博弈论及其简单的应用

合集下载

博弈论应用案例范文

博弈论应用案例范文

博弈论应用案例范文
博弈论是一个非常实用的理论,它模拟现实世界中不同的博弈实例。

这些实例可以让我们在不同的地方看到它的应用情形。

下面是一些博弈论应用案例:
1、博弈论在经济学中的应用:在经济学中,人们正在探索如何使用博弈论来研究各类竞争情形,包括市场竞争、价格竞争、利润竞争、市场占有率竞争等。

这些应用可以帮助政策制定者和企业决策者更好地理解和应对不同类型的商业竞争。

2、博弈论在战略管理学中的应用:战略管理学将博弈论应用到现实中不同的博弈模式,比如双方博弈、多方博弈等,以帮助企业管理者以最有效的方式制定有效的策略。

在管理中,博弈论可以帮助管理者深入思考不同的竞争发展趋势,分析不同结果的可能性,并做出明智的决策。

3、博弈论在工业组织中的应用:在工业组织中,博弈论可帮助企业管理者更好地理解复杂的行业竞争环境,分析不同双方的利益和制定利益共享机制,更加有效地确定和实施有效的竞争策略。

4、博弈论在政治策略制定中的应用:博弈论也是政治策略制定的有价值的参考理论。

它可以帮助政治策略制定者更好地理解不同政党的竞争目标,以及各方可能做出的动作以及其所带来的后果。

博弈论的例子

博弈论的例子

博弈论的例子
1. 下棋不就是典型的博弈论例子嘛!就像你和朋友下棋,每一步都要思考怎么才能赢,这不就是在算计和对方的较量吗?
2. 还有在拍卖会上,大家互相竞价,这简直就是一场激烈的博弈啊!每个人都在权衡自己的出价,试图用最合适的价格得到想要的东西,难道不是吗?
3. 股票市场不也一样嘛!投资者们都在根据各种信息做出决策,和其他投资者进行无形的博弈,哎呀呀,那可真是惊心动魄呢!
4. 选举不也是一种博弈呀!候选人都在争取选民的支持,各种策略手段都用上了,这竞争可太激烈了!
5. 谈恋爱有时候也像博弈论呢!双方都在试探彼此的心意,决定自己要付出多少,这可不是一场微妙的较量嘛!
6. 商业谈判更是博弈论的舞台呀!双方为了达成对自己有利的协议,不断讨价还价,就像一场没有硝烟的战争,厉害吧!
我觉得博弈论在我们生活中无处不在,它让我们更清楚地看到各种互动中的策略和竞争,真的很有意思呢!。

博弈论经典例子

博弈论经典例子

博弈论经典例子
1. 囚徒困境知道不?就好比两个小偷被抓了,警察分别审问他们。

要是都不坦白,那可能都判轻一点;但要是其中一个坦白了,另一个不坦白,那坦白的那个就立功减刑,不坦白的就倒霉啦!这可真是个纠结的选择啊!
2. 再来想想拍卖,大家都抢着出价,那场面紧张刺激得很!每个人都想着自己能拍到,但又担心出价太高亏了,这不就是一场精彩的博弈嘛!
3. 再说说那个商家竞争,就像肯德基和麦当劳,都拼命想办法吸引顾客,这可不是你争我夺的博弈嘛!
4. 还有股市啊,大家不都在那分析来分析去,想着怎么买卖股票能赚钱,这就是投资者之间的博弈呀!
5. 谈恋爱其实也有博弈的成分呢,你对我好,我对你咋样,不是得衡量衡量嘛,哈哈!
6. 像是两家公司研发新产品,谁先推出,谁就能抢占市场份额,这中间的算计可不少哩!
7. 选举不也是嘛,候选人们为了拉选票各显神通,这就是政治上的博弈呢!
8. 石头剪刀布也算哦,你出啥我出啥,都在猜对方的心思,可别小瞧这小游戏,也是一种博弈呢!
总之,生活中博弈无处不在,我们每天都在参与各种博弈呢!。

博弈论的应用

博弈论的应用
类似:战国时期,皇太子做人质。
4、斗鸡博弈
即电影中的汽车博弈:两个年轻人分别从一条街的两 头,驾车笔直地是向对方。第一个转向的人会颜面尽 失,但如果没有人转向,将会撞在一起。其收益矩阵 如下图:
存在两个纳什均衡:(不转向,转向)和(转向,不 转向)。A偏好第一个,B偏好第二个。但这两个都比 撞车好。它和保证博弈有所区别,双方做不相同的事 情比做相同的事情好。 年轻人B
如果参与人B选择c=0,那么参与人A将减少r,
使r尽可能小,所以r=0。因此,参与人A使r=0
就是对c=0的最优反应。并且,r=0一直都是A
的最优反应,直至c=1/3。当c=1/3,0≤r≤1都
是A的最优反应。对于所有的c>1/3,行参与人
的最优反应是r=1。
c1 B的反

••
三个紫色的点
映曲线
制的两条曲1线00。
行参与人的 90 期望收益
均衡点
80 行参与
50 人踢向
20
左方的
概率
0
0.7 1
而列参与人的选择将会使行参与人在每一个概率
上的期望收益最小化。因此,行参与人的期望收
益只能为红色线段部分。
列参与人的策略
假定列参与人扑向左方的概率为q,则当行参与人踢向 左方时,行参与人的期望收益为50q+80(1-q),当行 参与人踢向右方时,行参与人的期望收益为 90q+20(1-q)。
此外的策略有:声誉和缔结合同。
三、竞争博弈
竞争博弈是一种零和博弈,即博弈一方的收益 等于另一方的损失。多数体育竞技项目都是零 和博弈:一个组的1分等价于另一个组失去一 分。参与人之间的利益是完全相反的。
例如,在一个足球比赛中,行参与人主罚点球, 列参与人防守。如果列参与人扑错了方向,行 参与人得分的可能性大一些。同时,行参与人 可能善于踢向某一个方向,而列参与人可能善 于扑向某一个方向。但双方都有朝两个方向的 可能。

