有源PFC校正基本原理详细解析

合集下载

pfc的电路工作原理

pfc的电路工作原理

pfc的电路工作原理
PFC(功率因数校正)电路是一种用于改善电源系统功率因数
的装置。

它主要用于交流至直流电源转换过程中,在输入电流与输入电压之间维持恒定的功率因数。

PFC电路的工作原理基于控制电流波形,以使其与输入电压波形保持同步,并在每个交流周期内保持恒定的功率因数。

其基本原理是通过在输入电源上加入电感器和电容器等元件,形成一个滤波器,滤除输入电源中的谐波成分,从而改善功率因数。

具体而言,PFC电路实现功率因数校正的过程如下:
1. 输入电压测量:PFC电路首先测量输入电压的幅值和频率。

2. 输入电压整流:交流输入电压经过整流器将其转换为直流电压,但会引入谐波成分。

3. 调整电流波形:通过在输入电流路径中加入电感器,对电流进行调整,使其与输入电压保持同步,并尽量趋近正弦波形。

4. 集成电路控制:使用集成电路控制器来监测和控制电流波形,以便调整开关频率和占空比,以实现恒定功率因数。

5. 输出滤波:通过连接电容器并使用滤波电路,滤除电流中的高频谐波成分。

通过上述步骤,PFC电路能够在输入电压和电流之间保持恒定
的相位差,从而提高功率因数,减少功率损耗,并提高电能利用率。

这对于电力系统中的各种应用和设备,特别是对于大功率设备和高功率因数要求的设备来说,具有重要意义。

PFC开关电源功率因数校正原理

PFC开关电源功率因数校正原理

PFC开关电源功率因数校正原理PFC开关电源功率因数校正原理一、什么是功率因数补偿,什么是功率因数校正:功率因数的定义为有功功率与视在功率的比值.功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。

图1 在具有感性负载中供电线路中电压和电流的波形常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多.图2 全波整流电压和AC输入电流波形因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降.在正半个周期内(180o),整流二极管的导通角大大小于180o,甚至只有30o~70o.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

功率校正pfc原理说明

功率校正pfc原理说明

有源功率因数校正(APFC)原理说明APFC 基本电路就是一种开关电源,但它与传统的开关电源的区别在于:DC/DC 变换之前没有滤波电容,电压是全波整流器输出的半波正弦脉动电压,这个正弦半波脉动直流电压和整流器的输出电流与输出的负载电压都受到实时的检测与监控,其控制的结果是达到全波整流器输入功率因数近似为 1 。

本次设计采用boost升压式电路,并采用平均电流控制法(CCM),基于功率因数校正芯片UC3854设计的。

主电路由二极管桥式整流电路与Boost升压型DC-DC变换器组成,控制电路主要由UC3854芯片组成,包括基准电压Ur、电压误差放大器V A、电路误差放大器CA、乘法器M、脉宽调制器PWM及驱动器。

具体工作过程为:输入电压Uo与基准电压Ur比较后,误差信号经过误差发达器放大后送入乘法器,与全波整流电压取样信号共同送到乘法器输入端,相乘后形成基波电流信号输出,基波电流信号与电流反馈信号经电流误差放大器CA相比较后输出信号,再与锯齿波信号相比较后形成PWM信号驱动功率开关管VT工作。

由于全波整流电压信号Udc为双半波正弦信号,稳定时电压误差放大器输出信号恒定,所以乘法器输出的基准电流信号波形和二极管桥式整流输出电压信号一致,也是双半波正弦信号,与高频的锯齿波信号比较后形成高频的PWM信号驱动开关管VT,可以迫使电感电流信号即输入电流信号在每个周期内按正弦规律变化,且与电路输入电压信号同相位,从而使输入电流跟踪输入电压,尽可能消除电流与电压的相位差,从而实现功率校正,提高功率因数,使功率因数近似为1。

采用boost升压式电路,并采用平均电流控制法(CCM)的原因:Boost 升压型变换器具有电感电流连续、储能电感能抑制RFI 和E.MI 噪声、流波形失真小、输出功率大及驱动电路简单等优点,因此常被用来作为有源功率因数正主电路拓扑。

平均电流控制法(CCM):CCM 采用乘法器方法来实现APFC,其电路相对复杂,但工作频率固定,电感电流连续,开关管电流有效值小、EMI 滤波器体积小、输入电流波形失真小。

pfc电路工作原理详解

pfc电路工作原理详解

pfc电路工作原理详解PFC(Power Factor Correction,功率因素校正)是一种传统电源技术,它能有效减少电路系统中的有害消耗和负载电流波动,以节省电力和改善稳定性&&质量。

为此,PFC电路能检测当前负载以及调节输入电源的电流。

PFC电路使用半桥或全桥驱动器来把施加在电路输入端的直流电压调整为变频器需求的电压,并且实现对电阻负载进行频率变换。

它将电压输出的频率变成普通的变频器驱动,很好的解决负载变化大的问题。

根据PFC电路要求,输出电压需要恒定,因此,输入电流也应该稳定。

当负载发生变化时,PFC电路会自动调整输入电流,以保持定义的输出电压装置不变,这也保证了功率因素的稳定。

PFC电路的主要功能是实现电压的反馈。

当检测到输出电压的变化时,控制器会根据所设定的阈值和反馈算法来调节输入电源的电流和功率,以便维持输入电压的稳定,也就是功率因素的恰当控制。

由于PFC电路具有自动调整电流负载的功能,能够有效节省电源输出,具有较高的稳定性,减少环境对电路系统的影响,从而变频器的工作性能也会得到改善。

PFC电路使用半桥/全桥驱动器来将电压进行变换,并且输出变频需求的电流。

随着功率或负载发生变化,电流反馈器会对输入电压进行调节,以维护功率因素的恰当控制,减少输入的电能消耗,从而改善工作质量。

总的来说,PFC电路是一种电源技术,它是使用半桥/全桥驱动器把施加在电路输入端的直流电压调整为变频驱动的需求电压,利用反馈机制进行调节,以维持有效的功率因数输出以及减少有害消耗。

