﹣ sin2B=cos( A+B ) sin( A ﹣ B) =0∴ cos( A+B ) =0 或 sin( A ﹣B )=0∴ A+B=或 A=B∴ 三角形为直角三角形或等腰三角形,故正确;③可结构函数 y=,该函数在(0.+∞)上单一递加, a+b> c 则+>,故正确;④ ∵ f( x)是定义在R 上的可导函数,当 f′( x0)=0 时, x0可能 f ( x)极值点,也可能不是 f (x)极值点,当 x0为 f( x)极值点时, f ′( x0)=0 必定成立,故 f′( x0)=0 是 x0为 f ( x)极值点的必需不充足条件,故④ 正确;应选 C.评论:考察学生会利用基本不等式解题,注意等号成立的条件,同时考察了极值的相关问题,属于综合题.22.( 2011?万州区一模)已知 f ( x ) =2x的最小值是( )A .﹣ 37B .﹣ 29考点 : 利用导数求闭区间上函数的最值.专题 : 惯例题型;压轴题.3﹣ 6x 2 +m ( m 为常数)在 [ ﹣ 2, 2] 上有最大值 3,那么此函数在 [ ﹣ 2, 2]上 C .﹣5 D .以 上都不对剖析: 先求导数,依据单一性研究函数的极值点,在开区间(﹣2, 2)上只有一极大值则就是最大值,从而求出m ,经过比较两个端点﹣2 和 2 的函数值的大小从而确立出最小值,获得结论.2∵ f ( x )在(﹣ 2, 0)上为增函数,在( 0, 2)上为减函数, ∴ 当 x=0 时, f ( x ) =m 最大,∴ m=3,从而 f (﹣ 2) =﹣ 37, f ( 2) =﹣5. ∴ 最小值为﹣ 37.应选: A评论:本题考察了利用导数求闭区间上函数的最值, 求函数在闭区间 [a ,b] 上的最大值与最小值是经过比较函数在( a ,b )内全部极值与端点函数 f ( a ), f ( b ) 比较而获得的,属于基础题.23.(2010?河东区一模)已知定义在 R 上的函数 (fx )是奇函数,且(f 2)=0,当 x > 0 时有,则不等式 x 2?f ( x )> 0 的解集是( )A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣∞,﹣ 2)∪( 0,2)C . (﹣ 2, 0)∪ ( 0, 2)D .(﹣ 2, 2) ∪ ( 2,+∞)考点 : 函数的单一性与导数的关系;函数单一性的性质. 专题 : 计算题;压轴题.剖析:第一依据商函数求导法例,把化为 [ ]′< 0;而后利用导函数的正负性,可判断函数 y=在( 0,+∞)内单一递减;再由 f ( 2) =0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得 f (x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因为当 x > 0 时,有恒成立,即 []′< 0 恒成立,所以在( 0,+∞)内单一递减.因为 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0. 又因为 f ( x )是定义在 R 上的奇函数,所以在(﹣ ∞,﹣ 2)内恒有 f ( x )> 0;在(﹣ 2, 0)内恒有 f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案为(﹣ ∞,﹣ 2)∪ ( 0,2). 应选 B .评论: 本题主要考察函数求导法例及函数单一性与导数的关系,同时考察了奇偶函数的图象特色.24.( 2010?惠州模拟)给出定义:若函数 f ( x )在 D 上可导,即 f ′( x )存在,且导函数 f ′(x )在 D 上也可导,则称 f (x )在 D 上存在二阶导函数,记 f ″( x ) =( f ′( x )) ′,若 f ″( x )< 0 在 D 上恒成立,则称f ( x )在 D 上为凸函数.以下四个函数在上不是凸函数的是()A .f ( x ) =sinx+cosxB . f ( x )=lnx ﹣2xC . f ( x )=﹣ x 3+2x ﹣ 1﹣D .f ( x ) =﹣ xex考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析: 对 ABCD 分别求二次导数,逐个清除可得答案.解答:解:对于 f ( x )=sinx+cosx ,f ′(x )=cosx ﹣sinx ,f ″(x )=﹣ sinx ﹣ cosx ,当 x ∈ 时, f ″( x )< 0,故为凸函数,清除A ;对于 f ( x ) =lnx ﹣2x , f ′( x ) = , f ″(x ) =﹣,当 x ∈时, f ″( x )< 0,故为凸函数,清除 B ;对于 f ( x ) =﹣x 3+2x ﹣ 1, f ′(x ) =﹣ 3x 2+2, f ″(x ) =﹣ 6x ,当 x ∈时, f ″( x )< 0,故为凸函数,清除 C ;应选 D .评论: 本题主要考察函数的求导公式.属基础题.25.( 2010?黄冈模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,则 ( )A .f ( 2)> e 2f ( 0), f ( 2010)> e 2010f ( 0)B . f (2)< e 2f ( 0),f (2010)> e 2010f (0)C . f ( 2)> e 2f ( 0), f ( 2010)< e 2010f ( 0)D .f (2)< e 2f ( 0),f (2010)< e 2010f (0)考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析:先转变成函数 y=的导数形式,再判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0从而>0 从而函数 y= 单一递加,故 x=2 时函数的值大于 x=0 时函数的值,即所以 f ( 2)> e 2f ( 0).2010同理 f ( 2010)> ef ( 0);评论: 本题主要考察函数的单一性与其导函数的正负状况之间的关系,即导函数大于 0 时原函数单一递加,当导函数小于0 时原函数单一递减.26.( 2010?龙岩二模)已知f ( x )、g ( x )都是定义在R 上的函数,f ′( x )g ( x ) +f (x ) g ′( x )< 0, f ( x ) g ( x )=ax , f ( 1)g ( 1) +f (﹣ 1)g (﹣ 1) =.