博弈论在生活中的应用

博弈论在生活中的应用

一、博弈论基础
博弈论的基本概念包括参与者、策略和收益。参与者是在博弈中决策的主体, 策略是每个参与者在给定信息下的决策选择,收益是每个参与者在博弈结束后 的得失。根据不同的标准,博弈论可以分为多种类型,如零和博弈、非零和博 弈、静态博弈和动态博弈等。零和博弈是指所有参与者的收益总和为零,非零 和博弈则是指收益总和不为零的情况。
博弈论的基本概念
博弈论的基本概念包括博弈局、策略、支付、纳什均衡等。博弈局是指多个决 策主体之间的互动和决策过程。策略是指每个决策主体所采取的行动方案。支 付是指每个决策主体在博弈局中所获得的收益或回报。纳什均衡是指所有决策 主体都采取最优策略,从而达到一种稳定的状态。
博弈论的应用
博弈论在实际生活中的应用非常广泛。例如,在解决公共利益问题方面,博弈 论可以帮助分析公众和政府之间的利益冲突,为政策制定提供理论支持。在合 作问题方面,博弈论可以帮助研究合作伙伴之间的利益分配和合作方式,从而 实现双赢。
博弈论的发展前景
随着社会的不断发展和科技的进步,博弈论在未来的应用前景也日益广阔。例 如,随着大数据和云计算技术的发展,博弈论在数据分析、金融风控、网络安 全等领域的应用将更加深入和广泛。同时,随着人工智能技术的不断发展,博 弈论在智能决策、自动化系统等领域的应用也将不断增加。
结论
总的来说,博弈论在社会生活中的应用具有重要性和广泛性。通过理解和掌握 博弈论的基本概念和理论,我们可以更好地分析和解决各种实际问题,提高决 策的科学性和有效性。随着科技的发展,博弈论在未来的应用前景也更加广阔, 将为人类社会的发展和进步做出更大的贡献。
首先,让我们来看看博弈论在社团活动中的应用。大学生活中,社团活动是一 个重要的组成部分。每个社团都有其独特的文化和活动,如何选择适合自己的 社团,就是一个典型的博弈论问题。我们需要在有限的资源和时间下,权衡各 种因素,比如个人兴趣、社团的活动是否与学业冲突等,来做出最优的选择。 这里,我们就是在和时间、兴趣和学业进行博弈。

博弈论方法在经济生活中的应用

博弈论方法在经济生活中的应用

博弈论方法在经济生活中的应用博弈论是一门研究人类决策行为的数学理论,其主要关注的是与其他人的决策相互作用下的最优决策策略。

博弈论提供了一种分析和预测人类决策行为的工具,因此在经济学中有着广泛的应用。

下面将从各个方面探讨博弈论在经济生活中的应用。

1.市场竞争在经济生活中,市场竞争是普遍存在的,博弈论提供了一种研究和预测市场竞争模式的工具。

例如,在定价决策中,企业可以使用博弈论的策略来预测竞争对手的定价策略,并选择最合适的定价策略。

同时,博弈论也可以帮助企业预测竞争对手可能采取的反应策略,从而做出相应的应对措施。

2.投资决策在投资决策中,博弈论可以帮助投资者理解其他参与者的行为,并设计出合理的投资策略。

例如,博弈论可以帮助分析投资者之间的合作与竞争关系,预测其他投资者可能的行动,并制定相应的决策策略。

此外,博弈论还可以帮助投资者研究市场中的买方和卖方之间存在的合作与竞争关系,从而更好地理解市场的运作机制。

3.价格博弈在市场经济中,价格博弈是普遍存在的现象。

博弈论可以帮助理解市场中不同参与者之间的博弈行为,并预测价格的变化趋势。

例如,在垄断市场中,博弈论可以帮助理解垄断者和消费者之间的博弈关系,并分析垄断者可能采取的定价策略。

同时,在寡头垄断市场中,博弈论也可以帮助分析不同寡头之间的博弈关系,并预测价格的变化。

4.拍卖市场拍卖市场是经济生活中常见的交易形式之一,博弈论可以帮助理解不同参与者之间的拍卖策略,并预测拍卖结果。

例如,在竞价拍卖中,卖方和买方之间存在着明显的博弈关系,博弈论可以帮助分析不同竞价策略的优劣,并设计出最优的竞价策略。

同时,在不同类型的拍卖市场中,博弈论也可以帮助分析不同参与者之间的博弈行为,并预测市场的结果。

5.策略合作在经济生活中,策略合作是常见的现象。

博弈论可以帮助分析不同参与者之间的策略合作关系,并设计出最优的合作策略。

例如,在产业合作中,不同企业之间存在着合作与竞争关系,博弈论可以帮助分析不同企业之间的策略合作关系,并为企业提供合理的合作方案。

博弈论在生活中的应用 博弈论应用

博弈论在生活中的应用 博弈论应用

博弈论在生活中的应用博弈论应用
博弈论是一种在模型中研究决策者的行为的逻辑学科,涉及到决定性和随机性的抉择,开创了完全博弈,简单博弈,扩展博弈等概念,又有应用于运筹学领域的核对和批准博弈,对抗博弈的发展等。

博弈论在我们的生活中起着很重要的作用,下面就介绍它在我们的生
活中的应用。

1、商业活动博弈。

两个商家之间进行商业活动时常用博弈论来评估他们之间的维持
合作与开展竞争的可能性。

例如,两家商店要同时开在同一个街区,双方都将采取不同的
营销方式、营销手段和广告策略来获得最大的利润,从而共同推动街区的繁荣。

2、交通调度博弈。

交通调度期间,汽车中经常使用博弈论。

在这里,适当的交通调
度可以满足司机的要求,提高汽车的运行效率,并最大限度地减少路况线路流量和市区交
通堵塞。

3、行政决策博弈。

复杂的政策问题可能涉及多方利益,从而导致极大的主观性、复
杂性和不确定性。

在这种情况下,政府可以利用博弈论来引导决策制定,以便尽可能地实
现预期的结果,并降低决策风险。

4、噪声交易博弈。

噪声交易中,参与者会根据自己的知识和习惯建立假设,对对方
的行为做出判断,尽可能准确地表示自己的合理性和态度,结合各种博弈论模型,来获得
投资最优结果。

博弈论在各领域有着广泛的应用,为解决复杂的决策问题提供了有效的办法,因此在
我们日常生活中也得到了广泛的应用。

博弈论只是优化决策的有效方法。

实践中,决策者
必须仔细考虑和研究,以便将博弈论中的最佳结果真正运用到实际生活中去。

博弈论的日常生活例子

博弈论的日常生活例子

博弈论的日常生活例子以下是 9 条关于博弈论的日常生活例子:1. 买菜的时候,你和小贩讨价还价,这不就是一场博弈嘛!你想着压低价格,小贩想着多赚点,这就跟下棋一样,都在算计着怎么出招才能达到自己的目的。