PFC电路不仅具有有效节省电源能量和调节负载电流波动的优点,而且还可以提高灵敏度、抑制电路系统的抖动、提高产品质量,升级变频器的运行质量,取得极大的实际效益,是当今许多系统的必备元件之一。

入门必看 有源PFC原理知识基础科普

入门必看 有源PFC原理知识基础科普

入门必看有源PFC原理知识基础科普
PFC技术是工程师在进行开关电源设计过程中常常用到的校正技术,在
应用时能够有效减小电流谐波,提升电源转换效率。

目前PFC技术通常会分
成有源PFC和无源PFC两种,本文将会针对有源PFC原理知识进行将要科
普和讲解,希望能够对各位新人工程师的学习和设计提供一些帮助。

 在平时的应用过程中,工程师们所常常提到的有源PFC技术,其实就是在
整流电路与负载之间增加一个功率变换器,然后应用电流反馈技术,通过一
些适当的控制方法不断调节输入电流,使其跟踪输入正弦波电压波形,将输
入电流校正成与电网电压同相的正弦波,因而功率因数可提高到近似为1。

由于该方案中应用了有源器件,故称为有源功率因数校正,页被称为
APFC。

即对电路采取措施,使输入电流波形接近正弦波并与输入电压同相位,电流正弦化便使γ=1,同相位就是因数cosφ=1。

 在电路系统的实际应用和设计过程中,有源PFC的主要设计目的,其实就
是为了减小输入电流谐波。

而一旦输入电流谐波得到削弱,那幺在这一电路
系统中将会实现直流稳压输出,并进一步实现单位输入功率因数。

为此在整
流器和负载之间接入一个DC/DC开关变换器,应用电压、电流反馈技术,使输入端电流波形跟踪交流输入正弦电压波形,可以使输入电流接近正弦,从
而大大提高功率因数PF,一般校正后PF可提高到0.99或更高。