在区间[ ﹣3, 0]上随机取一个数x , f ( x ) g ( x )的值介于4 到 8 之间的概率是()A .B .C .D .考点 : 利用导数研究函数的单一性;几何概型.专题 : 计算题;压轴题.剖析: 依据函数积的导数公式,可知函数f ( x )g ( x )在R 上是减函数,依据f ( x )g ( x ) =a x , f ( 1)g ( 1)+f(﹣ 1) g (﹣ 1) =.我们能够求出函数分析式,从而可求出f (x )g ( x )的值介于4 到 8 之间时,变量的范围,利用几何概型的概率公式即可求得. 解答: 解:由题意, ∵ f' ( x ) g ( x )+f (x ) g'( x )< 0,∴ [f ( x ) g ( x ) ]'<0,∴ 函数 f ( x )g ( x )在 R 上是减函数∵ f ( x ) g (x ) =a x,∴ 0< a < 1∵ f ( 1) g (1) +f (﹣ 1)g (﹣ 1)= .∴∴∵ f ( x ) g (x )的值介于 4 到 8∴ x ∈[﹣ 3,﹣ 2]∴ 在区间 [﹣3, 0] 上随机取一个数 x ,f (x ) g ( x )的值介于 4 到 8 之间的概率是应选 A .评论: 本题的考点是利用导数确立函数的单一性,主要考察积的导数的运算公式,考察几何概型,解题的要点是确立函数的分析式,利用几何概型求解.27.( 2010?成都一模)已知函数 在区间( 1, 2)内是增函数,则实数m 的取值范围是( )A .B .C . (0, 1]D .考点 : 利用导数研究函数的单一性. 专题 : 压轴题.剖析: 第一求出函数的导数,而后依据导数与函数增减性的关系求出m 的范围.解答: 解:由题得 f ′( x )=x 2﹣ 2mx ﹣3m 2=( x ﹣ 3m )( x+m ),∵ 函数在区间( 1, 2)内是增函数,∴ f ′( x )> 0,当 m ≥0 时, 3m ≤1,∴ 0≤m ≤ ,当 m < 0 时,﹣ m ≤1, ∴ ﹣ 1≤m < 0,∴ m ∈[﹣ 1, ] .应选 D .点 :掌握函数的 数与 性的关系.28.( 2009?安徽) 函数 f ( x )= x 3+x 2+tan θ,此中 θ∈[0,] , 数 f (′1)的取 范 是 ()A .[ 2, 2]B . [, ]C . [ , 2]D .[ , 2]考点 : 数的运算.: .剖析: 利用基本求 公式先求出f ′( x ),而后令 x=1 ,求出 f ′(1)的表达式,从而 化 三角函数求 域 ,求解即可.2cos θ?x ,解答: 解: ∵ f ′( x ) =sin θ?x +∴ f ′( 1)=sin θ+ cos θ=2sin ( θ+ ).∵ θ∈[0, ],∴ θ+ ∈[ , ] . ∴ sin (θ+ ) ∈[ , 1] . ∴ 2sin ( θ+) ∈[, 2].故 D .点 : 本 合考 了 数的运算和三角函数求 域 ,熟 公式是解 的关 .29.( 2009?天津) 函数 f ( x )在 R 上的 函数f ′(x ),且 2f ( x ) +xf ′( x )> x 2,下边的不等式在R 内恒成立的是( )A .f ( x )> 0B . f ( x )< 0C . f ( x )> xD .f ( x )< x考点 : 数的运算. : .剖析: 于 参数取 , 些没有固定套路解决的 ,最好的 法就是清除法.解答: 解: ∵ 2f ( x ) +xf ′( x )> x 2,令 x=0 , f (x )> 0,故可清除 B ,D .假如 f ( x )=x 2+0.1, 已知条件 2f ( x ) +xf ′( x )> x 2成立,但 f ( x )>x 未必成立,所以 C 也是 的,故 A 故 A .点 :本 考 了运用 数来解决函数 性的 .通 剖析分析式的特色,考 了剖析 和解决 的能力.30.( 2009? 西) 曲 y=x n+1(n ∈N * )在点( 1, 1) 的切 与x 的交点的横坐 x n1 2n的, x ?x ?⋯?x( )A .B .C .D .1考点 : 利用 数研究曲 上某点切 方程;直 的斜率. : 算 ; . 剖析:欲判 x 1?x 2?⋯?x n 的 ,只 求出切 与x 的交点的横坐 即可,故先利用 数求出在 x=1 的 函数 ,再 合 数的几何意 即可求出切 的斜率.从而 解决.n+1*n解答: 解: y=x ( n ∈N )求 得 y ′=( n+1 )x ,令 x=1 得在点( 1,1) 的切 的斜率 k=n+1 ,在点( 1, 1) 的切 方程 y 1=k ( x n 1) =( n+1)( x n 1),不如 y=0,x 1?x 2?x 3⋯?x n = × × ,故 B .点 :本小 主要考 直 的斜率、利用 数研究曲 上某点切 方程、数列等基 知 ,考 运算求解能力、化 与 化思想.属于基 .高中数学导数尖子生指导(解答题)一.解答 (共30 小 )21.( 2014?遵 二模) 函数 f ( x ) =x +aln ( 1+x )有两个极 点x 1、x 2,且 x 1< x 2,( Ⅱ ) 明: f ( x 2)>.考点 : 利用 数研究函数的极 ;利用 数研究函数的 性;不等式的 明. : 算 ; 明 ; .剖析: ( 1)先确立函数的定 域而后求 数f ( x ),令g ( x )=2x 2+2x+a ,由 意知 x 1、 x 2 是方程 g ( x ) =0 的 两个均大于 1 的不相等的 根,成立不等关系解之即可,在函数的定 域内解不等式f ( x )> 0 和 f ( x )< 0,求出 区 ;( 2)x 2 是方程 g ( x ) =0 的根,将 a 用 x 2 表示,消去 a 获得对于 x 2 的函数,研究函数的 性求出函数的最大 ,即可 得不等式.解答:解:( I )令 g ( x )=2x2,其 称 .+2x+a由 意知x 1、 x 2 是方程 g ( x )=0 的两个均大于1 的不相等的 根,其充要条件,得( 1)当 x ∈( 1,x 1) , f'( x )> 0,∴ f ( x )在( 1, x 1)内 增函数; ( 2)当 x ∈( x 1, x 2) , f'(x )< 0, ∴f (x )在( x 1 ,x 2)内 减函数;( 3)当 x ∈( x 2, +∞) , f' ( x )> 0, ∴ f ( x )在( x 2, +∞)内 增函数;( II )由( I ) g ( 0) =a > 0, ∴,a= ( 2x222+2x )222∴ f ( x 2) =x 2 +aln ( 1+x 2) =x 2( 2x 2+2x 2) ln (1+x 2),h'( x ) =2x 2(2x+1 )ln ( 1+x ) 2x= 2( 2x+1 ) ln ( 1+x )( 1)当, h'(x )> 0,∴ h ( x )在 增;( 2)当 x ∈( 0, +∞) , h'( x )< 0, h (x )在( 0, +∞) 减. ∴故 .