三角函数诱导公式讲义
诱导公式讲义
诱导公式复习语录天下:One needs 3 things to be truly happy living in the wor ld: some thing to do, some one to love, some thing to hope for.1.基本公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= cos(2kπ+α)=tan(2kπ+α)= cot(2kπ+α)=公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= cos(π+α)=tan(π+α)= cot(π+α)=公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= cos(-α)=tan(-α)= cot(-α)=公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= cos(π-α)=tan(π-α)= cot(π-α)=公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= cos(2π-α)=tan(2π-α)= cot(2π-α)=公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cos(π/2+α)=tan(π/2+α)= cot(π/2+α)=sin(π/2-α)= cos(π/2-α)=tan(π/2-α)= cot(π/2-α)=sin(3π/2+α)= cos(3π/2+α)=tan(3π/2+α)= cot(3π/2+α)=sin(3π/2-α)= cos(3π/2-α)=tan(3π/2-α)= cot(3π/2-α)=(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为: 对于π/2*k ±α(k ∈Z)的三角函数值,①当k 是偶数时,得到α的同名函数值,即函数名不改变;②当k 是奇数时,得到α相应的余函数值,即sin →cos;cos →sin;tan →cot,co t →tan.(奇变偶不变)然后在前面加上(把α看成锐角时)原函数值的符号。
高中三角函数诱导公式知识点
⾼中三⾓函数诱导公式知识点三⾓函数是数学中属于初等函数中的超越函数的函数。
它们的本质是任何⾓的集合与⼀个⽐值的集合的变量之间的映射,那么接下来给⼤家分享⼀些关于⾼中三⾓函数诱导公式知识点,希望对⼤家有所帮助。
⾼中三⾓函数诱导公式知识1公式⼀:设α为任意⾓,终边相同的⾓的同⼀三⾓函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式⼆:设α为任意⾓,π+α的三⾓函数值与α的三⾓函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意⾓α与 -α的三⾓函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利⽤公式⼆和公式三可以得到π-α与α的三⾓函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利⽤公式⼀和公式三可以得到2π-α与α的三⾓函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三⾓函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα⾼中数学三⾓函数的诱导公式学习⽅法⼆推算公式:3π/2±α与α的三⾓函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα⾼⼀数学学习⽅法总结1.先看专题⼀,整数指数幂的有关概念和运算性质,以及⼀些常⽤公式,这公式不但在初中要求熟练掌握,⾼中的课程也是经常要⽤到的。
三角函数的诱导公式复习课件 PPT
答案
返回
问题导学
知识点一 诱导公式五 思考 1 角π6与角π3的三角函数值有关系?
答
sinπ6=cos
π3=12,cos
π6=sin
π3=
∴cosπ3-α=cosπ2-π6+α
=sinπ6+α=
3 3.
解析答案
跟踪训练 3 已知 sin α 是方程 5x2-7x-6=0 的根,α 是第三象限角,求
sinc-osαπ2--23απscinosπ2+32πα- α·tan2(π-α)的值. 解 方程 5x2-7x-6=0 的两根为 x1=-35,x2=2, 由 α 是第三象限角,得 sin α=-35,则 cos α=-45,
∴cos56π+α-sin2α-π6=- 33-23=-2+3
3 .
反思与感悟 解析答案
1+2sin 290°cos 430° (2) sin 250°+cos 790° .
1+2sin(360°-70°)cos(360°+70°) 解 原式= sin(180°+70°)+cos(720°+70°)
∴sinc-osαπ2--32απscinosπ2+32πα- α·tan2(π-α) =sinπ2s-inααccoossπ2α+α·tan2α
=cossinα(α-cossinαα)·tan2α=-tan2α=-csoins22αα=-196.
解析答案
返回
(2)已知 cosπ6-α= 33,
求 cos56π+α-sin2α-π6的值. 解 ∵cos56π+α=cosπ-π6-α=-cosπ6-α=- 33, sin2α-π6=sin2-6π-α=1-cos2π6-α=1- 332=23,
三角函数诱导公式全集
三角函数诱导公式全集三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高
三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
1、3、1三角函数的诱导公式(二、三、四)
1、3、1三角函数的诱导公式(二、三、四)讲义编写者:数学教师秦红伟我们利用单位圆定义了三角函数,而圆具有很好的对称性.能否利用圆的这种对称性来研究三角函数的性质呢?例如,能否从单位圆关于x 轴、y 轴、直线y=x 的轴对称性以及关于原点O 的中心对称性等出发,获得一些三角函数的性质呢?我们在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角转化为00到3600(0到2π)内的角的三角函数值,求锐角三角和函数值,可以通过查表求得,对于900到3600(π/2到2π)范围内的角的三角函数怎样求解,能不能像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.公式一(复习) sin(2)sin k απα+=;cos(2)cos k απα+=;tan(2)tan k απα+=(其中k ∈Z )一、【学习目标】1、复习公式一;2、理解、熟记公式二、三、四;3、会运用公式一、二、三、四解决简单的三角函数求值、化简问题.二、【自学内容和要求及自学过程】1、π+α与α(公式二)<1>角α的终边与π+α角的终边位置关系如何?结论: α的终边与π+α的终边互为反向延长线,它们的终边关于原点对称.<2>任意角α的终边与单位圆的交点坐标为P 1(x,y ),那么角π+α的终边与单位圆的交点是什么?结论:因为α的终边与π+α的终边互为反向延长线,它们的终边关于原点对称.所以α的终边与π+α的终边与单位圆的交点也关于原点对称,即P 2(-x,-y ).<3>根据三角函数的定义,请你写出α与π+α的各三角函数值[P 1(x,y ),P 2(-x,-y )].结论:sin α=y,cos α=x,tan α=y/x ;sin (π+α)=-y ,cos (π+α)=-x ,tan(π+α)=y/x.<4>请你根据问题<2>、<3>推导出诱导公式二.