比如他说这个菜 10 块钱,你说 8 块行不,哎呀呀,这不就是在斗智斗勇嘛!2. 玩扑克牌的时候呀,你得揣测其他人手里的牌,还得想好自己怎么出牌,这不就是典型的博弈!大家都在互相猜测,看谁能笑到最后。

要是你一下就把好牌都打出去了,那可就糟糕啦,这就像在走钢丝,得小心翼翼呀!3. 在职场上,和同事竞争一个项目,这可是一场大博弈嘞!你要展现自己的优势,又得防止同事出什么奇招。

就像在擂台上,谁能最终获胜呢?是不是想想都紧张刺激呀!4. 跟朋友分蛋糕的时候,怎么分才能让大家都满意,这也是博弈呀!谁多一点谁少一点都可能引发“世界大战”呢。

哎呀呀,这小小的蛋糕也能有这么大的学问嘞!5. 去商场买衣服,你和店员砍价不?那就是一场博弈呀!你说这么贵能不能便宜点,店员说这已经很优惠啦,这不就是在互相拉扯嘛。

就好像拔河比赛,谁能坚持到最后呢?6. 在家庭中,比如决定周末去哪里玩,每个人都有自己的想法,这也算是一种博弈吧!爸爸想去爬山,妈妈想去逛街,孩子想去游乐园,最后怎么决定呢?这可真是让人头疼又有趣呀!7. 打车的时候和司机商量车费,也算博弈呀!你觉得贵了,司机觉得就该这么多,那不得好好讲讲价。

这就跟两军对垒似的,谁能说服谁呢?8. 选班长的时候,同学们互相竞争,各自展示自己的能力,这就是博弈呀!都想获得大家的认可,当上那个班长。

这竞争可激烈啦,真的像一场没有硝烟的战争呢!9. 跟朋友约着看电影,选择看什么电影就是一轮博弈哦!你想看爱情片,他想看科幻片,得商量出一个都能接受的来。

这就像在谈判桌上,谁能让对方让步呢?我觉得呀,博弈论真的无处不在,生活就是一场场大大小小的博弈!我们都在其中摸爬滚打,不断学习和成长呢!。

博弈论在现实生活中的应用

博弈论在现实生活中的应用

博弈论在现实生活中的应用博弈论在现实生活中有着广泛的应用,涉及到经济、政治、商业、社会等领域。

在各种决策过程中,博弈论都发挥着重要作用,对于理解和预测人类行为具有重要意义。

本文将围绕着博弈论在现实生活中的应用展开讨论。

可以从经济领域的应用入手。

许多经济学理论可以从博弈论的角度进行解释和理解。

市场上的价格形成和供求关系可以被看作是各个参与者基于自身利益进行博弈的结果。

竞争者在定价和营销策略中也会进行各种博弈行为,而博弈论可以帮助他们理解对手的行为,并作出更加明智的决策。

在拍卖市场中,博弈论也被广泛应用,例如在竞价拍卖中,参与者的出价策略可以被看作是一个博弈过程,理解这个博弈过程对于参与者制定出更有利的策略非常重要。

在政治领域,博弈论同样有着重要作用。

政治家在制定政策时需要考虑到各种利益相关者的反应,而这种反应往往可以被理解为博弈过程。

在国际关系中,各国之间的对抗和合作可以被看作是一个博弈模型,通过博弈论可以更好地理解各国的行为动机和战略选择,帮助政策制定者做出更明智的决策。

在商业领域,博弈论也被广泛应用。

企业间的竞争和合作可以被看作是一个博弈过程,各企业在制定价格策略、市场策略时需要考虑到竞争者的反应,博弈论可以帮助他们理解竞争者的行为,并制定出更加有效的竞争策略。