点 : 本 主要考 了利用 数研究函数的 性,以及利用 数研究函数的极 等相关知 ,属于基 .2﹣x2.( 2014?武汉模拟)己知函数 f ( x) =x e(Ⅰ)求 f ( x)的极小值和极大值;(Ⅱ)当曲线 y=f ( x)的切线 l 的斜率为负数时,求l 在 x 轴上截距的取值范围.考点:利用导数研究函数的极值;依据实质问题选择函数种类;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转变思想;导数的综合应用.剖析:(Ⅰ )利用导数的运算法例即可得出f′( x),利用导数与函数单一性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ )利用导数的几何意义即可获得切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单一性、极值、最值即可.2 ﹣ x﹣x 2 ﹣ x ﹣ x2解答:解:(Ⅰ)∵ f( x) =x e,∴ f′( x) =2xe﹣ x e =e( 2x﹣ x ),令f′( x)=0 ,解得 x=0 或 x=2 ,令f′( x)> 0,可解得 0<x< 2;令 f′( x)< 0,可解得 x< 0 或 x> 2,故函数在区间(﹣∞, 0)与( 2,+∞)上是减函数,在区间( 0, 2)上是增函数.∴ x=0 是极小值点, x=2 极大值点,又f( 0) =0, f ( 2)=.故 f( x)的极小值和极大值分别为0,.( II )设切点为(),则切线方程为y﹣=(x﹣x0),令 y=0 ,解得 x==,因为曲线y=f ( x)的切线 l 的斜率为负数,∴(<0,∴ x0<0或x0>2,令,则=.①当 x0< 0 时,0,即 f′( x0)> 0,∴ f( x0)在(﹣∞, 0)上单一递加,∴ f(x0)< f( 0) =0;② 当x0> 2 时,令f′( x0) =0,解得.当时, f′( x0)> 0,函数 f ( x0)单一递加;当时, f ′( x0)< 0,函数f( x0)单一递减.故当时,函数f( x0)获得极小值,也即最小值,且=.综上可知:切线l 在 x 轴上截距的取值范围是(﹣∞,0)∪.评论:本题考察利用导数求函数的极值与利用导数研究函数的单一性、切线、函数的值域,综合性强,考察了推理能力和计算能力.3.( 2014?四川模拟)已知函数 f ( x) =lnx+x 2.( Ⅰ )若函数 g ( x ) =f ( x )﹣ ax 在其定义域内为增函数,务实数 a 的取值范围;( Ⅱ )在( Ⅰ )的条件下,若 a > 1, h ( x ) =e 3x ﹣ 3ae xx ∈[0, ln2] ,求 h ( x )的极小值;( Ⅲ )设 F ( x )=2f ( x )﹣ 3x 2﹣kx ( k ∈R ),若函数 F ( x )存在两个零点 m ,n ( 0< m <n ),且 2x 0=m+n .问:函数 F ( x )在点( x 0 ,F ( x 0))处的切线可否平行于x 轴?若能,求出该切线方程;若不可以,请说明原因.考点 : 函数的单一性与导数的关系;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题 : 计算题;压轴题;导数的观点及应用.剖析:( Ⅰ )先依据题意写出: g (x )再求导数, 由题意知, g ′( x )≥0,x ∈( 0,+∞)恒成立, 即由此即可求得实数 a 的取值范围;( Ⅱ )由( Ⅰ )知,利用换元法律t=e x ,则 t ∈[1,2] ,则 h ( t )=t 3﹣ 3at ,接下来利用导数研究 此函数的单一性,从而得出h (x )的极小值;( Ⅲ )对于可否问题,可先假定能,即设F (x )在( x 0,F ( x 0))的切线平行于 x 轴,此中 F ( x ) =2lnx﹣ x 2﹣ kx 联合题意,列出方程组,证得函数在( 0,1)上单一递加,最后出现矛盾,说明假定不行立,即切线不行否平行于x轴.解答:解:( Ⅰ ) g ( x ) =f ( x )﹣ ax=lnx+x 2﹣ax ,由题意知, g ′(x ) ≥0,对随意的x ∈( 0, +∞)恒成立,即又 ∵ x > 0,,当且仅当 时等号成立∴,可得( Ⅱ )由( Ⅰ )知,,令 t=e x,则 t ∈[1,2] ,则h ( t ) =t 3﹣3at ,由 h ′(t )=0,得或(舍去),∵ , ∴若 ,则 h ′( t )< 0,h ( t )单一递减;若 ,则 h ′( t )> 0, h ( t )单一递加∴ 当时, h ( t )获得极小值,极小值为x 轴,此中 F (x ) =2lnx ﹣ x 2﹣kx( Ⅲ )设 F ( x )在( x 0, F ( x 0))的切线平行于联合题意,有① ﹣ ② 得所以,由 ④ 得所以。
导数综合练习题压轴(含详细答案)精华

27
2.(本小题满分 12 分)
已知函数 f ( x) a ln x ax 3(a
( I)求函数 f (x) 的单调区间;
R) .
………… ( 12 分)
( II )函数 f (x) 的图象的在 x 4 处切线的斜率为 3 , 若函数 g( x) 1 x3 x 2[ f ' ( x)
2
3
3)上不是单调函数,求 m 的取值范围.
2.(本小题满分 12 分)
已知函数 f ( x) a ln x ax 3(a
( I)求函数 f (x) 的单调区间;
R) .
( II )函数 f (x) 的图象的在 x
4 处切线的斜率为
3 , 若函数 g( x)
1 x3
x 2[ f ' ( x)
m ] 在区间( 1,
2
3
2
3)上不是单调函数,求 m 的取值范围.
4.(本小题满分 12 分) 已知常数 a 0 , e 为自然对数的底数,函数
f ( x) ex x , g( x) x 2 a ln x .
( I )写出 f ( x) 的单调递增区间,并证明 ea a ;
( II )讨论函数 y g (x) 在区间 (1, ea ) 上零点的个数.