结论:sin(π+α)=-sinα;cos(π+α)=-cosα;tan(π+α)=tanα.2、π-α与α(公式四)<5>角α的终边与π-α角的终边位置关系如何?结论:α的终边与π-α的终边关于y轴对称.<6>任意角α的终边与单位圆的交点坐标为P1(x,y),那么角π-α的终边与单位圆的交点是什么?结论:因为α的终边与π-α的终边关于y轴对称.所以α的终边与π-α的终边与单位圆的交点也关于y轴对称,即P2(-x, y).<7>根据三角函数的定义,请你写出α与π-α的各三角函数值[P1(x,y),P2(-x, y)].结论:sinα=y,cosα=x,tanα=y/x;sin(π-α)=y,cos(π-α)=-x,tan(π-α)=-y/x.<8>请你根据问题<6>、<7>推导出诱导公式四.结论:sin(π-α)=sinα;cos(π-α)=-cosα;tan(π-α)=-tanα.3、-α与α(公式三)<9>角α的终边与-α角的终边位置关系如何?结论:α的终边与-α的终边关于x轴对称.<10>任意角α的终边与单位圆的交点坐标为P1(x,y),那么角-α的终边与单位圆的交点是什么?结论:因为α的终边与-α的终边关于x轴对称.所以α的终边与-α的终边与单位圆的交点也关于x轴对称,即P2(x, -y).<11>根据三角函数的定义,请你写出α与π-α的各三角函数值[P1(x,y),P2(x, -y)].结论:sinα=y,cosα=x,tanα=y/x;sin(-α)=y,cos(-α)=x,tan(-α)=-y/x.<12>请你根据问题<10>、<11>推导出诱导公式三.结论:sin(-α)=-sinα;cos(-α)=cosα;tan(-α)=-tanα.小知识我们可以用一段话来概括公式一到四:α+2kπ,-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.三、【综合练习与思考探索】练习一:例1、例2; 练习二:教材对应练习1、2、3、4四、【作业】1、必修题:习题1.3A 组2、3、4;2、选做题:总结记忆公式一、二、三、四.五、【小结】本节主要学习了有关角的终边的对称性、三角函数的诱导公式二、三、四以及应当注意的问题.六、【教学反思】公式记忆的前提是学生要理解公式的由来,要让学生自己能总结出公式记忆的口诀:“函数名不变,符号看象限”的简便记法.七、【课后小练】1、利用公式求下列三角函数值:<1>Cos(-510015‘);<2>sin (-17π/3). 2、cos3300=?3、化简:000012sin 290cos 430/(sin 250cos 790)++4、求下列三角函数的值:<1>sin4950cos(-6750) ;<2>sin(2n π+2π/3)cos (n π+4π/3)(n ∈Z ).5、设函数f(x)+asin (πx+α)+bcos(πx+β),其中a,b, α,β都是非零实数,且满足f(2007)=-1,求f(2008)的值.6、已知sin (3π+α)=3lg1/10,求cos (2π-α)的值.7、已知f (cosx )=cos17x,求证:f(sinx)=sin17x ;对于怎样的整数n ,才能由f(sinx)=sinnx 推出f(cosx)=cosnx.。
三角函数的诱导公式经典讲义
三角函数的诱导公式经典讲义三角函数的诱导公式是我们在学习和应用三角函数时经常用到的一个重要工具。
它能够帮助我们把一个三角函数表达式转化为其他三角函数的表达式,从而简化计算和推导过程。
本文将详细介绍三角函数的诱导公式的原理、推导过程以及常用应用。
一、诱导公式的原理诱导公式是基于三角函数的正负号周期性性质而得出的。
周期性是指三角函数在不同的角度上取值相同,而正负号则决定了函数的正负。
根据这些性质,我们可以利用一个固定的三角函数表达式来推导出其他角度上的三角函数表达式。
具体来说,我们可以通过利用已知的正弦函数和余弦函数的周期性关系,推导出其他三角函数的表达式。
例如,我们可以利用正弦函数的周期性关系:sin(x + 2π) = sin(x),再结合勾股定理,推导出余弦函数的表达式:cos(x) = sin(x + π/2)。
这就是三角函数的诱导公式的基本思路。
二、常用的诱导公式1.正弦函数的诱导公式sin(x ± π/2) = ±cos(x)sin(x ± π) = ±sin(x)sin(x ± 2π) = sin(x)2.余弦函数的诱导公式cos(x ± π/2) = ±sin(x) cos(x ± π) = -cos(x) cos(x ± 2π) = cos(x) 3.正切函数的诱导公式tan(x ± π/2) = ±cot(x) tan(x ± π) = tan(x)tan(x ± 2π) = tan(x) 4.余切函数的诱导公式cot(x ± π/2) = ±tan(x) cot(x ± π) = -cot(x) cot(x ± 2π) = cot(x) 5.正割函数的诱导公式sec(x ± π/2) = ±csc(x) sec(x ± π) = -sec(x) sec(x ± 2π) = sec(x) 6.余割函数的诱导公式csc(x ± π/2) = ±sec(x) csc(x ± π) = -csc(x) csc(x ± 2π) = csc(x)三、诱导公式的推导过程下面我们以正弦函数和余弦函数的诱导公式为例,介绍具体的推导过程。
第2节 同角三角函数的基本关系与诱导公式--2025年高考数学复习讲义及练习解析
第二节同角三角函数的基本关系与诱导公式1.同角三角函数的基本关系(1)平方关系:01sin 2α+cos 2α=1.(2)cos α2.三角函数的诱导公式公式一二三四五六角α+k ·2π(k ∈Z )π+α-απ-απ2-απ2+α正弦sin α-sin α-sin αsin αcos αcos α余弦cos α-cos αcos α-cos αsin α-sin α正切tan αtan α-tan α-tan α——口诀函数名不变,符号看象限函数名改变,符号看象限记忆规律奇变偶不变,符号看象限1.和积互化变形:(sin α±cos α)2=1±2sin αcos α.2.弦切互化变形:sin 2α=sin 2αsin 2α+cos 2α=tan 2αtan 2α+1,cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1,sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1.1.概念辨析(正确的打“√”,错误的打“×”)(1)若α,β为锐角,则sin 2α+cos 2β=1.()(2)sin(π+α)=-sin α成立的条件是α为锐角.()(3)若cos(n π-θ)=13(n ∈Z ),则cos θ=13.()答案(1)×(2)×(3)×2.小题热身(1)已知α为锐角,且sin α=45,则cos(π+α)=()A .-35B .35C .-45D .45答案A解析因为α为锐角,所以cos α=1-sin 2α=35,故cos(π+α)=-cos α=-35.故选A.(2)(人教B 必修第三册7.2.3练习B T2改编)已知tan α=2,则3sin α-cos αsin α+2cos α=()A .54B .-54C .53D .-53答案A解析原式=3tan α-1tan α+2=3×2-12+2=54.故选A.(3)下列三角函数的值中(k ∈Z ),与sin π3的值相同的个数是()①πk πk πcos (2k +1)π-π6;⑤sin (2k +1)π-π3.A .1B .2C .3D .4答案C解析对于①,πsin (k +1)π+π3,当k 为奇数时,sin (k +1)π+π3=sin π3;当k为偶数时,sin (k +1)π+π3=-sin π3,不满足题意.对于②,k πcos π6=sin π3满足题意.对于③,k πsin π3,满足题意.对于④,cos (2k +1)π-π6=cosπ6=-sin π3,不满足题意.