由于谐波电
流是导致开关电源功率因数下降的主要原因,所以,要改善此类系统的功率
因数,就必须大力提高输入电流波形畸变因数。

下图所展示的即为一般
APFC的电路框图。

pfc电路工作原理详解

pfc电路工作原理详解

pfc电路工作原理详解PFC(Power Factor Correction)电路是一种用于改善电源的功率因数的电路。

它通过对电源输入电压进行调整,使其与电流之间的相位差最小化,从而使功率因数接近1,减少电源对网络的污染,提高能源利用效率。

PFC电路的主要原理是利用电感元件和开关管实现对输入电流的精确控制。

通常,PFC电路采用谐振变换器(resonant converter)的拓扑结构,该结构由开关管、电感元件和电容元件组成。

其工作过程如下:1. 运行起始:PFC电路通过DC/DC变换器将输入的交流电源转换为稳定的直流电压。

当交流电源接通时,电源电压经过整流和滤波后供给谐振变换器。

2. 开关管控制:谐振变换器中的开关管控制着电源电压的输出情况。

开关管周期性地进行开关操作,将电源电压分割成若干个窄脉冲,并根据反馈信号调整开关频率和占空比,以控制输出的电源电压。

3. 电感元件:谐振变换器中的电感元件负责存储和释放能量。

当开关管导通时,电感元件储存能量;当开关管断开时,电感元件释放能量,并通过变压器传递给输出负载。

4. 电容元件:谐振变换器中的电容元件用于平滑输出电压,并降低交流噪声。

PFC电路的工作原理就是通过控制开关管的导通和断开来调整电源电压和当前传输,从而实现功率因数的改善。

通过增大导通时间和缩小断开时间,PFC电路可以使当前正弦波与电压正弦波之间的相位差减小,功率因数得以提高。

需要注意的是,PFC电路的控制需要采用高精度的控制策略和合适的开关频率,以确保电压和电流的同步性,避免谐振变换器的过渡过程中出现过大的振荡和损耗。

此外,PFC电路还需要考虑开关管的选择和功耗,以实现高效、可靠和长寿命的运行。

总而言之,PFC电路利用谐振变换器的设计和控制,在输入电流与电压之间实现同步性,从而改善功率因数,提高电源的能效。

通过对电压和电流进行精确控制,PFC电路使电源对网络的污染减少,同时提高了能源的利用效率。

PFC电路原理介绍

PFC电路原理介绍

PFC电路原理介绍PFC(功率因数校正)电路是一种用于改善电力系统负载的功率因数的电路。

在传统的非PFC电路中,负载设备会引发电网过载、能源浪费、电源质量下降等问题。

而PFC电路能够通过控制输入电流与电压间的相位差,有效提高系统的功率因数,减少电网负载,提高能源利用率。

PFC电路的原理主要包括三个环节:整流、滤波和控制。

首先,交流输入电压经过整流器被转换为直流信号。

在传统的整流器中,采用的是非线性的二极管整流方式,输出电压波形不平滑,含有大量的高次谐波,功率因数较低。

而在PFC电路中,采用的是有源功率因数校正电路,可以通过智能控制的方式使输入电流与输入电压间的相位差趋近于零,从而使得输出电压及电流波形接近正弦波。

接下来,滤波器对输出的直流信号进行滤波处理。

滤波器一般采用电感和电容的组合,可以使电流连续性增加,减少纹波,提高输出电压质量。

最后,控制部分通过实时监测和调整输入电流与输入电压之间的相位差,以实现功率因数校正。

这部分通常采用微控制器或DSP芯片来实现,通过调整电路的工作状态和控制信号,可以使得输出电流与输入电压的相位差小于等于10度,从而实现高功率因数的目标。

PFC电路的工作原理实际上是通过不断改变输入电流的幅值和相位来保持输出电流与输入电压同相,从而提高功率因数。

在正弦波电流的情况下,功率因数为1,即输入电流和输入电压的相位差为零。

然而,在实际应用中,负载的电流通常不是正弦波形,因此需要通过控制电路来实现功率因数的校正。

PFC电路有两种常见的实现方式:被动式PFC和主动式PFC。

被动式PFC电路主要利用电感元件和电容元件的特性,通过电感的储能和电容的放电来实现波形修正。

这种方式成本较低,但功率因数的校正能力受限。

主动式PFC电路则通过加入电子开关元件,如MOSFET管或IGBT管,根据输入电流和输入电压之间的相位关系,实时开关电子开关元件,来控制输入电流的波形,进而实现智能化的功率因数校正。

电源pfc电路工作原理详解

电源pfc电路工作原理详解

电源pfc电路工作原理详解电源PFC电路是电源的一个重要组成部分,其主要作用是提高电源的功率因数,减少谐波污染,降低电网损耗。

本文将详细介绍电源PFC电路的工作原理。

一、PFC电路的基本原理PFC电路的全称为功率因数校正电路,其主要作用是使输入电流与输入电压之间的相位差尽可能接近于零,从而提高功率因数。

在传统的电源中,因为电感、电容等元件的存在,输入电流与输入电压之间的相位差比较大,功率因数较低,容易对电网造成污染。

而PFC电路则通过电路设计和控制算法的优化,实现电流与电压的同相,从而达到提高功率因数的目的。

二、PFC电路的工作原理PFC电路的基本原理是利用电容器和电感器等元件对输入电压进行整流和滤波,然后通过控制器对输入电流进行调节,使其与输入电压之间的相位差尽可能接近于零。

具体的工作原理如下:1.整流和滤波将输入电压通过整流电路转换为直流电压,然后通过电容器进行滤波,使得直流电压稳定。

这样,就可以消除输入电压中的谐波成分,降低对电网的干扰。

2.电流控制接下来,利用控制器对电流进行调节。

控制器通过对电源开关管的控制,调节电源输出电流,使其与输入电压之间的相位差尽可能接近于零。

为了实现这个目的,控制器需要监测输入电流和输入电压,并根据电路设计和控制算法进行计算和调整。

3.反馈控制为了确保PFC电路的稳定性和精度,需要加入反馈控制回路。

具体来说,就是通过采集输出电压,与参考电压进行比较,然后通过PID控制算法调节输出电流,使其稳定在设定值附近,从而保证电源的稳定性和性能。

三、PFC电路的优点1.提高功率因数PFC电路可以使输入电流与输入电压之间的相位差尽可能接近于零,从而提高功率因数,减少对电网的污染。

2.降低谐波污染PFC电路可以消除输入电压中的谐波成分,降低对电网的干扰,提高电源的稳定性和性能。

3.节能降耗PFC电路可以降低电网损耗,减少电能的浪费,从而实现节能降耗的效果。

四、PFC电路的应用PFC电路广泛应用于电源、照明、电动工具、电动车辆等领域。

pfc功率因数校正原理

pfc功率因数校正原理

pfc功率因数校正原理嗨,朋友!今天咱们来唠唠这个PFC功率因数校正的原理,可有趣着呢!你知道吗?在我们的用电世界里啊,功率因数可是个挺重要的角色。

就好比一场大合唱,每个歌手(电器设备)都得配合好,这样整体的效果(电力系统的效率)才会好。

要是功率因数低,那就像是合唱里有人跑调,整个电力系统就会变得乱糟糟的。

那功率因数到底是啥呢?简单来说,功率因数就是有功功率和视在功率的比值。

有功功率呢,就是真正用来干活的功率,就像你跑步的时候,真正让你前进的那股力量。

视在功率呢,就像是你看起来付出的所有力量,这里面还包含了一些“虚”的部分,就像你跑步的时候,可能有一些多余的动作,看起来费了力,但并没有让你跑得更快。

很多电器设备啊,尤其是那些非线性负载,像电脑电源、节能灯之类的,它们就像是调皮的小捣蛋鬼。

这些设备在工作的时候,会让电流变得歪歪扭扭的,不按照正常的节奏来。

正常情况下,电压和电流应该是同步的,就像两个人手拉手,整整齐齐地往前走。

可是这些非线性负载一捣乱,电流就开始滞后或者超前电压了,这就导致功率因数变低啦。

这时候呢,PFC功率因数校正就闪亮登场啦。

PFC就像是一个超级严格的指挥家,它的任务就是把那些调皮的电流给纠正过来。

PFC有两种主要的类型,一种是无源PFC,另一种是有源PFC。

无源PFC呢,就像是用一些简单的电路元件,像是电感啊、电容啊,来给电流做一些基本的整形。

它就像是一个初级的教练,给那些电流做一些简单的训练,让它们稍微规矩一点。

不过呢,无源PFC的校正效果相对有限。

有源PFC可就厉害多啦!它就像是一个高级的指挥大师。

有源PFC里面有复杂的电路,它会不断地监测电压和电流的情况。

然后呢,通过一些聪明的算法和快速的电路控制,把电流调整得和电压几乎同步。

它就像是给电流开了一个专门的培训班,让电流按照最完美的节奏和电压一起工作。

你可以想象一下,没有PFC的时候,电力系统就像一个乱糟糟的游乐场,各种设备都在各自为政,电流到处乱窜。

pfc的电路工作原理

pfc的电路工作原理

pfc的电路工作原理
PFC(功率因数校正)电路的工作原理是通过对输入电压进行
整流和滤波,然后经过功率因数校正控制器进行电流控制,最终得到具有高功率因数的输出电流。