在谈判过程中,博弈论也发挥着重要作用,可以帮助谈判双方理解对方的利益和战略选择,从而更好地进行谈判。

在社会领域,博弈论同样有着广泛的应用。

在合作博弈中,人们在面对合作和竞争的选择时需要考虑到对方的行为,博弈论可以帮助人们理解这种合作和竞争的动机,并指导他们进行更加有效的合作。

在博弈论中有关于合作与背叛的经典囚徒困境模型,这个模型在解释社会中的合作和社会规范方面有着非常重要的意义。

通过博弈论,人们可以更好地理解合作的动机和机制,从而更好地促进社会合作和发展。

博弈论在现实生活中有着广泛的应用,涉及到经济、政治、商业、社会等各个领域。

博弈论可以帮助人们理解决策者的行为和动机,指导人们做出更加明智的决策,对于促进合作、竞争和社会发展具有非常重要的意义。

博弈论在经济学中的应用

博弈论在经济学中的应用

博弈论在经济学中的应用博弈论是一种重要的数学工具,广泛应用于经济学领域。

它研究个体在决策过程中的相互作用以及其对个体行为和社会结果的影响。

本文将介绍博弈论在经济学中的基本原理和应用。

一、博弈论的基本原理博弈论研究的是决策者之间的相互关系和相互作用。

在博弈论中,决策者被称为"玩家",他们面临不同的策略选择,并根据其他玩家的策略选择来进行决策。

博弈论的核心概念是"策略"和"支付"。

策略是决策者所选择的一组行动,而支付则代表决策者从特定策略组合中获得的效用或收益。

二、博弈论的应用领域博弈论在经济学中有着广泛的应用,下面我们将从市场竞争、合作与冲突以及信息不完全三个方面来介绍。

1. 市场竞争博弈论可以用来分析市场中企业之间的竞争行为。

在竞争环境下,企业需要选择不同的价格和产量水平以达到最大利润。

通过博弈模型,可以预测企业之间的策略选择,并找到纳什均衡,即博弈参与者做出的决策相互协调且无法通过改变自身策略而获得更大收益的状态。

2. 合作与冲突博弈论也可以用于分析合作与冲突的情况。

在合作关系中,博弈论可以用来研究策略合作的条件、合作效果以及如何有效地分配收益。

而在冲突情况下,博弈论可以帮助分析决策者对抗的策略选择和结果。

3. 信息不完全博弈论在信息不完全的环境下也能发挥作用。

经济活动通常面临信息不对称的问题,某些参与者拥有更多的信息,而其他人则不完全了解。

博弈论可以分析不完全信息下的策略选择和结果,并提供相应的解决方案,如逆向选择、道德风险等问题。

三、博弈论的案例分析博弈论在经济学中有许多经典的案例,下面我们将介绍其中两个具有代表性的案例。

1. 雷奥纳德•齐夫定价模型齐夫定价模型是一个经典的博弈论案例,它研究的是两个垄断企业在定价策略上的博弈。

在这个模型中,两家企业同时制定价格,但通过博弈分析可以发现,最终它们将会达到一个较低的价格,从而相互竞争减少利润损失。

十大博弈论经典案例

十大博弈论经典案例

十大博弈论经典案例博弈论是一门研究决策制定和互动行为的学科,它通过分析参与者之间的策略选择和结果影响来研究决策的最优解。

在博弈论中,经典案例可以帮助我们理解博弈论的基本概念和原理。

下面将介绍十大博弈论经典案例。

1. 战略井字棋战略井字棋是一种基于井字棋游戏的扩展形式,其中每个玩家都可以选择放置一个标记或阻止对手放置标记。

这个案例展示了零和博弈的情况,即一方的收益等于另一方的损失。

这种情况下,每个玩家都会采取最佳策略,因此博弈结果是可预测的。

2. 牛市与熊市的博弈股票市场中牛市和熊市的交替是博弈论的典型应用场景。

在牛市中,投资者倾向于买入股票以获取更高的回报;而在熊市中,投资者倾向于卖出股票以避免损失。

这种情况下,每个投资者都要权衡风险与收益,并根据市场走势调整策略。

3. 囚徒困境囚徒困境是博弈论中的经典案例,用于研究自利个体之间的合作问题。

两名犯人被抓获,检察官分别与他们单独交谈,给他们提供选择:合作或背叛对方。

根据他们的选择不同,将得到不同的判决。

这个案例展示了合作和背叛之间的博弈以及结果的影响。

4. 社交网络中的网络效应社交网络中的网络效应也是博弈论的研究领域之一。

人们在社交网络中的决策往往受到他人决策的影响。

例如,在社交媒体上,用户参与与否、跟随与否都会受到其他用户的决策影响。

这种情况下,每个个体的策略选择会受到网络效应的影响。

5. 价格竞争价格竞争是博弈论中的常见案例,特别是在市场竞争中。

公司之间的价格竞争会影响到市场份额和利润。

根据博弈论的原理,公司会在选择价格时考虑对手的策略,并权衡自身利益和市场需求。

在价格竞争中,涉及到策略的选择和博弈结果的分析。

6. 拍卖拍卖是博弈论中的经典案例之一,也是交易理论的重要组成部分。

在拍卖中,买方和卖方之间进行价格竞争,竞拍者的策略选择和出价会影响最终交易结果。

拍卖中涉及到的博弈与策略选择有助于了解经济交易中的决策制定。

7. 博弈与金融市场博弈论在金融市场中的应用也非常广泛。

博弈论在日常生活中的应用

博弈论在日常生活中的应用

博弈论在日常生活中的应用小议博弈论在日常生活中的应用摘要:博弈过程本来就是一种日常现象。

我们在日常生活中经常需要先分析他人的意图从而做出合理的行为选择,选出一种最优策略再加以行动。

博弈融合在我们生活的点点滴滴之中,时时与我们相伴,所以,接下来的本文要为我们举例及讨论一些博弈论在生活中的应用。

了解生活中的一些博弈事件后,希望我们日后能以理论结合实践,能从博弈论的理论角度出发,在实践中加以应用。

关键词:博弈、选择、策略、日常生活正文:0引言许慎在《说文解字》中说:“弈,围棋也~”班固的《弈旨》说:“北方之人谓棋为弈。

”杨雄的《方言》也说:“围棋,自关东齐鲁之间谓之弈。

”无论是六博还是围棋都是一种游戏,由此看,博弈最初的本意就是一种游戏。

然而,随着博弈在社会生活中的发展与应用,现代数学中有博弈论,表示在多决策主体之间行为具有相互作用时,各主体根据所掌握信息及对自身能力的认知,做出有利于自己的决策的一种行为理论。

在现实生活中的个体、团体或其他组织,面对一定的环境条件,在一定的规律约束下,依靠掌握的信息,同时或先后一次或多次,对各自允许选择的行为或策略进行选择并加以实施,并各自从中取得相应结果或受益,这个过程便是博弈的过程。

博弈论的应用范围非常广泛,市场竞争、环境保护、公共资源的开发与利用、各种经济比赛等都属于博弈现象。

1博弈论中的两个基本概念(1)策略(strategies):一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。

(2)博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。

2博弈论在日常生活中的几个应用(1)个人选择困境“人生如棋,一步下错,全盘皆输。

”这句话主要表达人的一生中的某些抉择的重要性。

所以,我们每一次的选择何尝不是一种博弈呢,记得某位老师曾和我们说过这样一种观念——世界存在的一种三维空间,即是在未来的某一时刻存在着无数个你,有当画家的你、当作家的你、当科学家的你、当教师的你等等等等无数的你,然而,就是因为你某一瞬间的决定,杀死了无数个你自己。