对于⑤,sin (2k +1)π-π3=sin π3,满足题意.故选C.(4)(人教A 必修第一册习题5.3T5改编)-α)的结果为________.答案sin α解析原式=sin αcos α·cos α=sin α.考点探究——提素养考点一同角三角函数基本关系式的应用(多考向探究)考向1“知一求二”问题例1已知角α的终边在第三象限,且tan α=2,则sin α-cos α=()A .-1B .1C .-55D .55答案C解析由角α的终边在第三象限,则sin α<0,cos α<0,2,cos 2α=1,解得cos α=-55,sin α=-255,所以sin α-cos α=-255+55=-55.故选C.【通性通法】利用同角基本关系式“知一求二”的方法注意:由一个角的任一三角函数值可求出这个角的另外两个三角函数值,当利用“平方关系”公式求平方根时,会出现两解,需根据角所在的象限判断三角函数值的符号,当角所在的象限不明确时,要进行分类讨论.【巩固迁移】1.(2024·广东梅州模拟)已知cos α=13,且α为第四象限角,则tan α=()A .-22B .±22C .±23D .23答案A解析∵α为第四象限角,∴sin α<0,∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.故选A.考向2“弦切互化”问题例2已知tan θ=2,则1sin 2θ-cos 2θ的值为()A .34B .23C .53D .2答案C解析由题意,得1sin 2θ-cos 2θ=sin 2θ+cos 2θsin 2θ-cos 2θ=tan 2θ+1tan 2θ-1=22+122-1=53.故选C.【通性通法】若已知正切值,求一个关于正弦和余弦的齐次式的值,则可以通过分子、分母同时除以一个余弦的齐次幂将其转化为一个关于正切的分式,代入正切值就可以求出这个分式的值,这是同角三角函数关系中的一类基本题型,形如a sin x +b cos xc sin x +d cos x,a sin 2x +b sin x cos x +c cos 2x 等类型可进行弦化切.【巩固迁移】2.(2023·苏州模拟)已知sin α+3cos α3cos α-sin α=5,则cos 2α+sin αcos α=()A .35B .-35C .-3D .3答案A解析由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,可得tan α=2,则cos 2α+sin αcos α=cos 2α+sin αcos αcos 2α+sin 2α=1+tan α1+tan 2α=35.故选A.考向3sin α±cos α,sin αcos α之间关系的应用例3(2023·广东潮州模拟)已知π2<x <π,sin x +cos x =15,则sin x -cos x =________.答案75解析由(sin x +cos x )2=1+2sin x cos x =125,得2sin x cos x =-2425,所以(sin x -cos x )2=1-2sin x cos x =4925,因为π2<x <π,所以sin x >cos x ,故sin x -cos x =75.【通性通法】“sin α±cos α,sin αcos α”关系的应用sin α±cos α与sin αcos α通过平方关系联系到一起,即(sin α±cos α)2=1±2sin αcos α,sin αcos α=(sin α+cos α)2-12,sin αcos α=1-(sin α-cos α)22.因此在解题时已知一个用方程思想可求另外两个.【巩固迁移】3.(2023·山东聊城模拟)已知α-π2,sin α+cos α=55,则tan α的值为________.答案-12解析∵sin α+cos α=55,∴sin 2α+cos 2α+2sin αcos α=15,∴sin αcos α=-25,∴sin 2α+cos 2α-2sin αcos α=95=(sin α-cos α)2,又sin αcos α<0,α-π2,α-π2,sin α<0,cos α>0,∴cos α-sin α=355,∴sin α=-55,cos α=255,∴tan α=-12.考点二诱导公式的应用例4()A .-2B .-1C .1D .2答案B解析原式=-tan αcos α(-cos α)cos(π+α)[-sin(π+α)]=tan αcos 2α-cos αsin α=-sin αcos α·cos αsin α=-1.故选B.(2)已知=23,其中α________.答案-23解析-2π3+=-23.【通性通法】1.利用诱导公式解题的一般思路(1)化绝对值大的角为锐角;(2)角中含有加减π2的整数倍时,用公式去掉π2的整数倍.2.常见的互余和互补的角(1)互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等;(2)互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.【巩固迁移】4.(2024·湖南长郡中学高三质量检测)已知f (α)________.答案12解析因为f (α)=-sin αcos αcos α-cos αsin α=cos α,所以cos π3=12.考点三同角三角函数基本关系式与诱导公式的综合应用例5(1)已知=13,且α则cos ()A .13B .-13C .223D .-223答案C解析由sin π=13,而α,∴5π6-α-π6,=223.故选C.(2)(2023·辽宁葫芦岛模拟)若sin(π-θ)+cos(θ-2π)sin θ+cos(π+θ)=12,则tan θ=________.答案-3解析因为sin(π-θ)+cos(θ-2π)sin θ+cos(π+θ)=sin θ+cos θsin θ-cos θ=12,所以tan θ+1tan θ-1=12,解得tan θ=-3.【通性通法】利用诱导公式与同角三角函数基本关系解题的思路和要求(1)思路:①分析结构特点,选择恰当的公式;②利用公式化成同角三角函数;③整理得最简形式.(2)要求:①化简过程是恒等变换;②结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.【巩固迁移】5.已知cos167°=m ,则tan193°=()A .1-m2B .1-m 2m C .-1-m 2m D .-m 1-m 2答案C解析tan193°=tan(360°-167°)=-tan167°=-sin167°cos167°=-sin167°m,因为cos167°=m ,所以sin167°=1-m 2,所以tan193°=-1-m 2m.故选C.6.已知cos α=-513,且α________.答案1312解析∵cos α=-513,α∴sin α=1-cos 2α=1213,∴coscos(α+=cos α-cos α(-sin α)=1sin α=1312.课时作业一、单项选择题1.(2023·广西桂林模拟)sin9330°的值为()A .22B .-12C .12D .-22答案B解析sin9330°=sin(360°×25+330°)=sin330°=sin(360°-30°)=-sin30°=-12.故选B.2.(2023·吉林长春质检)已知=13,θ∈(0,π),则tan θ=()A .22B .24C .-22D .-24答案C解析依题意,得cos θ=13,则cos θ=-13.由于θ∈(0,π),所以sin θ=1-cos 2θ=223,所以tan θ=sin θcos θ=-2 2.故选C.3.已知=13,则cos ()A .223B .-223C .13D .-13答案D解析∵π4+α=π2,∴cos π2+=-13.故选D.4.(2023·江西南昌模拟)已知sin(θ+π)=0,θ∈(-π,0),则sin θ=()A .-31010B .