5.(本小题满分 14 分) 已知函数 f ( x) ln( x 1) k( x 1) 1. ( I)当 k 1 时,求函数 f ( x) 的最大值; ( II )若函数 f ( x) 没有零点,求实数 k 的取值范围;
10.(本小题满分 14 分)
已知函数 f ( x) 1 x2 a ln x, g ( x) (a 1)x , a 1. 2
( I )若函数 f (x), g( x) 在区间 [1,3] 上都是单调函数且它们的单调性相同,求实数 ( II )若 a (1, e] ( e 2.71828L ) ,设 F ( x) f ( x) g( x) ,求证:当 x1, x2
导数压轴小题11种题型(1)(解析版)

第8讲 导数和函数压轴小题11类【题型一】 整数解【典例分析】在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .291,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .2294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【分析】将不等式转化为()()22e 21e x x a x ->-,分别研究两个函数的性质,确定a 的取值范围,构造函数,利用放缩法进一步缩小a 的取值范围,列出不等式组,求出结果.【详解】由()2222e e 4e e 4e 0x x x a x a -+++>,化简得:()()22e 21e x x a x ->-,设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式即为()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <,∴原不等式的解集中有无数个大于2的整数,∴0a >.∴()20f =,()22e 0g a =>,∴()()22f g <.当()()33f g ≤,即12e a ≥时,设()()()()4h x f x g x x =-≥,则()()()22e 2e 2e 2e 22e x x x h x x ax x '=--≤--. 设()()()2e 2e 242e x x x x x ϕ=--≥,则()()21e 2e 2exx x ϕ+'=-在[)3,+∞单调递减,所以()()()21e 2e302ex x x ϕϕ+''=-≤=,所以()()2e 2e 22ex x x x ϕ=--在[)4,+∞单调递减,∴()()()242e 2e 0x ϕϕ≤=-<,∴当4x ≥时,()0h x '<,∴()h x 在[]4,+∞上为减函数,即()()2423e 44e 3e e 402h x h a ⎛⎫≤=-≤-< ⎪⎝⎭,∴当4x ≥时,不等式()()f x g x <恒成立,∴原不等式的解集中没有大于2的整数.∴要使原不等式的解集中有且仅有两个大于2的整数,则{f (3)>g (3)f (4)>g (4)f (5)≤g (5),即{e 2>2a e 34e 2>3a e 49e 2≤4a e 5,解得22944e 3ea ≤<.则实数a 的取值范围为2294,4e 3e ⎡⎫⎪⎢⎣⎭.故选:D【变式演练】1.已知函数()()1xf x a x e x =+-,若存在唯一的正整数0x ,使得()00f x <,则实数a 的取值范围是( )A .313,24e e ⎡⎫-⎪⎢⎣⎭B .2332,43e e ⎡⎫⎪⎢⎣⎭C .221,32e e ⎡⎫⎪⎢⎣⎭D .11,22e ⎡⎫⎪⎢⎣⎭【答案】C 【分析】题意等价于存在唯一的正整数0x 使得不等式()1xx a x e +<成立,求出函数()x xg x e =的单调区间,直线()1y a x =+过定点()1,0-,作出函数()xxg x e =和直线()1y a x =+图像,结合图形列出不等式组化简即可. 解:函数()()1xf x a x e x =+-,若存在唯一的正整数0x ,使得()00f x <。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.导数压轴选择题精编(1)一.选择题(共30小题)1.(2014•郑州模拟)曲线在点处的切线与坐标轴围成的三角形面积为()A.B. C. D.2.(2008•辽宁)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0] C.[0,1] D.[,1]3.(2014•武侯区校级模拟)已知函数的两个极值分别为f(x1),f(x2),若x1,x2分别在区间(0,1)与(1,2)内,则的取值范围是()A.B.(﹣∞,)∪(1,+∞)C.D.4.(2015•上饶一模)函数的大致图象为()A. B. C.D.5.(2012•芜湖二模)已知函数f(x)=4﹣x2,g(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,当x>0时,g (x)=log2x,则函数y=f(x)•g(x)的大致图象为()A.B.C.D.6.(2012•安庆二模)函数f(x)的图象如图所示,已知函数F(x)满足F′(x)=f(x),则F(x)的函数图象可能是()A.B.C.D.7.(2012•喀什市校级模拟)已知函数y=f(x)的导函数的图象如图甲所示,则y=f(x)的图象可能是()A.B. C.D.8.(2011•广东模拟)如图,正方形ABCD的顶点,,顶点C,D位于第一象限,直线t:x=t(0≤t≤)将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数s=f(t)的图象大致是()A.B.C.D.9.(2010•九江二模)已知函数y=f(x)的定义域是R,若对于任意的正数a,函数g(x)=f(x)﹣f(x﹣a)都是其定义域上的增函数,则函数y=f(x)的图象可能是()A.B.C.D.10.(2009•安徽)设a<b,函数y=(x﹣a)2(x﹣b)的图象可能是()A.B.C.D.11.(2012•浙江模拟)下列四个函数图象,只有一个是符合y=|k1x+b1|+|k2x+b2|﹣|k3x+b3|(其中k1,k2,k3为正实数,b1,b2,b3为非零实数)的图象,则根据你所判断的图象,k1,k2,k3之间一定成立的关系是()A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3 D.k1+k2<k312.(2014•合肥校级模拟)函数的图象经过四个象限,则实数a的取值范围是()A.B.C.D.13.(2011•湖南)曲线在点M(,0)处的切线的斜率为()A.B. C. D.14.(2012•辽宁)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为()A.1 B.3 C.﹣4 D.﹣815.(2014•蚌埠二模)已知f(x)为R上的可导函数,且对∀x∈R,均有f(x)>f′(x),则有()A.e2013f(﹣2013)<f(0),f(2013)<e2013f(0)B.e2013f(﹣2013)<f(0),f(2013)>e2013f(0)C.e2013f(﹣2013)>f(0),f(2013)<e2013f(0)D.e2013f(﹣2013)>f(0),f(2013)>e2013f(0)16.(2014•通州区二模)直线x=t(t>0)与函数f(x)=x2+1,g(x)=lnx的图象分别交于A、B两点,当|AB|最小时,t值是()A.1 B.C. D.17.(2012•辽宁)设函数f(x)(x∈R)满足f(﹣x)=f (x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)﹣f(x)在上的零点个数为()A.5 B.6 C.7 D.818.