博弈论在市场竞争中的应用

博弈论在市场竞争中的应用

博弈论在市场竞争中的应用博弈论(Game Theory)是一门研究决策制定者在相互影响下做出的决策的学科。

它帮助我们理解并预测不同参与者之间的策略选择和预期结果。

在市场竞争中,博弈论可以提供有力的工具和方法,帮助企业和管理者制定最佳的市场策略,优化资源配置和实现利润最大化。

本文将探讨博弈论在市场竞争中的应用,并分析其中的一些案例。

1. 选择博弈选择博弈是博弈论中的一种基本形式,涉及到参与者在做出决策时的选择。

在市场竞争中,企业面临着多个竞争对手和不同的市场环境。

通过运用选择博弈模型,企业可以分析竞争对手的动作与反应,并据此做出决策。

例如,在价格竞争中,两家公司决定是否降低价格。

通过分析不同的策略组合,企业可以预测其他竞争对手可能采取的行动,并选择最佳的策略以保持竞争优势。

2. 平衡概念博弈论中的一个重要概念是平衡。

平衡表示参与者在特定情境下做出的决策,没有激励去改变这个决策。

在市场竞争中,平衡可以帮助企业预测竞争对手可能采取的策略,并作出相应的反应。

例如,双头垄断是一种常见的市场结构,其中两家公司垄断了市场上的供应和需求。

这种情况下,博弈论可以帮助企业预测竞争对手的行为,并制定相应的策略以实现最佳的利润。

3. 合作与竞争市场竞争中,企业既面临合作的机会,也面临激烈的竞争。

博弈论帮助企业在决策中权衡合作与竞争的利弊,并寻找最优的决策。

例如,合谋博弈是一种策略,其中竞争对手可以选择合作以获得更大的利益。

通过分析合谋博弈模型,企业可以预测竞争对手是否有合作的动机,并相应地做出决策。

同时,企业也需要警惕竞争对手可能的背叛,并制定相应的对策。

4. 进入市场的决策在市场竞争中,企业的进入和退出对市场结构和竞争格局都会产生重要影响。

博弈论可以帮助企业预测竞争对手的进入决策,并据此作出适当的反应。

例如,新进入者进入市场后可能会瓦解现有竞争格局,影响企业的利润和市场份额。

通过分析进入博弈模型,企业可以评估竞争对手的进入可能性,并制定相应的市场策略。

身边的博弈简介及应用案例

身边的博弈简介及应用案例

身边的博弈简介及应用案例博弈论是研究决策者在相互作用中做出决策的一门学科,它模拟了人们在面对冲突、竞争和合作等情景时做出的理性决策。

在现实生活中,博弈论被广泛应用于经济学、政治学、社会学等领域,用于分析和解决各种决策问题。

下面将介绍一些身边的博弈以及应用案例。

1. 集体行动博弈:集体行动博弈是指涉及多个参与者共同决策和行动的情况。

一个典型的案例是环保行为。

在城市的环境保护中,每个个体都面临着“我一个人的行动对环境几乎没有直接影响”的困境,因此容易出现不积极的行为。

博弈论提供了一种分析和解决这种问题的思路。

例如,一些城市推出了称为“碳排放权交易”的政策,通过引入市场机制,给予个人或企业减排的经济激励,从而实现了环境保护的集体行动。

2. 价格竞争博弈:价格竞争是企业常常面临的问题。

在市场中,多个企业同时决定其产品的定价,然后根据定价决策获得竞争优势。

这是一个典型的博弈情景。

博弈论对于分析多个企业之间的价格竞争以及制定定价策略非常有帮助。

例如,奢侈品市场常常面临价格竞争的问题。

一个企业的定价策略会直接影响其他竞争对手的市场地位,因此企业需要仔细分析市场格局和竞争对手的行为才能做出最优的定价决策。

3. 合作博弈:合作博弈是指参与者通过合作实现共同利益的博弈情景。

例如,在企业的合作与合并中,不同企业或部门可能需要协商成本分摊、资源共享、合作项目等。

博弈论提供了一种分析和解决合作博弈的方法。

例如,在合作项目的谈判中,各方可以运用博弈论的思想确定最有利的合作方式和利益分配方案,使各方在合作中获得最大化的利益。

4. 社交网络博弈:社交网络中的决策问题也可以用博弈论来处理。

在社交网络中,人们常常需要在与朋友交往、社交活动等之间做出选择,并且这些选择会受到其他人的选择的影响。

例如,在微信朋友圈中,每个人都需要决定在朋友圈中发布什么内容,这既可以是个人兴趣的表达,也可以是为了获得他人的认同或者得到更高的社交地位。

博弈论可以用于分析人们在社交网络中的决策行为,以及这些行为对个体之间的关系和网络结构的影响。

博弈论在生活中的应用

博弈论在生活中的应用

博弈论在生活中的应用博弈论是一个有趣的话题,也是一个可以应用于日常生活的话题。

当今世界有许多例子可以告诉你博弈论是如何运作的,无论是好是坏。

根据专家的说法,这些是一些现实生活中的例子,人们在这些例子中成功地使用了这一策略,或者并不那么成功。

博弈论的真正力量在于其分析激励和决策的能力。

对一种情况的统计分析将帮助你了解由机会控制的不同事件的可能性。

传统经济学会给你一个清晰的画面,告诉你一个拥有完美信息的理性、自利的行为者可能会做什么。

博弈论通过分析人们在特定情况下可能做出的选择,在这两个极端之间的空间里运作。

➢博弈论最有用的应用之一是在政治方面美国的政党很少与特定选民的政治偏好完美匹配。

即使是那些认为自己非常保守或非常自由的人,他们的信仰也有一些特异之处。

我们不仅可以用博弈论来预测选民在面对两党之间的不完美选择时可能会做什么,还可以预测广告、新闻报道、其他选举以及不同问题的相对重要性等因素如何影响选民的决策。

它也可以应用于候选人和政党本身的行为。

➢任何领域的消费者和投资者行为的预测者博弈论也可以成为任何领域的消费者和投资者行为的一个伟大预测者。

在我的工作领域,高等教育的选择就是一个很好的例子。

追求大学学位的人越多,这些学位作为工作准备的信号的价值就越小。

如果我们把未来的大学生看作是试图通过以良好的价格获得有价值的证书而"获胜"的玩家,我们就应该看到精明的玩家在寻找价格较低的学位和其他职业道路方面的优势。

当然,与社会阶层和家庭期望有关的其他激励因素使情况变得复杂,但我们可以利用这些信息来更好地了解未来几年的教育市场。

在某些时候,大学学位的价值会促使入学率下降。

➢博弈论可以用来解释过去的事件和情况,并预测参与者的未来行动博弈论的最佳用途是通过分析每个参与者的成本和收益,从最佳选择中找到最佳解决方案。

它可以用于商业、心理学、生物学、经济学、政治学、计算机等领域该理论可以用来解释过去的事件和情况,并预测参与者的未来行动。

博弈论经典案例

博弈论经典案例

博弈论经典案例在我们的日常生活和社会经济活动中,博弈论的身影无处不在。

博弈论,简单来说,就是研究在相互影响的决策环境中,参与者如何做出最优决策的理论。

接下来,让我们一起探讨几个经典的博弈论案例,来感受其中的智慧和策略。

案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警察抓住,分别关在不同的房间里审讯。

警察掌握的证据并不充分,但知道他们犯了罪。

现在警察给他们两个选择:如果两人都坦白,各判刑 8 年;如果一人坦白一人抵赖,坦白的人判刑 1 年,抵赖的人判刑 10 年;如果两人都抵赖,各判刑 2 年。

从 A 的角度来看,如果 B 坦白,自己坦白判刑 8 年,抵赖判刑 10 年,所以坦白更好;如果 B 抵赖,自己坦白判刑 1 年,抵赖判刑 2 年,还是坦白更好。