-1010C .31010D .1010答案A解析∵sin(θ+π)=0,∴3cos θ-sin θ=0,∵θ∈(-π,0),sin 2θ+cos 2θ=1,∴sin θ=-31010.故选A.5.若tan θ=-2,则cos 2θ-sin 2θ=()A .-45B .35C .-35D .45答案C解析解法一:由题意知tan θ=-2,θ=sin θcos θ=-2,2θ+cos 2θ=1,解得cos 2θ=15,所以cos 2θ-sin 2θ=cos 2θ-(1-cos 2θ)=2cos 2θ-1=2×15-1=-35.故选C.解法二:已知tan θ=-2,所以cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.故选C.6.已知sin α,cos α是方程3x 2-2x +a =0的两个根,则实数a 的值为()A .56B .-56C .43D .34答案B解析由题意,得sin α+cos α=23,sin αcos α=a3,所以sin 2α+cos 2α=(sin α+cos α)2-2sin αcos α=49-2a 3=1,解得a =-56.故选B.7.已知锐角α终边上一点A 的坐标为(2sin3,-2cos3),则角α的弧度数为()A .3-π2B .π2-3C .π-3D .3π2-3答案A解析tan α=-2cos32sin3=-又0<3-π2<π2,α为锐角,所以α=3-π2.故选A.8.已知sin α+cos α=15,则tan(π+α)+12sin 2α+sin2α=()A .-17524B .17524C .-2524D .2524答案C解析由题意知sin α+cos α=15,有2sin αcos α=-2425,所以tan(π+α)+12sin 2α+sin2α=tan α+12sin α(sin α+cos α)=sin α+cos αcos α·12sin α(sin α+cos α)=12sin αcos α=-2524.故选C.二、多项选择题9.已知3sin(π+θ)=cos(2π-θ),θ-π3,θ的值可能是()A .-π6B .-π3C .π3D .5π6答案AD解析∵3sin(π+θ)=cos(2π-θ),∴-3sin θ=cos θ,∴tan θ=-33,∵θ-π3,θ=-π6或θ=5π6.故选AD.10.在△ABC 中,下列结论正确的是()A .sin(A +B )=sinC B .sinB +C 2=cosA2C .tan(A +B )=-tanD .cos(A +B )=cos C 答案ABC解析在△ABC 中,有A +B +C =π,则sin(A +B )=sin(π-C )=sin C ,A 正确;sinB +C2=cos A2,B 正确;tan(A +B )=tan(π-C )=-tan C 正确;cos(A +B )=cos(π-C )=-cos C ,D 错误.故选ABC.11.给出下列四个结论,其中正确的是()A .sin(π+|α|)=-sin α成立的条件是角α是锐角B .若cos(n π-α)=13(n ∈Z ),则cos α=13C .若α≠k π2(k ∈Z ),则=-1tan αD .若sin α+cos α=1,则sin n α+cos n α=1答案CD解析由诱导公式,知sin(π+|α|)=-sin|α|sin α,α≥0,α,α<0,所以A 错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13,当n =2k +1(k ∈Z )时,cos(n π-α)=cos[(2k+1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以B 错误.若α≠k π2(k ∈Z ),则=cos α-sin α=-1tan α,所以C 正确.将等式sin α+cos α=1两边平方,得sin αcos α=0,所以sin α=0或cos α=0.若sin α=0,则cos α=1,此时sin n α+cos n α=1;若cos α=0,则sin α=1,此时sin n α+cos n α=1,故sin n α+cos n α=1,所以D 正确.故选CD.三、填空题12.已知=32,且|φ|<π2,则tan φ=________.答案-3解析∵=32,∴-sin φ=32,∴sin φ=-32,∵|φ|<π2,∴cos φ=12,∴tan φ=sin φcos φ=- 3.13.(2023·河南平顶山联考)已知tan θ=2,则1+sin θcos θ的值为________.答案75解析∵tan θ=2,∴1+sin θcos θ=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ+1tan 2θ+1=22+2+122+1=75.14.(2023·全国乙卷)若θtan θ=12,则sin θ-cos θ=________.答案-55解析因为θ则sin θ>0,cos θ>0,又因为tan θ=sin θcos θ=12,则cos θ=2sin θ,且cos 2θ+sin 2θ=4sin 2θ+sin 2θ=5sin 2θ=1,解得sin θ=55或sin θ=-55(舍去),所以sin θ-cos θ=sin θ-2sin θ=-sin θ=-55.15.黑洞原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再出来.数字中也有类似的“黑洞”,任意取一个数字串,长度不限,依次写出该数字串中偶数的个数、奇数的个数以及总的数字个数,把这三个数从左到右写成一个新数字串;重复以上工作,最后会得到一个反复出现的数字串,我们称它为“数字黑洞”,如果把这个数字串设为a ,则()A .12B .-12C .32D .-32答案D解析根据“数字黑洞”的定义,任取数字串2024,经过第一步之后变为404,经过第二步之后变为303,再变为123,再变为123,所以“数字黑洞”为123,即a =123,所以cos π6=-32.故选D.16.(多选)已知角α满足sin αcos α≠0,则表达式sin(α+k π)sin α+cos(α+k π)cos α(k ∈Z )的取值为()A .-2B .-1C .2D .1答案AC解析当k 为奇数时,原式=-sin αsin α+-cos αcos α=(-1)+(-1)=-2;当k 为偶数时,原式=sin αsin α+cos αcos α=1+1=2.所以原表达式的取值为-2或2.故选AC.17.(多选)已知角θ和φ都是任意角,若满足θ+φ=π2+2k π,k ∈Z ,则称θ与φ广义互余.若sin(π+α)=-14,则下列角β中,可能与角α广义互余的是()A .sin β=154B .cos(π+β)=14C .tan β=15D .tan β=155答案AC解析若α与β广义互余,则α+β=π2+2k π(k ∈Z ),即β=π2+2k π-α(k ∈Z ).又由sin(π+α)=-14,可得sin α=14若α与β广义互余,则sin β=2k π-cos α=±1-sin 2α=±154(k ∈Z ),故A 正确;若α与β广义互余,则cosβ=2k π-sin α=14(k ∈Z ),而由cos(π+β)=14,可得cos β=-14,故B 错误;由A ,B 可知sin β=±154,cos β=14,所以tan β=sin βcos β=±15,故C 正确,D 错误.故选AC.18.已知f (α)=1+sin α1-sin α-1-sin α1+sin α,α为第二象限角.(1)若f (α)=3,求43sin 2α+cos 2α的值;(2)若cos 2αf (α)=12,求cos(2023π+α)+cos 解(1)因为α为第二象限角,所以|cos α|=-cos α,f (α)=1+sin α1-sin α-1-sin α1+sin α=(1+sin α)2(1-sin α)(1+sin α)-(1-sin α)2(1+sin α)(1-sin α)=(1+sin α)21-sin 2α-(1-sin α)21-sin 2α=1+sin α|cos α|-1-sin α|cos α|=2sin α|cos α|=-2tan α.若f (α)=3,则-2tan α=3,所以tan α=-32,所以43sin 2α+cos 2α=43sin 2α+cos 2αsin 2α+cos 2α=43tan 2α+1tan 2α+1=43×+1+1=1613.(2)cos 2αf (α)=cos 2α×(-2tan α)=-cos 2α×2sin αcos α=-2sin αcos α.因为cos 2αf (α)=12,则-2sin αcos α=12,所以sin αcos α=-14.又α为第二象限角,所以sinα>0,cosα<0,sinα-cosα>0.所以cos(2023π+α)+cos(π+α)+cosα+sinα=(sinα-cosα)2=1-2sinαcosα=1+2×14=6 2 .。