(2012•湖北)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.719.(2012•市中区校级模拟)已知函数f(x)=+cx (a>0),记g(x)为f(x)的导函数,若f(x)在R上存在反函数,且b>0,则的最小值为()A.4 B. C.2 D.20.(2012•莱城区校级模拟)已知函数f(x)=x3+ax2+2bx+c(a,b,c∈R),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围()A.(,2)B.(,4)C.(1,2)D.(1,4)21.(2011•沈阳校级模拟)若函数f(x)=x3﹣12x在区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围()A.k≤﹣3或﹣1≤k≤1或k≥3B.﹣3<k<﹣1或1<k<3C.﹣2<k<2 D.不存在这样的实数k 22.(2009•江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于()A.﹣1或 B.﹣1或C.或D.或7 23.(2005•东城区一模)设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)﹣f(x)g′(x)>0,则当a<x<b时有()A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x)D.f(x)g(x)>f(a)g(a)24.(2002•北京)如图所示,f1(x),f2(x),f3(x),f4(x)是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x1和x2,恒成立”的只有()A.f1(x),f3(x)B.f2(x) C.f2(x),f3(x)D.f4(x)25.(2012•辽宁)若x∈[0,+∞),则下列不等式恒成立的是()A.e x≤1+x+x2B.C.D.26.(2012•湖南模拟)已知f(x)=x3+3bx2+3cx有两个极值点x1,x2,且x1∈[﹣1,0],x2∈[1,2],则f(1)的取值范围是()A.(﹣10,﹣] B.[﹣,﹣] C.[﹣10,﹣] D.[﹣,10]27.(2011•萧山区模拟)已知f(x)是定义在(e,+∞)的可导函数,且对于任意的x都有xf'(x)>f(x)>0,给出下列不等式:①f(a)>f(e);②f(a)<f(e);③f (a)>lna•f(e);④f(a)<lna•f(e)其中一定成立的是()A.①③ B.①④C.②③D.②④28.(2013•江西)如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s 的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f (t)的图象大致为()A.B.C.D.29.(2010•江西)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S′(t)的图象大致为()A.B.C.D.30.(2009•安徽)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是()A.[﹣2,2] B.[,] C.[,2] D.[,2]7.导数压轴选择题精编(1)参考答案与试题解析一.选择题(共30小题)1.(2014•郑州模拟)曲线在点处的切线与坐标轴围成的三角形面积为()A.B. C. D.【考点】导数的几何意义.菁优网版权所有【专题】压轴题.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.【点评】函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y﹣y0=f′(x0)(x﹣x0)2.(2008•辽宁)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是,则点P横坐标的取值范围是()A.B.[﹣1,0] C.[0,1] D.[,1]【考点】导数的几何意义.菁优网版权所有【专题】压轴题.【分析】根据题意知,倾斜角的取值范围,可以得到曲线C 在点P处斜率的取值范围,进而得到点P横坐标的取值范围.【解答】解:设点P的横坐标为x0,∵y=x2+2x+3,∴y′=2x 0+2,利用导数的几何意义得2x0+2=tanα(α为点P处切线的倾斜角),又∵,∴0≤2x0+2≤1,∴.故选:A.【点评】本小题主要考查利用导数的几何意义求切线斜率问题.3.(2014•武侯区校级模拟)已知函数的两个极值分别为f(x1),f(x2),若x1,x2分别在区间(0,1)与(1,2)内,则的取值范围是()A.B.(﹣∞,)∪(1,+∞)C.D.【考点】函数在某点取得极值的条件.菁优网版权所有【专题】压轴题;数形结合.【分析】先根据导函数的两个根的分布建立a、b的约束条件,而可看作点P(1,2)与阴影部分内一点(a,b)连线的斜率,由此问题转化为线性规划求范围问题,然后利用线性规划的方法求出目标函数的取值范围即可.【解答】解:∵函数∴f′(x)=x2+ax+2b=0的两个根为x1,x2,∵x1,x2分别在区间(0,1)与(1,2)内∴⇒画出区域如图,而可看作点P(1,2)与阴影部分内一点(a,b)连线的斜率,如图绿色线即为符合条件的直线的边界,M,N两个点为边界处的点,当连线过M(﹣3,1)时,,当连线过N(﹣1,0)时,,由图知∈.故选C.【点评】本题主要考查了利用导数研究函数的极值,以及利用线性规划的知识解题,属于基础题.4.(2015•上饶一模)函数的大致图象为()A. B. C.D.【考点】函数的图象;指数函数的图像与性质.菁优网版权所有【专题】压轴题;数形结合.【分析】观察题设中的函数表达式,应该以1为界来分段讨论去掉绝对值号,化简之后再分段研究其图象.【解答】解:由题设条件,当x≥1时,f(x)=﹣(x ﹣)=当x<1时,f(x)=﹣(﹣x)=﹣(﹣x)=x故f(x)=,故其图象应该为综上,应该选D【点评】本题考查绝对值函数图象的画法,一般要先去掉绝对值号转化成分段函数再分段做出图象.5.(2012•芜湖二模)已知函数f(x)=4﹣x2,g(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,当x>0时,g (x)=log2x,则函数y=f(x)•g(x)的大致图象为()A.B.C.D.【考点】函数的图象;函数奇偶性的性质.菁优网版权所有【专题】压轴题;数形结合.【分析】由已知中函数f(x)=4﹣x2,当x>0时,g(x)=log2x,我们易判断出函数在区间(0,+∞)上的形状,再根据函数奇偶性的性质,我们根据“奇×偶=奇”,可以判断出函数y=f(x)•g(x)的奇偶性,进而根据奇函数图象的特点得到答案.【解答】解:∵函数f(x)=4﹣x2,是定义在R上偶函数g(x)是定义在(﹣∞,0)∪(0,+∞)上的奇函数,故函数y=f(x)•g(x)为奇函数,共图象关于原点对称,故A,C不正确又∵函数f(x)=4﹣x2,当x>0时,g(x)=log2x,故当0<x<1时,y=f(x)•g(x)<0;当1<x<2时,y=f(x)•g(x)>0;当x>2时,y=f(x)•g(x)<0;故D不正确故选B【点评】本题考查的知识点是函数的图象和函数奇偶性质的性质,在判断函数的图象时,分析函数的单调性,奇偶性,特殊点是最常用的方法.6.(2012•安庆二模)函数f(x)的图象如图所示,已知函数F(x)满足F′(x)=f(x),则F(x)的函数图象可能是()A.B.C.D.【考点】函数的单调性与导数的关系.菁优网版权所有【专题】压轴题;导数的概念及应用.【分析】先根据导函数f'(x)的图象得到f'(x)的取值范围,从而得到原函数的斜率的取值范围,从而得到正确选项.