所以,对于 A 来说,无论 B 怎么选择,坦白都是自己的最优策略。

同样,B 也会这么想。

最终的结果往往是两人都选择坦白,各判刑 8 年。

这个结果对于两人整体来说并不是最优的,因为如果他们都抵赖,各判刑 2 年,总刑期会更短。

但由于两人无法相互信任和沟通,都从自身利益出发做出了看似最优的选择,却导致了次优的结果。

囚徒困境揭示了个体理性与集体理性之间的冲突,在现实生活中,类似的情况屡见不鲜。

比如企业之间的价格战,每个企业都想通过降价来争夺市场份额,但如果大家都降价,最终可能都赚不到钱。

案例二:智猪博弈猪圈里有一头大猪和一头小猪,猪圈的一头有一个猪食槽,另一头安装着控制猪食供应的按钮。

按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。

若大猪先到槽边,大猪吃到 9 个单位,小猪只能吃到 1 个单位;若同时到槽边,大猪吃 7 个单位,小猪吃 3 个单位;若小猪先到槽边,大猪吃 6 个单位,小猪吃 4个单位。

那么,对于小猪来说,无论大猪是否去按按钮,自己等待都是最优选择。

因为如果大猪去按,小猪等待能吃到4 个单位;如果大猪等待,小猪去按只能吃到-1 个单位,等待能吃到 0 个单位。

生活中博弈论的例子(范文2篇)

生活中博弈论的例子(范文2篇)

生活中博弈论的例子(范文2篇)以下是网友分享的关于生活中博弈论的例子的资料2篇,希望对您有所帮助,就爱阅读感谢您的支持。

生活中博弈论的例子(1)生活中的博弈论有那些例子那讲工作上的事假如你做的策划被上司偷了那你是要向更高级的领导告状还是忍受这也算一个博弈论问题你要是告状,也许能够伸冤,但也会若到上司他可能会给你下绊子但不上诉他也许会再偷,你的工作就白废了还有物价方面假如几个店铺联合起来自然能够把东西卖的比较贵但只要其中一个降价其他店的客人就会全跑到那家去那另外几家也会被迫降价店铺联合本来是最好的赚钱方法但店铺间一般是敌对关系为防备有人订低价,引走客人所有的店铺都会尽可能低价其实我们学校门口的网吧刚上演了一出这个好戏真是有感触啊!!!!!弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。

基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。

因此,它被称为―社会科学的数学‖从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。

1.博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。

什么是博弈论?古语有云,世事如棋。

生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。

博弈论是研究棋手们―出棋‖ 着数中理性化、逻辑化的部分,并将其系统化为一门科学。

换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。

微观经济学-博弈论及应用

微观经济学-博弈论及应用
寡头垄断下,古诺均衡实际上就是纳什均衡。即给定A厂商的产量, B实现了利润最大化;给定B厂商的产量,A实现了利润最大化。
参与人 A
参与人B


上 2,1 0,0 下 0,0 1,2
在上面收益矩阵描述的博弈中,存在四个策略组合:(上,左)、 (上,右)、(下,左)、(下,右)。
根据N.E.的定义,请找出N.E.
借助N.E.预测博弈的结果,往往会遇到两个问题: 1、N.E.不止一个。 2、一些博弈中不存在纳什均衡。如下面收益矩阵描述的博弈:
参与人 A
参与人B


上 0,0 0,-1 下 1,0 -1,3
28.3 混合策略 迄今为止,参与人的策略均为纯策略。纯策略指参与人以100%
概率选择的策略。
而现实中,参与人完全可以随机选择策略,例如参与人采取抛硬 币的方法确定自己的策略——硬币正面朝上就“上”,反面朝上就下。 该策略实际就是以50%的概率选择上,以50%的概率选择下。这种随机 策略称为混合策略。


下(1>0)。因此,A的最优策略
参与 上 1,2 人A 下 2,1
0,1 1,0
“下”与B的策略并没有关系,此 时A的最优策略为“下”。
B做同样的思考:如果A选上,我就选左(2>1);如果A选下,我就选 左(1>0)。因此,B决定采取“左”。
上述分析中,A的“下”、B的“左”被称为占优策略。
占优策略:不论对方采取什么策略,该策略总是最优的。 显然,在博弈中,参与人如果有占优策略,他一定选择占优策
博弈的扩展形式 B

• 1,9
A
上•

下B

• 1,9

博弈论的应用

博弈论的应用

博弈论的应用一、博弈论的定义博弈论正式术语是“经济学及决策论的游戏分析”,它是构建模拟的决策者的理性和依据来研究游戏过程的一种数学,是研究决策者之间的冲突和合作的一个理论工具。

它可以用来研究由两个或多个可以采取互斥的行动的决策者组成的一组人的协作与竞争的行为及其后果,从而推断互不共知的行动方以及满足最优收益目标的最优解决方案。

二、博弈论在经济领域的应用1、市场领域应用:博弈论可以帮助更好地理解市场结构,预测差异化竞争下的行为及其结果,如垄断、垄断相近产品市场、竞争激烈市场等。

2、金融领域应用:博弈论可以用于金融市场,其中包括衡量金融机构之间的合约决策、竞争利益的分析、金融衍生品的套期保值机制等。

3、交通领域应用:博弈论可以用于分析交通系统中各自行为者的行为,如调度路线和费率的决策,以期达到最优的解决方案。

4、制约条件下的决策应用:在制约条件下,如资源限制,博弈论可以用来研究两个决策者如何在某些制约条件下实现最优结果。

三、博弈论在现实生活中的应用1、政治外交领域:博弈论可用于模拟政治家与邻国的交涉,推断互不同家的最佳行动方案。

2、营销:博弈论也可用于模拟比萨出售策略,从而可以估计出最佳零售价格,更好地服务消费者。

3、工程管理:运用博弈论,可以分析工程管理中不同行动方对技术、产品及服务等的决策,以达成最佳结果。

4、信息公开:博弈论可以模拟不同角色对公开信息的行动,以帮助人们做出最佳的选择,减少不必要的损失。

四、博弈论的未来应用1、自然资源管理:博弈论也可以用于全球环境恶化,博弈论可以用于模拟不同角色如何处理自然资源,使其贡献最大的生态系统效益。

2、情感机器:通过搜集人的行动行为,理解他们的思维习惯,最终为人们提供有效的指导解决方案,这需要融合博弈论以及机器学习算法来开发智能交互系统,以满足面临复杂决策情境中的科学选择。