考点06 诱导公式及恒等变换(新高考地区专用)(解析版)
考点06 诱导公式及恒等变换一.三角函数的诱导公式cos(α-β)=cos αcos β+sin αsin β cos(α+β)=cos αcos β-sin αsin β sin(α-β)=sin αcos β-cos αsin β sin(α+β)=sin αcos β+cos αsin β tan(α-β)=tan α-tan β1+tan αtan βtan(α+β)=tan α+tan β1-tan αtan β三.二倍角公式(1)sin 2α=2sin αcos α ↔12sin 2α=sin αcos α (2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α 222212cos 1cos2cos 1cos 2212sin 1cos 2sin 1c =22=os α⇔αααααααα⇔+=(+)-=(-)(3)tan 2α=2tan α1-tan 2α知识理解考向一 诱导公式【例1】(2020·四川射洪中学高三月考(理))已知角α的终边经过点()12,5P -. (1)求sin α,cos α;(2)求()()()()cos 2cos 2sin 2cos f παπααπαα⎛⎫+-+ ⎪⎝⎭=-+-的值. 【答案】(1)5sin 13α=-,12cos 13α=;(2)2919. 【解析】(1)由题意可得:13OP =,由角的终边上的点的性质可得5sin 13α=-,12cos 13α=; (2)由(1)可知5sin 13α=-,12cos 13α=,再结合诱导公式得:()()()()512cos 2cos 2sin 2cos 21313512sin 2cos sin 2cos 213121399f παπααααπαααα⎛⎫⎛⎫⎛⎫+-+--+ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭====-+-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,所以()2919f α=【举一反三】考向分析1.(2020·全国高三专题练习)化简:3sin()cos()tan()22tan()sin()ππααπαπαπα-++-+-. 【答案】cos α-.【解析】3sin()cos()tan()22tan()sin()ππααπαπαπα-++-+-cos sin cos sin cos sin sin ααααααα-⨯=⨯cos α=-. 2.(2020·全国高三专题练习)若角α的终边上有一点(),8P m -,且3cos 5α=-. (1)求m 的值;(2)求()()()sin cos 2tan cos ππαααπα⎛⎫++ ⎪⎝⎭---的值.【答案】(1)6-;(2)45. 【解析】(1)点P 到原点的距离为r ==根据三角函数的概念可得3cos 5α==-,解得6m =-,6m =(舍去).(2)原式()()()sin cos (sin )(sin )2sin tan cos (tan )cos ππααααααπααα⎛⎫++ ⎪--⎝⎭==-----,由(1)可得10r ==,84sin 5r α-==-,所以原式4sin 5α=-=. 3.(2020·全国高三专题练习)已知角α的终边经过点1(,33P -- (1)求sin ,cos ,tan ααα的值;(25sin(3)2cos()ππαα-++ 【答案】(1)1sin ,tan 3ααα==-=2) 【解析】(1)由题意角α的终边经过点1(,3P -,可得1r OP ==,根据三角函数的定义,可得1sin ,tan 33ααα=-=-=. (25sin(3)2cos()ππαα-++=tan (14α===-⨯=. 考向二 恒等变化【例2】(1)(2020·四川省阆中东风中学校高三月考)cos80cos130sin80sin130︒︒-︒︒等于( ) A. B .12-C .12D(2)(2020·甘肃高二单元测试)sin15︒=( ) ABCD(3)(2019·广东华南师大附中高三月考(理))若1tan 2α=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为( )A .1B .3C .5D .7【答案】(1)A (2)C (3)B【解析】(1)cos80cos130sin80sin130︒︒-︒︒()cos 80130cos 210=+= ()cos 18030=+cos30=-=-.故选:A (2)∈154530︒=︒-︒,∈()1sin15sin 4530sin45cos30cos45sin302︒=︒-︒=︒︒-︒︒==C . (3)由tan tantan 14tan 41tan 1tan tan 4παπααπαα++⎛⎫+== ⎪-⎝⎭-⋅, 又1tan 2α=,原式1+1tan 12=311tan 1-2αα+==-.故选:B. 【举一反三】1.(2020·四川省广元市川师大万达中学高三月考(理))sin160cos10cos20sin10︒︒+︒︒=( ) A. B .12-C .12D【答案】C【解析】1sin160cos10cos 20sin10sin 20cos10cos 20sin10sin 302︒︒+︒︒=︒︒+︒︒==。
高考数学复习讲义:同角三角函数的基本关系与诱导公式
返回
3.已知 tanπ6-α= 33,则 tan56π+α=________. 解析:tan56π+α=tanπ-π6+α=tan[ π-( π6-α ) ] =-tanπ6-α=- 33.
答案:-
3 3
返回
研透高考·深化提能
1.利用诱导公式把任意角的三角函数转化为锐角三角函 数的步骤
也就是:“负化正,大化小,化到锐角为终了.”
“切”的表达式,进行求值.常见的结构有:
①sin α,cos α的二次齐次式(如asin2α+bsin αcos α+
ccos2α)的问题常采用“切”代换法求解;
②sin
α,cos
α的齐次分式如acssiinn
α+bcos α+dcos
αα的问题常采
用分式的基本性质进行变形.
(2)切化弦:利用公式tan
返回
(2)已知-π2<α<0,sin α+cos α=15,则cos2α-1 sin2α=(
)
7
25
A.5
B. 7
7
24
C.25
D.25
返回
[解析] ∵sin α+cos α=15,
∴1+2sin αcos α=215,
∴2sin αcos α=-2245,(cos α-sin α)2=1+2245=4295.
3
课时跟踪检测
返回
突破点一 同角三角函数的基本关系
返回
抓牢双基·自学回扣
[基本知识]
1.同角三角函数的基本关系 (1)平方关系:sin2α+cos2α=1(α∈R ) . (2)商数关系: tan α=csions ααα≠kπ+π2,k∈Z .