具体来说,PFC电路的工作可以分为以下几个步骤:
1. 输入电压整流:将交流输入电压转换为直流电压,常常采用整流桥电路或者二极管桥电路进行整流。

2. 滤波:通过电容器进行滤波,去除电压中的纹波成分,使输出电压变得更加平稳。

3. 反馈控制:利用功率因数校正控制器对输出电压进行监测和控制,确保输出电压恒定且具有高功率因数。

功率因数校正控制器通常采用数字信号处理器(DSP)或者微控制器(MCU)来进行控制和计算。

4. 比较控制:功率因数校正控制器会将输出电压与设定的参考电压进行比较,并通过控制器内部的比较器来生成错误信号。

5. PWM控制:通过PWM(脉冲宽度调制)技术来对输入电
流进行控制,使其与输入电压同相位,从而提高功率因数。

PWM技术通过改变开关器件的导通时间来控制输出电流的大小。

6. 反馈控制回路:根据比较器的错误信号,功率因数校正控制
器会反馈给PWM控制电路,通过不断调整PWM信号的占空比,使输出电流与参考电压保持一致。

通过以上步骤,PFC电路能够实现对输入电流的控制,从而使得输出电流具有高功率因数,达到提高电源效率和满足电网要求的目的。

pfc功率因数校正工作原理

pfc功率因数校正工作原理

pfc功率因数校正工作原理小伙伴,今天咱们来唠唠这个PFC功率因数校正的工作原理呀。

你知道吗?在我们的用电世界里,功率因数可是个挺重要的小角色呢。

想象一下,电就像一群小蚂蚁在电线里跑来跑去给各种电器送能量。

可是有时候呢,这些小蚂蚁的工作效率可没那么高,这就和功率因数有关啦。

那啥是功率因数呢?简单说呀,功率因数就是实际功率和视在功率的比值。

如果功率因数低,就好比小蚂蚁们虽然忙忙碌碌,但是真正干成的活儿没有那么多。

比如说,咱们家里的电器,有些电器在用电的时候,就会让功率因数变低。

这时候电网就会有点“不开心”啦,因为它得给这个电器提供更多的电流,就像本来一个人能干的活儿,现在得派好几个人去干,多浪费呀。

这时候,PFC功率因数校正就闪亮登场啦。

PFC就像是一个超级小管家,它的任务就是把功率因数提高。

咱先说说有源PFC的工作原理吧。

有源PFC里面有一些很聪明的电路元件呢。

它就像是一个小指挥家,能把电流的波形变得整整齐齐的。

你看啊,正常情况下,电流的波形可能是歪歪扭扭的,就像小朋友乱画的线条。

但是有源PFC会把这个波形纠正过来,让它变得像军人的队列一样整齐。

它是怎么做到的呢?它通过一些复杂又神奇的电路,不停地监测电流和电压的情况。

当发现电流波形不对的时候,就会调整电路里的一些参数,让电流乖乖听话,按照电压的节奏来走。

这样一来,功率因数就提高啦,电网就会觉得轻松很多,就像原本乱糟糟的队伍变得井井有条,工作效率大大提高了呢。

再说说无源PFC吧。

无源PFC相对来说就比较“质朴”啦。

它主要是靠一些电感、电容这些简单的元件来工作的。

电感就像是一个小阻拦员,它会对电流产生一种阻碍的作用,但是这种阻碍是很有意义的哦。

它能让电流的变化变得更有规律。

电容呢,就像是一个小仓库,它可以储存电能,在合适的时候把电能放出来。

无源PFC就是利用电感和电容的这些特性,来对电流进行一定的校正,虽然它没有有源PFC那么精确和高效,但是也能在一定程度上提高功率因数,就像一个小助手,虽然能力有限,但是也能帮上忙。