3、医学决策:博弈论可以用于模拟医生患者之间的协作,以期达到临床决策最佳结果。

4、复杂决策:博弈论也可用于模拟复杂决策过程,如社会和政治分析等,这让人们可以预测不同小组的行动方案,再做出更优的决定,实现更加系统的发展。

生活中的博弈论例子

生活中的博弈论例子

生活中的博弈论例子引言博弈论是数学中的一个分支,用于研究决策制定者在有限选择中的最优解。

尽管博弈论最初只被应用于经济学和政治学领域,但它在日常生活中也有广泛的应用。

在本文中,我们将探讨一些生活中的博弈论例子,以解释博弈论的概念和应用。

1. 餐厅选择假设你和朋友们想在周末一起去吃晚餐,在城市里有两家非常受欢迎的餐厅:餐厅A和餐厅B。

你和朋友要决定去哪家餐厅用餐。

•如果你选择去餐厅A,但朋友们多数选择去餐厅B,你可能会感到失望,因为你会觉得自己做了错误的决定。

•相反,如果你选择去餐厅B,但朋友们大多数选择去餐厅A,同样会让你感到失望,因为你与大多数人的口味不符。

这个例子展示了一种博弈论中的均衡状态称为“纳什均衡”。

在这种情况下,你和朋友都选择不更改自己的选择,因为他们认为自己的选择是最优的。

2. 交通堵塞交通堵塞是生活中常见的问题之一。

假设你通勤的时候有两条路可供选择:A和B。

如果每个人都选择路线A,那么A 路上的交通情况将变得更糟;相反,如果每个人都选择路线B,那么B路上的交通情况也会变得更糟。

在这种情况下,理性的决策制定者会考虑到其他人的行为,并选择尽量减少整体交通堵塞的策略。

这可能会导致一些人选择其他交通方式,选择不同的出行时间或者选择其他路线。

这个例子展示了博弈论中的集体最优解的概念。

3. 供需平衡在经济领域,博弈论被广泛用于解决供需平衡问题。

假设市场上有两家公司A和B分别生产产品X和产品Y,并且两种产品的需求量相对稀缺。

如果公司A提高产品X的价格,那么需求量可能会下降;相反,如果公司B降低产品Y的价格,那么需求量可能会上升。

两家公司都希望能够最大化自己的利润,这就涉及到一个博弈论中的“斯塔克伯格竞争”概念。

在这种情况下,最终的均衡解可能是通过产品价格调整来实现供需平衡。

两家公司都会考虑对方的价格策略,以使自己的产品具有竞争力,但又能够获得一定的利润。

4. 投标竞争在生活中,我们可能参与到一些招标或竞争过程中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论及其简单应用
2010年3月16日
陈敬灿
一、介绍博弈论
(一)概念,什么是博弈论
1.概念:博弈论Game Theo ry,又称对策论,是使用严谨的数学 模型研究冲突对抗条件下最优决策问题 的理论,是研究竞争的逻辑和规律的数 学分支。简单地说,博弈论是研究决策 主体在给定信息结构下如何决策以最大 化自己的效用,以及不同决策主体之间 决策的均衡。
10
虚拟参与人pseudo-player
为了分析方便,自然nature被当作虚拟参
与人。 自然代表决定外生随机变量的概率分布 的机制。比如房地产开发中市场需求的 大小。
11
行动 ACTIONS OR MOVES
参与人在博弈的某个时点的决策变量。
(坦白) N个参与人的行动的有序集称为行动组合 (坦白,抵赖)。
清华诚志 7
NASH均衡
1950年和1951年纳什的两篇关于非合作
博弈论的重要论文,彻底改变了人们对 竞争和市场的看法。他证明了非合作博 弈及其均衡解,并证明了均衡解的存在 性,即著名的纳什均衡。从而揭示了博 弈均衡与经济均衡的内在联系。因为在 现实世界中,非合作博弈要比合作博弈 普遍得多。
NASH均衡条件下的行为规则
逃税 纳 纳税人 税 人 不逃税
税收机关 检查 A-C+F,-A-F 不检查
A-C, -A
0,0
A,-A
30
纳税检查边际
S 为税务机关检查的概率,E为纳税人逃
税概率。给定E,税收机关选择检查与否 的期望收益: K(1,E)=(A-C+F)E+(A-C)(1-E) =EF+A-C K(0,E)=0E+A(1-E)=A(1-E) 解K(1,E)= K(0,E),得:E=C/(A+F)纳税人 逃税概率小于E,税收机关的最优决策是 不检查,否则则反。
31
逃税边际
给定S,纳税人选择逃税与否的期望收益
是: K(S,1)=(-A-F)S+0(1-S)=-(A+F)S K(S,0)=-AS+(-A)(1-S)=-A 解K(S,1)= K(S,0) ,得S=A/(A+F)即,如 果税收机关检查的概率小于S,纳税人的最 优选择是逃税,否则交税。 混合纳什均衡是S,E,即税收机关以S的概 率查税,而纳税人以E的概率逃税。
线,协议由A方提供生产汽车的技术,B方则 提供厂房和设备。在对技术和设备进行资产评 估时就形成非合作博弈,因为每一方都试图最 大化己方的评估值,这时B方如果能够获得A 方关于技术的真实估价或参考报价这类竞争情 报,则可以使自己在评估中获得优势;同理, A方也是一样。至于自己的资产评估是否会影 响合作企业的总体运行效率这样的"集体利益", 则不会非常重视。这就是非合作博弈,参与人 在选择自己的行动时,优先考虑的是如何维护 自己的利益。
12
行动的顺序
对于博弈的结果非常重要。有关静态和
动态博弈的区分就是基于行动的顺序做 出的。 同样的行动集合,行动的顺序不同,每 个参与人的最有决策就不同,博弈的结 果也不同。尤其在不完全信息博弈中, 后行动者依赖观察先行动者的行动来获 取信息。
13
信息 information
参与人有关博弈的知识,特别是有关自
清华诚志 6
囚徒困境的意义
“囚徒的两难选择”有着广泛而深刻的意
义。个人理性与集体理性的冲突,各人 追求利己行为而导致的最终结局是一个 “纳什均衡”,也是对所有人都不利的 结局。他们两人都是在坦白与抵赖策略 上首先想到自己,这样他们必然要服长 的刑期。只有当他们都首先替对方着想 时,或者相互合谋(串供)时,才可以得到 最短时间的监禁的结果。
22
顺序和信息
博弈论非常强调时间和信息的重要性,