返回
2.同角三角函数基本关系式的应用技巧
1.3 三角函数的诱导公式-人教A版高中数学必修四讲义(解析版)
知识点一诱导公式一设角α的终边与单位圆的交点为P,由三角函数定义知P点坐标为(cos α,sin α).思考角π+α的终边与角α的终边有什么关系?角π+α的终边与单位圆的交点P1(cos(π+α),sin(π+α))与点P(cos α,sin α)呢?它们的三角函数之间有什么关系?答案角π+α的终边与角α的终边关于原点对称,P1与P也关于原点对称,它们的三角函数关系如下:诱导公式一sin(π+α)=-sin α,cos(π+α)=-cos α,tan(π+α)=tan α.知识点二诱导公式二思考角-α的终边与角α的终边有什么关系?角-α的终边与单位圆的交点P2(cos(-α),sin(-α))与点P(cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?教材要点学科素养学考高考考法指津高考考向1.απ+与α的正弦、余弦、正切值的关系数学抽象水平1 水平11.熟练掌握相应角的终边上点的坐标的特点。
2.使用诱导公式的目的在于将任意角的三角函数转化为锐角的三角函数。
【考查内容】诱导公式的应用,三角函数的基本关系式。
【考查题型】选择题、填空题【分值情况】5分2.α-与α的正弦、余弦、正切值的关系数学抽象水平1 水平 13.απ-与α的正弦、余弦、正切值的关系数学抽象水平1 水平14.απ±2与α的正弦、余弦、正切值的关系数学抽象水平1 水平1第三讲三角函数的诱导公式知识通关答案 角-α的终边与角α的终边关于x 轴对称,P 2与P 也关于x 轴对称,它们的三角函数关系如下: 诱导公式二知识点三 诱导公式三思考 角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆的交点P 3(cos(π-α),sin(π-α))与点P (cos α,sin α)有怎样的关系?它们的三角函数之间有什么关系?答案 角π-α的终边与角α的终边关于y 轴对称,P 3与P 也关于y 轴对称,它们的三角函数关系如下: 诱导公式三梳理 公式一~三都叫做诱导公式,它们分别反映了2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值与α的三角函数之间的关系,这三组公式的共同特点是:2k π+α(k ∈Z ),π+α,-α,π-α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.简记为“函数名不变,符号看象限”.知识点四 诱导公式四完成下表,并由此总结角α,角π2-α的三角函数值间的关系.(1)sin π6=12,cos π3=12,sin π6=cos π3;(2)sin π4=22,cos π4=22,sin π4=cos π4;(3)sin π3=32,cos π6=32,sin π3=cos π6.由此可得 诱导公式四知识点五 诱导公式五思考 能否利用已有公式得出π2+α的正弦、余弦与角α的正弦、余弦之间的关系?答案 以-α代替公式四中的α得到 sin ⎝⎛⎭⎫α+π2=cos(-α), cos ⎝⎛⎭⎫α+π2=sin(-α). 由此可得 诱导公式五知识点六 诱导公式的推广与规律1.sin ⎝⎛⎭⎫32π-α=-cos α,cos ⎝⎛⎭⎫32π-α=-sin α, sin ⎝⎛⎭⎫32π+α=-cos α,cos ⎝⎛⎭⎫32π+α=sin α.2.诱导公式记忆规律:公式一~三归纳:α+2k π(k ∈Z ),-α,π±α的三角函数值,等于角α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名不变,符号看象限”.公式四~五归纳:π2±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号,简记为:“函数名改变,符号看象限”或“正变余、余变正、符号象限定”. 五组诱导公式可以统一概括为“k ·π2±α(k ∈Z )”的诱导公式.记忆口诀:奇变偶不变,符号看象限.其中“奇、偶”是指k ·π2±α(k ∈Z )中k 的奇偶性,当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变.“符号”看的应该是诱导公式中,把α看成锐角时原函数值的符号,而不是α函数值的符号.题型一 利用诱导公式求值 命题角度1 给角求值问题变式训练1-1 求下列各三角函数式的值: (1)sin 1 320°;(2)cos ⎝⎛⎭⎫-31π6;(3)tan(-945°).解析: (1) sin 1 320°=sin(3×360°+240°) =sin 240°=sin(180°+60°)=-sin 60°=-32. (2) cos ⎝⎛⎭⎫-31π6=cos ⎝⎛⎭⎫-6π+5π6 =cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (3)tan(-945°)=-tan 945°=-tan(225°+2×360°) =-tan 225°=-tan(180°+45°)=-tan 45°=-1.命题角度2 给值求值或给值求角问题 例1-2 (1)已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3 C.π6 D.π3答案 D-α)题型三 利用诱导公式求值例3、 已知cos ⎝⎛⎭⎫α+π6=35,π2≤α≤3π2, 求sin ⎝⎛⎭⎫α+2π3的值. 解析: ∵α+2π3=⎝⎛⎭⎫α+π6+π2, ∴sin ⎝⎛⎭⎫α+2π3=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+π2=cos ⎝⎛⎭⎫α+π6=35.变式训练3已知sin ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫π3-α的值. 解析: ∵π6+α+π3-α=π2,∴π3-α=π2-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫π3-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6+α =sin ⎝⎛⎭⎫π6+α=33. 题型四 利用诱导公式证明三角恒等式 规律方法 例4、求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.证明: ∵左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos αsin α=-sin αcos α=-tan α=右边. ∴原等式成立. 变式训练4求证:sin θ+cos θsin θ-cos θ=2sin ⎝⎛⎭⎫θ-3π2cos ⎝⎛⎭⎫θ+π2-11-2sin 2(π+θ).证明: 右边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ=左边, 所以原等式成立.题型五 诱导公式的综合应用 规律方法例5 已知f (α)=sin (π-α)cos (-α)sin ⎝⎛⎭⎫π2+αcos (π+α)sin (-α).(1)化简f (α);(2)若角A 是△ABC 的内角,且f (A )=35,求tan A -sin A 的值. 解析: (1)f (α)=sin αcos αcos α-cos α(-sin α)=cos α.(2)因为f (A )=cos A =35,又A 为△ABC 的内角,所以由平方关系,得sin A =1-cos 2A =45,所以tan A =sin A cos A =43,所以tan A -sin A =43-45=815.变式训练5已知f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π).(1)化简f (α);(2)若f ⎝⎛⎭⎫π2-α=-35,且α是第二象限角,求tan α. 解析:(1)f (α)=tan (π-α)cos (2π-α)sin ⎝⎛⎭⎫π2+αcos (-α-π)=-tan α·cos α·cos α-cos α=sin α.(2)由sin ⎝⎛⎭⎫π2-α=-35,得cos α=-35, 又α是第二象限角,所以sin α=1-cos 2 α=45, 则tan α=sin αcos α=-43.一、选择题1.已知tan α=4,则tan(π-α)等于( ) A .π-4 B .4 C .-4 D .4-π 解析: tan(π-α)=-tan α=-4. 答案 C2.cos(π+x )等于( ) A .cos x B .-cos x C .sin xD .-sin x解析: 由诱导公式得cos(π+x )=-cos x . 答案 B3.已知sin(π+α)=35,且α是第四象限角,则cos(α-2π)的值是( )A .-45 B.45 C .-35 D.35解析: 因为sin(π+α)=35,且sin(π+α)=-sin α,所以sin α=-35,又因为α是第四象限角,所以cos(α-2π)=cos α=1-sin 2α =1-⎝⎛⎭⎫-352=45. 答案 B4.记cos(-80°)=k ,那么tan 100°等于( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2解析: ∵cos(-80°)=k ,∴cos 80°=k , ∴sin 80°=1-k 2,则tan 80°=1-k 2k.∴tan 100°=-tan 80°=-1-k 2k.A 组 基础演练答案 B5.