电源pfc电路工作原理详解

电源pfc电路工作原理详解

电源pfc电路工作原理详解电源PFC电路是一种常见的电源保护电路,可有效提高电源的效率并保护电器设备。

本文将详细介绍电源PFC电路的工作原理和主要优点。

一、电源PFC电路的概述电源PFC电路是指功率因数校正电路,也称为无源式功率因数校正电路。

其主要作用是通过改善电源输出的波形,使其更接近正弦波,从而调整电源的功率因数。

电源PFC电路通常由整流电路、滤波电路、直流电源电路和调节电路等组成,其中整流电路的主要作用是将交流电转化为直流电,并保证输出的直流电质量良好。

二、电源PFC电路的原理电源PFC电路的工作原理可以分为两个阶段:输入滤波和控制器工作。

1. 输入滤波:该步骤会对输入交流电进行滤波处理,将其变成具有更好波形的纹波电压。

这一步的目的是为了减小后期的滤波器的尺寸,同时也减小并彻底去除输入端的高频电磁波干扰。

2. 控制器工作:控制器的主要作用是在输出电流的波形达到最大时,迅速关闭变压器开关管,从而有效地进行功率因数校正。

在该过程中,控制采用了一种新的技术——创新的PWM调制技术,以确保高效的能量转换和低功耗的运行模式。

三、电源PFC电路的优点电源PFC电路具有以下优点:1. 提高效率:电源PFC电路可以提高电源输出的效率。

在实际应用中,PFC电路可以提高电源的效率达到4-5%。

同时,对于那些需要不稳定电压输出的应用,电源PFC电路也可以有效地提高输出电压的合格率,提高电源的临界转换速度。

2. 降低电源噪声:电源输出的波形接近正弦波,能够减少电源输出的噪声,从而保护设备的稳定性和可靠性。

3. 提高效用:电源PFC电路还可以提高电源的功率因数,从而降低电源消耗的功率,提高其效用。

4. 提高可靠性:电源PFC电路采用专业的控制技术,可以避免电源的过载和电源线圈的寿命问题,从而提高了电源的可靠性。

总之,电源PFC电路是一种非常有用的电源保护电路。

它可以提高电源的效率、降低电源的噪声、提高电源的功率因数、提高电源的效用,并提高电源的可靠性。

功率因素校正(PFC)电路 PFC的工作原理

功率因素校正(PFC)电路 PFC的工作原理

PFC 的工作原理
功率因数定义:
(1)交流电源输入有功功率与其视在功率之比。
电力电子中常用

PF

P S
有功功率 视在功率
(2)若交流输入电压为无畸变的正弦波,则只有输入中 的基波电流形成有功功率。由于功率传输只在基波频 率上发生,开关变换器的输入整流电路中含有大量不 能传递功率的高次谐波。在真正意义上,电源输入端 存在的是电流的谐波失真,通常可以用近似的功率因 数来代替。总谐波失真THD -Total Harmonic Distortion
BOOST电路的工作模式
从CCM到CRM和DCM 的电流变化波形
BOOST电路拓扑
电流连续模式(CCM)
BOOST电路拓扑
BOOST电路拓扑
1)当开关管导通,电源Ui对电感L充电储能, 同时电容C对负载R放电,二极管承受反 向电压。
2)当开关管S关断时,由于电感L中的电流 不能突变,将继续有电流流过,电感L上的 感应电势UL与输入电压Ui 串联通过二极 管D对输出电容C充电.
BOOST电感的设计步骤
1)基于已知参数先求出周期:
T
1 f
2)最大的占空比的计算: 3)设定初始的纹波电流: 4)确定电感量:
Duty
1
Vinmin Vo
ILP
2 2 Po Vinmin Eff
DeltaI= 0.1*I.pk
Lmin
Vimin 2Ton DeltaI
BOOST电感的设计步骤
4
功率因数的提高可节省发电,传输的功率,与电源效率是两个概念,反而 增加电源成本,降低效率
PFC 的工作原理
电压电流波形
ii
ui ii ii ui

PFC基础知识及FOC工作原理

PFC基础知识及FOC工作原理

PFC基础知识及FOC工作原理1.PFC基础知识功率因数校正(Power Factor Correction,PFC)是一种用于改善电力系统功率因数的技术。

电力系统的功率因数是指负载消耗的有功功率与电网传输的视在功率之比。

传统的非线性负载(如开关电源)的功率因数通常很低,这会导致能源浪费,造成能源资源的浪费和电力系统的负荷增加。

PFC技术通过改善负载的有功功率与无功功率之比,提高功率因数。

主要有两种类型的PFC:有源PFC(Active Power Factor Correction, APFC)和无源PFC(Passive Power Factor Correction, PPFC)。

有源PFC通过控制输入电压的幅值和相位,实时跟踪负载的需求并主动纠正功率因数。

无源PFC则通过电容滤波器或电感滤波器的组合,调整负载的输入电流波形,从而改善功率因数。

PFC的目标是将输入电流与输入电压保持同步,以便使输入电源的使用效率最大化。

这样可以降低能量的浪费、提高能源的利用率,减少对电力系统的负荷冲击。

磁场定向控制(Field-Oriented Control,FOC)是一种用于控制三相交流电机的技术。

三相交流电机由转子和定子构成,其中定子是由三个互相偏移120度的线圈组成,每个线圈都与一个相位电流相关联。

传统的控制方式是直接控制定子的三相电流,但这种控制方式会导致转子磁场与定子磁场之间的耦合效应,使得电机控制效果不佳。

FOC技术通过将三相交流电机的转子磁场与定子磁场解耦,分别控制转子磁场和定子磁场的方向和大小,从而实现对电机的精确控制。

FOC的基本原理是首先将三相交流电机的三相电流转换为直流电流,然后再将其分解为转子磁场和定子磁场的分量。

控制器通过测量电机的运动状态(如电流、速度、位置等),根据给定的控制策略来计算所需的转子磁场和定子磁场的大小和方向,并通过逆变器将计算得到的转子磁场和定子磁场的电流发送给电机。

有源功率因数校正电路工作原理分析

有源功率因数校正电路工作原理分析

有源功率因数校正电路工作原理分析
中心议题:
 升压型PFC电路原理及优缺点
 降压型PFC电路原理及优缺点
 升降压型PFC电路原理及优缺点
 正激型PFC电路原理及优缺点
 反激型PFC原理及优缺点
 常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。

其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分,下面对这几种电路的工作原理分别加以介绍。

 1.升压型PFC电路
 升压型PFC主电路如图1所示,其工作过程如下:当开关管Q导通时,电流IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当Q截止时,L两端产生自感电动势VL,以保持电流方向不变。

这样,VL与电源VIN串联向电容和负载供电。

 图1 升压型PFC主电路这种电路的优点是:
 (1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;
 (2)电感电流即为输入电流,容易调节;
 (3)开关管栅极驱动信号地与输出共地,驱动简单;。