【解答】解:由图可得﹣1<f'(x)<1,即F(x)图象上每一点切线的斜率k∈(﹣1,1)且在R上切线的斜率的变化先慢后快又变慢,结合选项可知选项B符合故选B.【点评】本题主要考查了导数的几何意义,同时考查了识图能力,属于基础题.7.(2012•喀什市校级模拟)已知函数y=f(x)的导函数的图象如图甲所示,则y=f(x)的图象可能是()A.B. C.D.【考点】函数的单调性与导数的关系;函数的图象.菁优网版权所有【专题】作图题;压轴题.【分析】先根据导函数的正负与原函数的单调性之间的关系结合导函数的图象判断出函数f(x)的单调性是先增后减,然后观察选项ABCD满足条件的只有D,得到答案.【解答】解:根据函数y=f(x)的导函数的图象可知导函数是先正后负∴原函数y=f(x)应该是先增后减的过程根据选项中的函数f(x)的单调性知选D故选D.【点评】本题主要考查导函数的正负与原函数的增减性的关系﹣﹣导函数小于0时原函数单调递减,导函数大于0时原函数单调递增.8.(2011•广东模拟)如图,正方形ABCD的顶点,,顶点C,D位于第一象限,直线t:x=t(0≤t≤)将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数s=f(t)的图象大致是()A.B.C.D.【考点】函数的图象.菁优网版权所有【专题】压轴题;分类讨论.【分析】由f(t)表示位于直线l左侧阴影部分的面积,结合已知条件我们可以得到函数s=f(t)是一个分段函数,而且分为两段,分段点为t=,分析函数在两段上的数量关系,不难求出函数的解析式,根据解析式不难得到函数的图象.【解答】解:依题意得s=f(t)=,分段画出函数的图象可得图象如C所示故选C.【点评】画分段函数的图象,要分如下几个步骤:①分析已知条件,以确定函数所分的段数及分类标准②根据题目中的数量关系,分析函数各段的解析式③对前面的分类进行总结,写出分段函数的解析式④由解析式用描点法,分段画出函数的图象.9.(2010•九江二模)已知函数y=f(x)的定义域是R,若对于任意的正数a,函数g(x)=f(x)﹣f(x﹣a)都是其定义域上的增函数,则函数y=f(x)的图象可能是()A.B.C.D.【考点】函数的单调性与导数的关系;指数函数的图像与性质.菁优网版权所有【专题】压轴题;数形结合.【分析】直接利用g(x)是增函数⇒导数大于0⇒f(x)的导数是增函数⇒f(x)是凹函数即可得到答案.【解答】解:由于g(x)是增函数,所以它的导数大于0,也就是说f(x)的导数是增函数,所以f(x)的二阶导大于0,所以f(x)是凹函数,故选A.【点评】本题主要考查导数的定义以及函数的单调性与导函数之间的关系.这是一道考查导数定义的好题.10.(2009•安徽)设a<b,函数y=(x﹣a)2(x﹣b)的图象可能是()A.B.C.D.【考点】函数的图象.菁优网版权所有【专题】压轴题;数形结合.【分析】根据解析式判断y的取值范围,再结合四个选项中的图象位置即可得出正确答案.【解答】解:由题,=(x﹣a)2的值大于等于0,故当x>b时,y>0,x<b时,y≤0.对照四个选项,C选项中的图符合故选C.【点评】本题考查了高次函数的图象问题,利用特殊情况x >b,x<b时y的符号变化确定比较简单.11.(2012•浙江模拟)下列四个函数图象,只有一个是符合y=|k1x+b1|+|k2x+b2|﹣|k3x+b3|(其中k1,k2,k3为正实数,b1,b2,b3为非零实数)的图象,则根据你所判断的图象,k1,k2,k3之间一定成立的关系是()A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3 D.k1+k2<k3【考点】函数的图象;直线的斜率.菁优网版权所有【专题】压轴题;图表型.【分析】由于k1,k2,k3为正实数,考虑当x足够小时和当x足够大时的情形去掉绝对值符号,转化为关于x的一次函数,通过观察直线的斜率特征即可进行判断.【解答】解:当x足够小时y=﹣(k1+k2﹣k3)x﹣(b1+b2﹣b3)当x足够大时y=(k1+k2﹣k3)x+(b1+b2﹣b3)可见,折线的两端的斜率必定为相反数,此时只有③符合条件.此时k1+k2﹣k3=0.故选A.【点评】本小题主要考查函数图象的应用、直线的斜率等基础知识,考查数形结合思想、化归与转化思想、极限思想.属于基础题.12.(2014•合肥校级模拟)函数的图象经过四个象限,则实数a的取值范围是()A.B.C.D.【考点】函数在某点取得极值的条件.菁优网版权所有【专题】压轴题.【分析】求函数的极值,要使图象经过四个象限只要两极值符号不同【解答】解:f′(x)=ax2+ax﹣2a=a(x+2)(x﹣1)令f′(x)=a(x+2)(x﹣1)=0得x=﹣2或x=1x∈(﹣∞,﹣2)时f′(x)的符号与x∈(﹣2,1)时f′(x)的符号相反,x∈(﹣2,1)时f′(x)的符号与x∈(1,+∞)时f′(x)的符号相反∴f(﹣2)==和f(1)==为极值,∵图象经过四个象限∴f(﹣2)•f(1)<0即()()<0解得故答案为B【点评】本题考查导数求函数的极值,及函数的单调性及其图象13.(2011•湖南)曲线在点M(,0)处的切线的斜率为()A.B. C. D.【考点】利用导数研究曲线上某点切线方程.菁优网版权所有【专题】计算题;压轴题.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x=处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x==|x==故选B.【点评】本题主要考查了导数的几何意义,以及导数的计算,同时考查了计算能力,属于基础题.14.(2012•辽宁)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为()A.1 B.3 C.﹣4 D.﹣8【考点】利用导数研究曲线上某点切线方程.菁优网版权所有【专题】计算题;压轴题.【分析】首先可求出P(4,8),Q(﹣2,2),然后根据导数的几何意义求出切线方程AP,AQ的斜率K AP,K AQ,再根据点斜式写出切线方程,然后联立方程即可求出点A的纵坐标.【解答】解:∵P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,﹣2,∴P(4,8),Q(﹣2,2),∵x2=2y,∴y=,∴y′=x,∴切线方程AP,AQ的斜率K AP=4,K AQ=﹣2,∴切线方程AP为y﹣8=4(x﹣4),即y=4x﹣8,切线方程AQ的为y﹣2=﹣2(x+2),即y=﹣2x﹣2,令,∴,∴点A的纵坐标为﹣4.故选:C.【点评】本题主要考查了利用导数的几何意义求出切线方程,属常考题,较难.解题的关键是利用导数的几何意义求出切线方程AP,AQ的斜率K AP,K AQ.15.(2014•蚌埠二模)已知f(x)为R上的可导函数,且对∀x∈R,均有f(x)>f′(x),则有()A.e2013f(﹣2013)<f(0),f(2013)<e2013f(0)B.e2013f(﹣2013)<f(0),f(2013)>e2013f(0)C.e2013f(﹣2013)>f(0),f(2013)<e2013f(0)D.e2013f(﹣2013)>f(0),f(2013)>e2013f(0)【考点】导数的运算.菁优网版权所有【专题】压轴题;导数的概念及应用.【分析】根据题目给出的条件:“f(x)为R上的可导函数,且对∀x∈R,均有f(x)>f'(x)”,结合给出的四个选项,设想寻找一个辅助函数g(x)=,这样有以e为底数的幂出现,求出函数g(x)的导函数,由已知得该导函数大于0,得出函数g(x)为减函数,利用函数的单调性即可得到结论.【解答】解:令,则,因为f(x)>f'(x),所以g′(x)<0,所以函数g(x)为R上的减函数,所以g(﹣2013)>g(0),即,所以e2013f(﹣2013)>f(0),,所以f(2013)<e2013f(0).