若sin(π-α)=log 814,且α∈⎝⎛⎭⎫-π2,0,则cos(π+α)的值为( ) A.53B .-53C .±53D .以上都不对解析: ∵sin(π-α)=sin α=32log 2-2=-23,α∈⎝⎛⎭⎫-π2,0, ∴cos(π+α)=-cos α=-1-sin 2α=-1-49=-53. 答案 B6.若cos(2π-α)=53,则sin ⎝⎛⎭⎫3π2-α等于( ) A .-53B .-23C.53D .±53解析: ∵cos(2π-α)=cos(-α)=cos α=53, ∴sin ⎝⎛⎭⎫3π2-α=-cos α=-53. 答案 A7.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)等于( )A .2B .-2C .0 D.23解析: sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2-θ-sin (π-θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.答案 B8.已知sin ⎝⎛⎭⎫5π2+α=15,那么cos α等于( )A .-25B .-15C.15D.25解析: sin ⎝⎛⎭⎫5π2+α=cos α,故cos α=15,故选C. 答案 C9.已知sin 10°=k ,则cos 620°的值为( ) A .k B .-k C .±k D .不确定解析: cos 620°=cos(360°+260°)=cos 260°=cos(270°-10°)=-sin 10°=-k 答案 B.10.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A 2解析: ∵A +B +C =π,∴A +B =π-C ,∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 项不正确; ∵A +C =π-B ,∴A +C 2=π-B2,∴cos A +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 项不正确; ∵B +C =π-A , ∴sinB +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 项正确. 答案 D二、填空题11.已知600°角的终边上有一点P (a ,-3),则a 的值为______. 解析: tan 600°=tan(360°+240°)=tan(180°+60°)=tan 60°=-3a=3,即a =- 3.答案 -3 12.cos (-585°)sin 495°+sin (-570°)的值是________.解析: 原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2.答案 2-213.已知a =tan ⎝⎛⎭⎫-7π6,b =cos 23π4,c =sin ⎝⎛⎭⎫-33π4,则a ,b ,c 的大小关系是________.解析: ∵a =-tan 7π6=-tan π6=-33, b =cos ⎝⎛⎭⎫6π-π4=cos π4=22, c =-sin 33π4=-sin π4=-22,∴b >a >c . 答案 b >a >c14.化简sin ⎝⎛⎭⎫15π2+αcos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫9π2-αcos ⎝⎛⎭⎫3π2+α= .解析: 原式=sin ⎝⎛⎭⎫32π+α·cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2-αsin α=(-cos α)·sin αcos α·sin α=-1.答案 -1三、解答题16.化简下列各式:(1)cos (π+α)·sin (2π+α)sin (-α-π)·cos (-π-α);(2)cos 190°·sin (-210°)cos (-350°)·tan (-585°).解析: (1)原式=-cos α·sin α-sin (π+α)·cos (π+α)=cos α·sin αsin α·cos α=1.(2)原式=cos (180°+10°)·[-sin (180°+30°)]cos (-360°+10°)·[-tan (360°+225°)]=-cos 10°·sin 30°cos 10°·[-tan (180°+45°)]=-sin 30°-tan 45°=12.17.已知角α的终边经过单位圆上的点P ⎝⎛⎭⎫45,-35.(1)求sin α的值;(2)求cos (2π-α)sin (π+α)·tan (π+α)cos (3π-α)的值.解析: (1)∵点P 在单位圆上,∴由正弦的定义得sin α=-35.(2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α,由余弦的定义得cos α=45,故原式=54.一、选择题1.已知sin ⎝⎛⎭⎫α-π4=32,则sin ⎝⎛⎭⎫5π4-α的值为( )A.12 B .-12 C.32 D .-32解析: sin ⎝⎛⎭⎫5π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫α-π4=32.答案 C2.化简sin 2(π+α)-cos(π+α)·cos(-α)+1的值为( )A .1B .2sin 2αC .0D .2解析: 原式=(-sin α)2-(-cos α)·cos α+1=sin 2α+cos 2α+1=2.答案 D3.已知n 为整数,化简sin (n π+α)cos (n π+α)所得的结果是( )A .tan nαB .-tan nαC .tan αD .-tan α解析: 当n =2k ,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+α)cos (2k π+α)=sin αcos α=tan α;当n =2k +1,k ∈Z 时,sin (n π+α)cos (n π+α)=sin (2k π+π+α)cos (2k π+π+α)=sin (π+α)cos (π+α)=-sin α-cos α=tan α.故选C.答案 C4.已知sin ⎝⎛⎭⎫α+π4=13,则cos ⎝⎛⎭⎫π4-α的值为( ) A.223 B .-223 C.13 D .-13解析: cos ⎝⎛⎭⎫π4-α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫α+π4=13.答案 C5.化简sin ⎝⎛⎭⎫α+π2·cos ⎝⎛⎭⎫α-3π2·tan ⎝⎛⎭⎫π2-α的结果是( )A .1B .sin 2αC .-cos 2αD .-1解析: 因为sin ⎝⎛⎭⎫α+π2=cos α,cos ⎝⎛⎭⎫α-3π2=cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-α=-sin α,tan ⎝⎛⎭⎫π2-α=sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=cos αsin α,所以原式=cos α(-sin α)cos αsin α=-cos 2α,故选C.答案 C6.已知f (sin x )=cos 3x ,则f (cos 10°)的值为( )A .-12 B.12 C .-32 D.32解析: f (cos 10°)=f (sin 80°)=cos 240°=cos(180°+60°)=-cos 60°=-12.答案 A7.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( )A .-2m 3 B.2m 3 C .-3m 2 D.3m2解析: ∵sin(π+α)+cos ⎝⎛⎭⎫π2+α=-sin α-sin α=-m ,∴sin α=m2.故cos ⎝⎛⎭⎫32π-α+2sin(2π-α)=-sin α-2sin α=-3sin α=-3m2.答案 C解析:∵f (2017)=a sin(2017π+α)+b cos(2017π+β)+4=3,∴a sin(2017π+α)+b cos(2017π+β)=-1,∴f (2018)=a sin(2017π+α+π)+b cos(2017π+β+π)+4=-a sin(2017π+α)-b cos(2017π+β)+4=1+4=5.答案 C10.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( )A .89B .90 C.892D .45解析:原式=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+sin 2(90°-44°)+…+sin 2(90°-3°)+sin 2(90°-2°)+sin 2(90°-1°)=sin 21°+sin 22°+sin 23°+…+sin 244°+sin 245°+cos 244°+…+cos 23°+cos 22°+cos 21°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+(sin 23°+cos 23°)+…+(sin 244°+cos 244°)+sin 245°=44+12=892. 答案 C二、填空题11.化简cos (-α)tan (7π+α)sin (π-α)=________. 