开关电源功率因素校正(PFC)及原理

开关电源功率因素校正(PFC)及原理
3、有源PFC电路的原理:
有源PFC电路则有很好的效果,基本上可以完全消除电流波形的畸变,而且电压和电流的相位可以控制保持一致,它基本上完全解决了功率因素、电磁兼容、电磁干扰的问题,但是电路非常的复杂。其基本思路是在220V整流桥堆后去掉滤波电容(以消除因电容充电造成的电流波形畸变及相位变化),由一个“斩波”电路把脉动的直流变成高频(约100KHz)交流经过整流滤波后,其直流电压再向常规的PWM开关稳压电源供电,其过程是AC→DC→AC→DC。
郝铭 李方建
一、什么是功率因素补偿,什么是功率因素校正:
功率因素补偿:在上世纪五十年代,已经针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出了改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担一个电容器,用以调整该用电器具的电压、电流相位特性。例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器)。用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因素补偿(交流电的功率因素可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。
2、无源PFC电路:
不使用晶体管等有源器件组成的校正电路,一般由二极管、电阻、电容和电感等无源器件组成。
目前国内电视机生产厂对过去设计的功率较大的电视机,在整流桥堆和滤波电容之间加一只电感(适当选取电感量),利用电感上电流不能突变的特性来平滑电容充电强脉冲的波动,改善供电线路电流波形的畸变,并且利用电感上电压超前电流的特性也补偿滤波电容电流超前电压的特性,使功率因素、电磁兼容和电磁干扰得以改善,如图5所示。
我们目前使用的电视机,由于采用了高效的开关电源,而开关电源内部电源输入部分,无一例外的采用了二极管全波整流及滤波电路,如图4A所示,其电压和电流波形如图4B所示。

pfc的工作原理

pfc的工作原理

pfc的工作原理
PFC(Power Factor Correction,功率因数校正)的工作原理是
通过降低电源输入的谐波和提高电源的功率因数来改善电源的效率。

PFC的工作原理可以简单概括为以下几个步骤:
1. 电源输入滤波:将交流电源输入通过滤波电路进行滤波处理,去除电源中的高频谐波成分。

2. 整流:将滤波后的交流电源转换为直流电源,常用的整流电路有桥式整流等。

3. 去纹波滤波:对整流后的直流电源进行去纹波滤波,消除直流电源中的脉动。

4. PFC控制:在滤波后的直流电源上引入PFC控制电路,通
过控制输入电流的波形来实现功率因数校正。

5. 反馈控制:PFC控制电路通过感知电源输入端的电流和电压,并与参考信号进行比较,然后输出控制信号,控制电源的输出功率,使其与输入电源的波形相匹配。

通过PFC技术,可以有效地提高电源的功率因数,减少谐波
产生和电网上的电路干扰,提高电源的效率和可靠性,降低电能损耗。

PFC广泛应用于电源系统、电力电子设备和家居电器等领域。

pfc电路工作原理详解

pfc电路工作原理详解

pfc电路工作原理详解PFC电路是一种功率因数校正电路,它的工作原理是通过控制输入电流和电压的相位关系,使得输入电流与电压同相位,从而提高整个系统的功率因数。

PFC电路的工作原理可以分为两种类型,基于开关管的PFC电路和基于整流二极管的PFC电路。

基于开关管的PFC电路采用开关管进行控制,通过改变开关管的导通和关断时间来调节输入电流和电压之间的相位关系,从而实现功率因数校正。

这种PFC电路具有响应速度快、效率高的特点,适用于高性能、高要求的电源系统。

基于整流二极管的PFC电路则是通过整流二极管的导通和关断来实现功率因数校正。

这种PFC电路结构简单,成本低廉,适用于一般性能要求的电源系统。

不论是基于开关管还是基于整流二极管的PFC电路,其工作原理都是通过控制输入电流和电压的相位关系,使得功率因数接近1,从而提高整个系统的效率和稳定性。

PFC电路的工作原理详解还包括其控制方式。

PFC电路的控制方式有两种,电压模式控制和电流模式控制。

电压模式控制是通过控制输入电压来调节输出电流,从而实现功率因数校正;电流模式控制则是通过控制输入电流来调节输出电压,同样也可以实现功率因数校正。

这两种控制方式各有优劣,可以根据实际应用需求选择合适的控制方式。

除了控制方式,PFC电路的工作原理还涉及到一些关键元器件,如电感、电容、开关管等。

这些元器件在PFC电路中起着至关重要的作用,通过它们的合理设计和选择,可以有效提高PFC电路的效率和稳定性。

总的来说,PFC电路的工作原理是通过控制输入电流和电压的相位关系,使得功率因数接近1,从而提高整个系统的效率和稳定性。

在实际应用中,可以根据具体的要求选择合适的PFC电路类型和控制方式,以实现最佳的功率因数校正效果。

有源功率因数校正原理

有源功率因数校正原理

有源功率因数校正PFC电路主要有升压型、降压型、升压--降压型和回扫型等基本电路形式,其中升压型有源PFC电路在一定输出功率下可减小输出电流,减小输出滤波电容的容值和体积,故在电子镇流器中广泛应用。

升压型有源PFC电路在控制方法上,有电感电流断续传导模式和峰值电流控制模式。

其电路原理图如图2所示。

电路工作原理如下:Q1导通时,D5截止,电容C1向负载放电;Q1截止,电感L1储能经D5对电容C1充电。

由于Q1和D5交替导通,使整流器输出电流经电感L1连续。

这样输入电流也连续。

图中,R1取样输入电压,保证通过电感L1的电流跟随输入电压按正弦规律变化,通过L1的高频电流包络正比于输入电压,其平均电流呈正弦波形,使输入电流呈正弦波;R2取样输出电压,控制APFC控制器的输出占空比,稳定输出电压。

目前,APFC专用芯片很多,在电子镇流器中应用广泛,具体电路不做详细介绍,可参阅参考文献。

4 利用自振荡半桥PWM驱动器设计的APFC电路在某些自振荡半桥PWM驱动器电路中,可以利用PWM驱动器输出固定频率的脉冲来作APFC控制,这里介绍两种典型电路。

4.1利用自振荡输出波形控制的APFC电路电路原理图如图3所示。

升压电感L1、二极管D5、电容C2和开关管Q3等组成APFC电路。

由于PWM驱动器U1输出脉冲的频率和占空比都是固定的,Q3导通时,D5截止,C2向负载放电;Q3截止时,电感L1产生的突变电势使D5正向偏置而导通,电感L1通过D5向C2和负载释放储能,此时整流二极管电流经电感L1连续,使输入电流波形连续,呈正弦波形,可将线路功率因数提高到0.95以上,使输入电流总谐波失真度(THD)降低到10%以下。