故选C.【点评】本题考查了导数的运算,由题目给出的条件结合选项去分析函数解析式,属逆向思维,属中档题.16.(2014•通州区二模)直线x=t(t>0)与函数f(x)=x2+1,g(x)=lnx的图象分别交于A、B两点,当|AB|最小时,t值是()A.1 B.C. D.【考点】导数在最大值、最小值问题中的应用;两点间距离公式的应用.菁优网版权所有【专题】压轴题.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx+1,求导数得y′=2x﹣=当0<x<时,y′<0,函数在(0,)上为单调减函数,当x>时,y′>0,函数在(,+∞)上为单调增函数所以当x=时,所设函数的最小值为+ln2,所求t的值为.故选B.【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.17.(2012•辽宁)设函数f(x)(x∈R)满足f(﹣x)=f (x),f(x)=f(2﹣x),且当x∈[0,1]时,f(x)=x3.又函数g(x)=|xcos(πx)|,则函数h(x)=g(x)﹣f(x)在上的零点个数为()A.5 B.6 C.7 D.8【考点】利用导数研究函数的极值;根的存在性及根的个数判断.菁优网版权所有【专题】计算题;压轴题;数形结合.【分析】利用函数的奇偶性与函数的解析式,求出x∈[0,],x∈[]时,g(x)的解析式,推出f(0)=g(0),f(1)=g(1),g()=g()=0,画出函数的草图,判断零点的个数即可.【解答】解:因为当x∈[0,1]时,f(x)=x3.所以当x∈[1,2]时2﹣x∈[0,1],f(x)=f(2﹣x)=(2﹣x)3,当x∈[0,]时,g(x)=xcos(πx),g′(x)=cos(πx)﹣πxsin(πx);当x∈[]时,g(x)=﹣xcosπx,g′(x)=πxsin(πx)﹣cos(πx).注意到函数f(x)、g(x)都是偶函数,且f(0)=g(0),f(1)=g(1)=1,f(﹣)=f()=,f()=(2﹣)2=,g(﹣)=g()=g()=0,g(1)=1,g′(1)=1>0,根据上述特征作出函数f(x)、g(x)的草图,函数h(x)除了0、1这两个零点之外,分别在区间[﹣,0],[0,],[,1],[1,]上各有一个零点.共有6个零点,故选B【点评】本题主要考查函数的奇偶性、对称性、函数的零点,考查转化能力、运算求解能力、推理论证能力以及分类讨论思想、数形结合思想,难度较大.18.(2012•湖北)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.7【考点】利用导数研究函数的极值;函数的零点与方程根的关系.菁优网版权所有【专题】计算题;压轴题.【分析】令函数值为0,构建方程,即可求出在区间[0,4]上的解,从而可得函数f(x)=xcosx2在区间[0,4]上的零点个数【解答】解:令f(x)=0,可得x=0或cosx2=0∴x=0或x2=,k∈Z∵x∈[0,4],则x2∈[0,16],∴k可取的值有0,1,2,3,4,∴方程共有6个解∴函数f(x)=xcosx2在区间[0,4]上的零点个数为6个故选C【点评】本题考查三角函数的周期性以及零点的概念,属于基础题19.(2012•市中区校级模拟)已知函数f(x)=+cx (a>0),记g(x)为f(x)的导函数,若f(x)在R上存在反函数,且b>0,则的最小值为()A.4 B. C.2 D.【考点】利用导数研究函数的单调性;反函数;导数的运算.菁优网版权所有【专题】压轴题.【分析】求出原函数的导函数g(x)=ax2+bx+c,根据f(x)在R上存在反函数,又由a>0,可知导函数大于等于0恒成立,由判别式小于等于0得到a,b,c的关系,即c≥,把求出后利用c≥去掉c,然后利用基本不等式求其最小值.【解答】解:由函数f(x)=+cx(a>0),得g(x)=f′(x)=ax2+bx+c (a>0),∵f(x)在R上存在反函数,∴g(x)≥0对于x∈(﹣∞,+∞)恒成立,又函数g(x)的对称轴方程为x=﹣,且对应的图象开口向上,∴,即b2≤4ac.∵a>0,b>0,∴c≥.由g(x)=ax2+bx+c,g′(x)=2ax+b.∴=.∴的最小值为4.故选:A.【点评】本小题主要考查函数单调性的应用、反函数及导数的运算,训练了利用基本不等式求最值,是中档题.20.(2012•莱城区校级模拟)已知函数f(x)=x3+ax2+2bx+c(a,b,c∈R),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围()A.(,2)B.(,4)C.(1,2)D.(1,4)【考点】函数在某点取得极值的条件.菁优网版权所有【专题】压轴题.【分析】据极大值点左边导数为正右边导数为负,极小值点左边导数为负右边导数为正得a,b的约束条件,据线性规划求出最值.【解答】解:∵f(x)=∴f′(x)=x2+ax+2b∵函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值∴f′(x)=x2+ax+2b=0在(0,1)和(1,2)内各有一个根f′(0)>0,f′(1)<0,f′(2)>0即(a+3)2+b2表示点(a,b)到点(﹣3,0)的距离的平方,由图知(﹣3,0)到直线a+b+2=0的距离,平方为为最小值,由得(﹣3,1)(﹣3,0)与(﹣3,1)的距离为1,(﹣3,0)与(﹣1,0)的距离2,所以z=(a+3)2+b2的取值范围为()故选项为B【点评】本题考查函数极值存在条件及线性规划求最值.21.(2011•沈阳校级模拟)若函数f(x)=x3﹣12x在区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围()A.k≤﹣3或﹣1≤k≤1或k≥3B.﹣3<k<﹣1或1<k<3C.﹣2<k<2 D.不存在这样的实数k【考点】函数的单调性与导数的关系.菁优网版权所有【专题】计算题;压轴题.【分析】由题意得,区间(k﹣1,k+1)内必须含有函数的导数的根2或﹣2,即k﹣1<2<k+1或k﹣1<﹣2<k+1,从而求出实数k的取值范围.【解答】解:由题意得,f′(x)=3x2﹣12 在区间(k﹣1,k+1)上至少有一个实数根,而f′(x)=3x2﹣12的根为±2,区间(k﹣1,k+1)的长度为2,故区间(k﹣1,k+1)内必须含有2或﹣2.∴k﹣1<2<k+1或k﹣1<﹣2<k+1,∴1<k<3 或﹣3<k<﹣1,故选B.【点评】本题考查函数的单调性与导数的关系,函数在区间上不是单调函数,则函数的导数在区间上有实数根.22.(2009•江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于()A.﹣1或 B.﹣1或C.或D.或7 【考点】导数的几何意义.菁优网版权所有【专题】压轴题.【分析】已知点(1,0)不在曲线y=x3上,容易求出过点(1,0)的直线与曲线y=x3相切的切点的坐标,进而求出切线所在的方程;再利用切线与y=ax2+x﹣9相切,只有一个公共点,两个方程联立,得到二元一次方程,利用判别式为0,解出a的值.【解答】解:由y=x3⇒y'=3x2,设曲线y=x3上任意一点(x0,x03)处的切线方程为y﹣x03=3x02(x﹣x0),(1,0)代入方程得x0=0或①当x0=0时,切线方程为y=0,此直线是y=x3的切线,故仅有一解,由△=0,解得a=﹣②当时,切线方程为,由,∴a=﹣1或a=.故选A【点评】熟练掌握导数的几何意义,本题是直线与曲线联立的题,若出现形如y=ax2+bx+c的式子,应讨论a是否为0.23.