认为时间和信息是影响博弈均衡的主要 因素。在博弈过程中,参与者之间的信 息传递决定了其行动空间和最优战略的 选择;同时,博弈过程中始终存在一个 先后问题SequenceOrd er,参与人的行动次序对博弈最后 的均衡有直接的影响。
23
分类
则,它规定参与人在什么时候选择什么 行动。 战略与行动:战略是行动的规则而不是 行动本身。 在静态博弈中,战略和行动是相同的。 战略必须是完备的,要给出参与人在每 一种可想象得到的情况下的行动选择。
16
支付payoff(效用utility)
在一个特定的战略组合下参与人得到的
确定效用水平,或是指参与人得到的期 望效用水平。
27
价格战
厂家价格大战的结局也是一个“纳什均衡”,而且价
格战的结果是谁都没钱赚。因为博弈双方的利润正好 是零。竞争的结果是稳定的,即是一个“纳什均衡”。 这个结果可能对消费者是有利的,但对厂商而言是灾 难性的。所以,价格战对厂商而言意味着自杀。 1996年3月26日,作风强悍,霸气十足的长虹董事长倪 润峰宣布,所有品种彩电一律大幅度让利销售,降价 幅度从8%到18%。随后,猝不及防的其他中国厂家纷 纷选择跟进。 2005年4月16日,长虹公布了2004年年报,抛出中国股 市有史以来上市公司亏损之最:36.81亿元。价格战的 发明者和坚决的拥护者,为最后的豪赌交出了最昂贵 的学费。
32
博弈论的重要性
博弈论是一个强有力的分析工具。现在,它不
仅在经济学领域、在军事、政治、商业征战、 社会科学领域以及生物学等自然科学领域都有 非常重大的影响,工程学中如控制论工程也少 不了它。帮助大家形成博弈论的基本概念,实 际上它是非常精深的。现在与它紧密联系的经 济学分支是信息经济学。信号游戏、拍卖形式、 激励机制、委托人--代理人理论和公共财政学 是博弈论和信息经济学研究的重要课题
28
纯战略与混合战略
如果一个战略规定参与人在每一个给定
的信息情况下只选择一种特定的行动, 称为纯战略。 如果一个战略规定参与人在给定的信息 情况下以某种概率分布随机地选择不同 的行动,称为A 为应纳税款,C为检查成本, F是偷税
罚款。假定 C<A+F。不存在纯战略纳什 均衡。
25
不完 全信 息
主要思想
博弈论并不是经济学的一个分支,它只是一种
方法,这也是为什么许多人将其看成数学的一 个分支的缘故。博弈论已经在政治、经济、外 交和社会学领域有了广泛的应用,它为解决不 同实体的冲突和合作提供了一个宝贵的方法。 在对参与者行为研究这一点上,博弈论和经济 学家的研究模式是完全一样的。经济学越来越 转向人与人关系的研究,特别是人与人之间行 为的相互影响和相互作用,人与人之间利益和 冲突、竞争与合作,而这正是博弈论的研究对 象。
然的选择,其他参与人的特征和行动的 知识。 完美信息perfect information:指一个参与 人对其他参与人的行动选择有准确的理 解,即每个信息集只包含一个值。
14
共同知识common knowledge
所有参与人知道每一步的信息集。
15
战略strategies
参与人在给定信息集的情况下的行动规
26
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的
思想,每个个体都是理性的,所以必须了解竞 争对手的思想。商业关系被认为是一种相互作 用。但博弈论并不是疗法,并不是处方,它并 不告诉你该付多少钱买东西,这是计算机或者 字典的任务。博弈论只是提供一些关系的例证, 一些有用的解决问题的方法。这种思维方法也 许是企业家应该学习的。对于经济学家,也许 需要学习它的理论模型,它的实验方式
博弈的划分可以从参与人行动的次序和
参与人对其它参与人的特征、战略空间 和支付的知识、信息,是否了解两个角 度进行。把两个角度结合就得到了4种 博弈:完全信息静态博弈,完全信息动 态博弈,不完全信息静态博弈,不完全 信息动态博弈
24
博弈的分类及对应的均衡
静态 完全 信息 完全信息静态博弈; 纳什均衡; Nash(1950) 不完全信息静态博弈; 贝叶斯纳什均衡; 海萨尼(1967-1968) 动态 完全信息动态博弈; 子博弈精炼纳什均衡; 泽尔腾(1965) 不完全信息动态博弈, 精炼贝叶斯纳什均衡; 泽尔腾(1975) Kreps,Wilson(1982), Fudenberg,Tirole(1991)
3
3.博弈论的通俗名称
博弈论的提法可能太过于学术化,容易让人们
退避三舍。其实它有一个非常通俗的名字--游 戏理论(博弈论的英文名字叫做"Game T heory",如果直译,就是"游戏理论")。 博弈论在我国还有一个名字,叫对策论。这些 名字都很好理解,博弈字面意思就是赌博、下 棋,赌博和下棋当然是游戏了,赌博和下棋的 时候常常要千方百计地应付对手,自然是要讲 究对策了。
33
四.博弈论与运筹学
运筹学是近代应用数学的一个分支,主要是将
生产、管理等事件中出现的一些带有普遍性的 运筹问题加以提炼,然后利用数学方法进行解 决。前者提供模型,后者提供理论和方法。 运筹学本身也在不断发展,现在已经是一个包 括好几个分支的数学部门了。比如:数学规划 (又包含线性规划;非线性规划;整数规划; 组合规划等)、图论、网络流、决策分析、排 队论、可靠性数学理论、库存论、对策论、搜 索论、模拟等等。
4、囚徒困境的例子
A. W. Tucker的囚犯困境(Prisoner‘s
Dilemma):

囚徒B 坦白 囚徒A 坦白 抵赖 抵赖
-8,-8 -10,0
0,-10 -1,-1
囚徒困境说明了什么
在(坦白、坦白)这个组合中,A和B都不能
通过单方面的改变行动增加自己的收益,于是 谁也没有动力游离这个组合,因此这个组合是 纳什均衡,也叫非合作均衡。 囚徒困境反映了个人理性和集体理性的矛盾。 如果A和B都选择抵赖,各判刑1年,显然比 都选择坦白各判刑8年好得多。当然,A和B 可以在被警察抓到之前订立一个"攻守同盟", 但是这可能不会有用,因为它不构成纳什均衡, 没有人有积极性遵守这个协定,显然最好的策略 是双方都抵赖.
相关文档
最新文档