4.2 利用自振荡PWM驱动器的定时电路图3利用自振荡PWM驱动器输出波形控制的APFC原理电路图图4利用自振荡PWM驱动器的定时器设计的APFC原理电路图和波形图设计的APFC电路自振荡半桥PWM驱动器的振荡器是一个类似555的定时振荡器,CT端为锯齿波,可以用一电路产生同频、占空比可调的APFC电路。

有源pfc原理

有源pfc原理

有源pfc原理有源PFC原理是一种用于改善电力因数的技术,它在电源中引入了有源电路,通过控制有源电路的输出来实现对电源输入电流的控制,从而达到提高电力因数的目的。

在这篇文章中,我们将详细介绍有源PFC原理的工作原理、优势和应用。

有源PFC(Power Factor Correction)原理是指通过对电源输入电流进行控制,使其与电源电压同相位,并且尽可能接近正弦波,从而提高电源的功率因数。

传统的电源电流往往是非线性的,含有大量的谐波成分,导致电力因数较低。

而有源PFC技术通过引入有源电路,利用电路中的功率开关器件,实时控制输出电流来实现对电源输入电流的调节,从而提高电力因数。

有源PFC技术的工作原理可以简单地描述如下:首先,电源直流电压经过整流电路转换为脉冲状的直流电压,并经过滤波电路变成平滑的直流电压。

然后,直流电压通过有源电路进行控制,产生与输入电压同相位且接近正弦波的输出电流。

最后,输出电流经过滤波电路和逆变电路,转换为稳定的交流电压,供给负载使用。

有源PFC技术相比于传统的无源PFC技术有以下优势:首先,有源PFC技术能够实时调节输出电流,使其与输入电压同相位,从而消除谐波成分,提高电力因数。

其次,有源PFC技术能够实现更高的功率密度和更高的效率,使得电源更加紧凑和节能。

此外,有源PFC技术还具有更好的适应性和稳定性,能够适应不同负载和输入电压的变化,保证电源的稳定输出。

有源PFC技术在许多领域都有广泛的应用。

首先,它在电力工业中被广泛应用于电力因数校正和谐波抑制。

其次,在电动汽车充电桩和电动机控制系统中,有源PFC技术能够提供高质量的电源,提高能量利用效率。

此外,有源PFC技术还可以应用于LED照明系统、太阳能逆变器等领域,提高系统的功率因数和效率。

有源PFC技术通过引入有源电路,实时控制输出电流,从而提高电源的功率因数。

它具有高效、稳定和适应性强的特点,并在电力工业、电动汽车充电桩、LED照明系统等领域有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PFC开关电源功率因数校正原理PFC开关电源功率因数校正原理一、什么是功率因数补偿,什么是功率因数校正:功率因数的定义为有功功率与视在功率的比值.功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。

图1 在具有感性负载中供电线路中电压和电流的波形常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多.图2 全波整流电压和AC输入电流波形因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降.在正半个周期内(180º),整流二极管的导通角大大小于180º,甚至只有30º~70º.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

图3 正常供电电压波形和接入容性负载后电压波形畸变二、怎样进行功率因数校正:1、功率因数校正:(PFC)我们目前使用的电视机,由于采用了高效的开关电源,而开关电源内部电源输入部分,无一例外的采用了二极管全波整流及滤波电路,如图4A所示,其电压和电流波形如图4B所示。

图4 全桥整流滤波电路及电压和电流波形图如果在整流滤波后不加滤波电路,仅为足性负载时,输入电流即为正弦波.并且与电源电压同相位,功率因数为1.因此,功率因数校正电路的基本思想就是将整流电路与滤波电容隔开,使整流电路由电容性负载变成电阻性负载.功率因数校正电路其实就是一个AC/DC变换器.它是利用脉冲波宽度调变(PWM)技术来调整输入功率的大小,以供应适当的负载所需的功率.脉冲波宽度调变器控制切换开关将直流输入电压变换成一串电压脉冲波,随后利用变压器和快速二极管将其转换成平滑的直流电压输出.这个输出电压随即与一个参考电压进行比较,所产生的电压差反馈至PWM控制器.这个误差电压信号用来改变脉冲波宽度的大小.如果输出电压过高,脉冲波电压会减小,进而使输出电压降低,使输出电压恢复至正常输出值.PFC电路就是利用这个方法,但是加入了一个电路,使的来自交流电源的电流是一个正弦波并与交流电压同相位.此时误差电压信号的调变是由整流后的交流电压和输出电压的变化来控制的,最后误差电压信号反馈至PWM控制器.也就是说,当交流电压高时,PFC电路就从交流电源吸取较多的功率;反之,若交流电压较低,则吸收较少的功率,这样就可以抑制交流电流谐波的产生.为了抑制电流波形的畸变及提高功率因数,现代的功率较大(大于85W)具有开关电源(容性负载)的用电器具,必须采用PFC措施,PFC分为有源PFC和无源PFC两种方式。

2、无源PFC电路:不使用晶体管等有源器件组成的校正电路,一般由二极管、电阻、电容和电感等无源器件组成。

这种电路主要是在整流桥堆和滤波电容之间加一只电感(适当选取电感量),利用电感上电流不能突变的特性来平滑电容充电强脉冲的波动,改善供电线路电流波形的畸变,并且利用电感上电压超前电流的特性也补偿滤波电容电流超前电压的特性,使功率因数、电磁兼容和电磁干扰得以改善,如图5所示.图5 无源PFC电路此种方式还不能称为真正的无源PFC电路,只是一种简单的补偿措施,可以应用在前期设计的无PFC功能的设备上,简单的增加一个合适的电感(适当选取L和C的值),从而达到具有抑制电流瞬时突变的目的.但是这种简单的低成本的补救方法,输出纹波较大,滤波电容两端的直流电压也较低,电流畸变的校正及功率因数补偿的能力都很差,而且L的绕制及铁芯的质量控制不好,会对图像及伴音产生严重的干扰,只能是对于前期无PFC设备使之能进入市场的临时措施。