(2005•东城区一模)设f(x),g(x)是定义在R上的恒大于零的可导函数,且满足f′(x)g(x)﹣f(x)g′(x)>0,则当a<x<b时有()A.f(x)g(x)>f(b)g(b)B.f(x)g(a)>f(a)g(x)C.f(x)g(b)>f(b)g(x)D.f(x)g(x)>f(a)g(a)【考点】导数的乘法与除法法则.菁优网版权所有【专题】证明题;压轴题.【分析】根据f′(x)g(x)﹣f(x)g′(x)>0知故函数在R上为单调增函数,则当a<x<b,有在根据f(x),g(x)是定义在R上的恒大于零的可导函数即可得到f(x)g(a)>f(a)g(x)【解答】解:∵f′(x)g(x)﹣f(x)g′(x)>0∴∴函数在R上为单调增函数∵a<x<b∴∵f(x),g(x)是定义在R上的恒大于零的可导函数∴f(x)g(a)>f(a)g(x)故选B【点评】本题考查了导数的乘法与除法法则,简单的不等式知识,此题的关键在于构造函数,判断出函数的单调性,从而解决问题,属于基础题.24.(2002•北京)如图所示,f1(x),f2(x),f3(x),f4(x)是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x1和x2,恒成立”的只有()A.f1(x),f3(x)B.f2(x) C.f2(x),f3(x)D.f4(x)【考点】函数的图象.菁优网版权所有【专题】常规题型;作图题;压轴题.【分析】此题考查的是函数图象的应用问题.在解答时,应先充分结合条件:“对[0,1]中任意的x1和x2,恒成立”分析函数的凸凹性,进而根据具体的变化规律作出判断.【解答】解:由题意可知:函数f(x)满足性质:“对[0,1]中任意的x1和x2,恒成立”.∴函数图象在[0,1]上为下凹函数,有所给图象可知:B:为上凸函数、C为线性函数、D为先凹后凸的函数;故全部不符合题意.从而只有A适合下凹的性质.故选A.【点评】此题考查的是函数图象的应用问题.在解答的过程当中充分体现了隐含条件的挖掘、数形结合的思想以及问题转化的能力.值得同学们体会反思.25.(2012•辽宁)若x∈[0,+∞),则下列不等式恒成立的是()A.e x≤1+x+x2B.C.D.【考点】导数在最大值、最小值问题中的应用.菁优网版权所有【专题】综合题;压轴题.【分析】对于A,取x=3,e3>1+3+32,;对于B,令x=1,,计算可得结论;对于C,构造函数,h′(x)=﹣sinx+x,h″(x)=cosx+1≥0,从而可得函数在[0,+∞)上单调增,故成立;对于D,取x=3,.【解答】解:对于A,取x=3,e3>1+3+32,所以不等式不恒成立;对于B,x=1时,左边=,右边=0.75,不等式成立;x=时,左边=,右边=,左边大于右边,所以x∈[0,+∞),不等式不恒成立;对于C,构造函数,h′(x)=﹣sinx+x,h″(x)=﹣cosx+1≥0,∴h′(x)在[0,+∞)上单调增∴h′(x)≥h′(0)=0,∴函数在[0,+∞)上单调增,∴h(x)≥0,∴;对于D,取x=3,,所以不等式不恒成立;故选C.【点评】本题考查大小比较,考查构造函数,考查导数知识的运用,确定函数的单调性是解题的关键.26.(2012•湖南模拟)已知f(x)=x3+3bx2+3cx有两个极值点x1,x2,且x1∈[﹣1,0],x2∈[1,2],则f(1)的取值范围是()A.(﹣10,﹣] B.[﹣,﹣] C.[﹣10,﹣] D.[﹣,10]【考点】函数在某点取得极值的条件;简单线性规划.菁优网版权所有【专题】压轴题;导数的综合应用.【分析】根据函数f(x)的极值点的范围,对原函数求导,借助导函数所对应方程根的分布情况,列出对应的不等式组,然后可以直接求解,也可采用取特值排除不适合控制不等式组的选项.【解答】解:由f(x)=x3+3bx2+3cx得f′(x)=3x2+6bx+3c,令f′(x)=0得g(x)=x2+2bx+c=0,∵x1∈[﹣1,0],x2∈[1,2],则又f(1)=1+3b+3c+3(b+c)+1,取f(1)=﹣2,得b+c=﹣1,b=﹣c﹣1,将b=﹣c﹣1分别代入上面不等式中的g (﹣1),g(0),g(1),g(2)得到﹣1≤c≤0有解,说明f(1)=﹣2满足,所以可排除A,D.再取f(1)=﹣8,同理可得控制不等式组有解,故可排除C.故选B.【点评】解题时需明确两点,一是极值点处的导数为0,再就是求导后能正确把导函数所对应方程根的分布情况转化为控制待求系数的不等式组.27.(2011•萧山区模拟)已知f(x)是定义在(e,+∞)的可导函数,且对于任意的x都有xf'(x)>f(x)>0,给出下列不等式:①f(a)>f(e);②f(a)<f(e);③f (a)>lna•f(e);④f(a)<lna•f(e)其中一定成立的是()A.①③ B.①④C.②③D.②④【考点】函数的单调性与导数的关系.菁优网版权所有【专题】压轴题.【分析】先由xf'(x)>f(x)>0,得出f'(x)>.从而确定f'(x)>0,函数f(x)为单调递增函数.最后依据a>e>0,和0<f(e)<f(a),结合不等式的性质即可得出答案.【解答】解:因为xf'(x)>f(x)>0,,所以f'(x)>因为x为正,所以f'(x)>0,函数f(x)为单调递增函数.且a>e>0,所以0<f(e)<f(a),故①正确,②错误;又因为a>e>0,所以af(a)>ef(e)⇒f(a)>f(e)⇒f(a)>lna•f(e),故③正确,④不正确;故选A.【点评】解答本类题目的注意事项主要是利用好函数的单调性与其导函数的正负情况之间的关系.28.(2013•江西)如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s 的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f (t)的图象大致为()A.B.C.D.【考点】函数的图象.菁优网版权所有【专题】计算题;压轴题.【分析】通过t的增加,排除选项A、D,利用x的增加的变化率,说明余弦函数的变化率,得到选项即可.【解答】解:因为当t=0时,x=0,对应y=1,所以选项A,D不合题意,当t由0增加时,x的变化率由大变小,又y=cosx是减函数,所以函数y=f(t)的图象变化先快后慢,所以选项B满足题意,C正好相反.故选B.【点评】本题考查函数图象的变换快慢,考查学生理解题意以及视图能力.29.(2010•江西)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S′(t)的图象大致为()A.B.C.D.【考点】函数的图象.菁优网版权所有【专题】压轴题;创新题型.【分析】本题利用逐一排除的方法进行判断,结合选项根据最初零时刻和最后终点时刻没有变化,导数取零,以及总面积一直保持增加,没有负的改变量,考虑到导数的意义,判断此时面积改变为突变,产生中断进行判定即可.【解答】解:最初零时刻和最后终点时刻没有变化,导数取零,排除C;总面积一直保持增加,没有负的改变量,排除B;考察A、D的差异在于两肩位置的改变是否平滑,考虑到导数的意义,判断此时面积改变为突变,产生中断,选择A.故选A.【点评】本题考查函数图象、导数图、导数的实际意义等知识,重点考查的是对数学的探究能力和应用能力.30.(2009•安徽)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是()A.[﹣2,2] B.[,] C.[,2] D.[,2]【考点】导数的运算.菁优网版权所有【专题】压轴题.【分析】利用基本求导公式先求出f′(x),然后令x=1,求出f′(1)的表达式,从而转化为三角函数求值域问题,求解即可.【解答】解:∵f′(x)=sinθ•x2+cosθ•x,∴f′(1)=sinθ+cosθ=2sin(θ+).∵θ∈[0,],∴θ+∈[,].∴sin(θ+)∈[,1].∴2sin(θ+)∈[,2].故选D.【点评】本题综合考查了导数的运算和三角函数求值域问题,熟记公式是解题的关键.。