3、有源PFC电路的原理:有源PFC电路则有很好的效果,基本上可以完全消除电流波形的畸变,而且电压和电流的相位可以控制保持一致,它基本上完全解决了功率因数、电磁兼容、电磁干扰的问题,但是电路非常的复杂.其基本思路是在220V整流桥堆后去掉滤波电容(以消除因电容充电造成的电流波形畸变及相位变化),由一个“斩波”电路把脉动的直流变成高频(约100KHz)交流经过整流滤波后,其直流电压再向常规的PWM开关稳压电源供电,其过程是AC→DC→AC→DC。

有源PFC电路的基本原理是在开关电源的整流电路和滤波电容之间增加一个DC-DC的斩波电路,如图6所示(斩波电路等于附加一个开关电源).图6 有源PFC电路对于供电线路来说,该整流电路输出没有直接接滤波电容,所以其对于供电线路来说呈现的是纯阻性的负载,其电压和电流波形同相、相位相同.斩波电路的工作也类似于一个开关电源,所以说有源PFC开关电源就是一个双开关电源的开关电源电路,它是由斩波器(我们以后称它为:“PFC开关电源”)和稳压开关电源(我们以后称它为“PWM开关电源”)组成的.4、斩波器部分:(PFC开关电源)整流二极管整流以后不加滤波电容器,把未经滤波的脉动正半周电压作为斩波器的供电电源,由于斩波器一连串做“开关”工作脉动的正电压被“斩”成图7所示的电流波形,其波形的特点:(1)电流波形是断续的,其包络线和电压波形相同,并且包络线和电压波形相位同相;(2)由于斩波作用,半波脉动的直流电变成高频(由斩波频率决定,约100KHz).5、目前PFC开关电源部分,起到开关作用的斩波管(K)有两种工作方式:(1)连续导通模式(CCM):开关管的工作频率一定,而导通的占空比(系数)随被斩波电压的幅度变化而变化,如图8所示。

图中T1和T2的位置:T1在被斩波电压(半个周期)的低电压区,T2在被斩波电压的高电压区,T1(时间)=T2(时间).从图中可以看到,所有的开关周期时间都相等,这说明在被斩波电压的任何幅度时,斩波管的工作频率不变.从图8中可以看出,在高电压区和低电压区,每个斩波周期内的占空比不同(T1和T2的时间相同,而上升脉冲的宽度不同),被斩波电压为零时(无电压),斩波频率仍然不变,所以称为连续导通模式(CCM),该种模式一般应用在250W~2000W的设备上。

图8 连续导通模式(CCM)(2)不连续导通模式(DCM):斩波开关管的工作频率随被斩波电压的大小变化,每一个开关周期内“开”、“关”的时间相等,如图9所示.T1和T2时间不同,也反映随着电压幅度的变化其斩波频率也相应变化.被斩波电压为“零”时,开关停止(振荡停止),所以称为不连续导通模式(DCM),即有输入电压斩波管工作,无输入电压斩波管不工作.它一般应用在250以下的小功率设备上,例如:海信TLM3277液晶电视接收机开关电源的PFC部分即工作在DCM模式(3)临界导通模式(CRM)或过渡模式(TCM):工作介于CCM和DCM之间,工作更接近DCM模式.在上一个导通周期结束后,下一个导通周期之前,电感电流将衰减为零,而且频率随着线路电压和负载的变化而变化。

优点:廉价芯片、便于设计,没有开关的导通损耗,升压二极管的选择并非决定性的;缺点:由于频率变化,存在潜在的EMI问题,需要一个设计精确的输入滤波器。

图9 不连续导通模式(DCM)图7 斩波器输出的电压和电流波形图(3)从外供电总的看,该用电系统做到了交流电压和交流电流同相,并且电压波形和电流波形均符合正弦波形,既解决了功率因数补偿问题,也解决了电磁兼容(EMC)和电磁干扰(EMI)问题。

该高频“交流”电再经过整流二极管整流,并经过滤波变成直流电压(电源)向后级的PWM开关电源供电,该直流电压在某些资料上把它称为B+PFC(海信等离子TPW4211即是如此).斩波器输出的B+PFC电压一般高于原220V交流整流滤波后的+300V,其原因是选用高电压、电感的线径小、线路压降小、滤波电容容量小、滤波效果好,对后级PWM开关管要求低等等诸多好处。

6、开关稳压电源部分:(PWM开关电源)该开关稳压电源(PWM)是整个具有PFC功能开关电源的一部分,其工作原理及稳压性能和普通的电视机开关稳压电源一样,所不同的是普通开关稳压电源供电是由交流220V整流供电,而此开关电源供电是由B+PFC供电(B+PFC选取的是+380V)。

目前应用的具有功率因数校正开关电源中,PFC开关电源部分和PWM开关电源部分的激励部分均由一块集成电路完成,即PFC/PWM组合IC(例如:海信TPW4211等离子电视的ML4824及TLM3277液晶电视的SMA-E1017等),其基本框图如图10(等离子三星V2屏PFC开关电源基本框图)和图11(海信液晶TLM3277电视开关电源基本框图)所示。

图10 等离子三星V2屏PFC开关电源基本框图(CCM)图11 海信液晶TLM3277电视开关电源基本框图。

相关文档
最新文档