解析: cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α =cos αtan αsin α=cos αsin αcos αsin α=1. 答案 112.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数,若f (2 017)=-1,则f (2 018)=________. 解析: ∵f (2 018)=a sin(2 018π+α)+b cos(2 018π+β)=a sin(π+2 017π+α)+b cos(π+2 017π+β)=-a sin(2 017π+α)-b cos(2 017π+β)=-f (2 017),又f (2 017)=-1,∴f (2 018)=1.答案 113.已知f (x )=⎩⎪⎨⎪⎧sin πx ,x <0,f (x -1)-1,x >0,则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. 解析: 因为f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6 =sin ⎝⎛⎭⎫-2π+π6=sin π6=12; f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-12-2=-52, 所以f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116=-2. 答案 -214.给出下列三个结论,其中正确结论的序号是 .①sin(π+α)=-sin α成立的条件是角α是锐角;②若cos(n π-α)=13(n ∈Z ),则cos α=13; ③若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=-1tan α. 解析: 由诱导公式二,知α∈R 时,sin(π+α)=-sin α,所以①错误.当n =2k (k ∈Z )时,cos(n π-α)=cos(-α)=cos α,此时cos α=13, 当n =2k +1(k ∈Z )时,cos(n π-α)=cos [(2k +1)π-α]=cos(π-α)=-cos α,此时cos α=-13,所以②错误. 若α≠k π2(k ∈Z ),则tan ⎝⎛⎭⎫π2+α=sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2+α=cos α-sin α=-1tan α,所以③正确. 答案 ③三、解答题15. 化简下列各式:(1)tan (2π-α)sin (-2π-α)cos (6π-α)cos (α-π)sin (5π-α); (2)1+2sin 290°cos 430°sin 250°+cos 790°. 解析: (1)原式=sin (2π-α)cos (2π-α)·sin (-α)cos (-α)cos (π-α)sin (π-α)=-sin α(-sin α)cos αcos α(-cos α)sin α=-sin αcos α=-tan α.(2)原式=1+2sin (360°-70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°) =1-2sin 70°cos 70°-sin 70°+cos 70°=|cos 70°-sin 70°|cos 70°-sin 70°=sin 70°-cos 70°cos 70°-sin 70°=-1.16.已知sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ=72,求sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ的值.解析: ∵sin(5π-θ)+sin ⎝⎛⎭⎫52π-θ =sin(π-θ)+sin ⎝⎛⎭⎫π2-θ=sin θ+cos θ=72,∴sin θcos θ=12[(sin θ+cos θ)2-1]=12×⎣⎡⎦⎤⎝⎛⎭⎫722-1=38,∴sin 4⎝⎛⎭⎫π2-θ+cos 4⎝⎛⎭⎫32π+θ=cos 4θ+sin 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2×⎝⎛⎭⎫382=2332.17.已知α是第四象限角,且f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫π2-αsin (-π-α)cos (2π+α).(1)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值;(2)若α=-1 860°,求f (α)的值.解析: f (α)=sin (π-α)cos (2π-α)cos ⎝⎛⎭⎫π2-αsin (-π-α)cos (2π+α)=sin αcos α-sin αsin (π+α)cos α=1sin α.(1)∵cos ⎝⎛⎭⎫α-3π2=15,∴cos ⎝⎛⎭⎫α-3π2+2π=15,∴cos ⎝⎛⎭⎫π2+α=15,∴sin α=-15,∴f (α)=1sin α=-5.(2)当α=-1 860°时,f (α)=1sin α=1sin (-1 860°)=1-sin 1 860°=1-sin (5×360°+60°)=1-sin 60° =-233.高中数学,同步讲义必修四第一章三角函数第三讲三角函数的诱导公式。
必修4第一章 《三角函数的诱导公式》
学科教师辅导讲义讲义编号 11hz01sx000学员编号: 年 级: 课时数:3 学员姓名: 辅导科目:数学 学科教师: 课 题 三角函数的诱导公式授课日期及时段教学目的1. 理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明。
2. 通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式。
教学内容一、课前检测1.若θθθ则角且,02sin ,0cos <>的终边所在象限是 ( D )A .第一象限B .第二象限C .第三象限D .第四象限 2.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为 ( D )A .-2B .2C .1623D .-16233.y =tan|tan ||cos |cos sin |sin |x x x x x ++的值域是 ( C )A .{1,-1}B . {-1,1,3}C . {-1,3}D .{1,3}4.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α=( C )A .3-πB .3C .3-2π D .2π-3 5.若角α终边上有一点P (-3,0),则下列函数值不正确的是 ( D )A .si n α=0B .cos α=-1C .ta n α=0D .cot α=06.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . (答案:23-)7.函数y=ta n (x -4π)的定义域是 . (答案:{x|x ≠43π+k π,k ∈Z})8.已知21tan -=x ,则1cos sin 3sin 2-+x x x =___ __.(答案:52)二、知识梳理回顾诱导公式一:结构特征:①终边相同的角的同一三角函数值相等②把求任意角的三角函数值问题转化为求0°~360°角的三角函数值问题。
第2讲 三角函数的诱导公式-简单难度-讲义.
三角函数的诱导公式知识讲解一、同角三角函数的基本关系式平方关系:sin2x+cos2x=1,sec2x−tan2x=1,csc2x−cot2x=1商数关系:sin xcos x =tan x,cos xsin x=cot x倒数关系:sec x=1cos x ,csc x=1cos x,tan x=1cot x教师内容:1.注意“同角”,至于角的形式无关重要,如sin24α+cos24α=1等;2.注意这些关系式都是对于使它们有意义的角而言的,如tanα⋅cotα=1,α≠kπ2,(k∈Z)3.对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cosα=±√1−sin2α,sin2α=1−cos2α,cosα=sinαtanα等.4.特殊角的三角函数值二、诱导公式(1)角α与α+k⋅2π(k∈Z)的三角函数间的关系;sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα;(2)角α与−α的三角函数间的关系;sin(−α)=−sinα,cos(−α)=cosα,tan(−α)=−tanα;(3)角α与α+(2k+1)π(k∈Z)的三角函数间的关系;sin[α+(2k+1)π]=−sinα,cos[α+(2k+1)π]=−cosα,tan[α+(2k+1)π]=tanα;(4)角α与α+π2的三角函数间的关系.sin(α+π2)=cosα,cos(α+π2)=−sinα,tan(α+π2)=−cotα.教师内容:诱导公式的记忆方法:“奇变偶不变,符号看象限”,具体指的是对于任意三角函数,以y=sin(m⋅π2+φ)为例,若m为π2的偶数倍,则函数名不改变,根据角φ所在象限判断变换后的三角函数的符号,若m为π2的奇数倍,则函数名改变成余弦,符号同理仍然看象限.典例精讲一.选择题(共12小题)1.(2017秋•绍兴期末)cos(π+x)=()A.cosx B.﹣cosx C.sinx D.﹣sinx 【分析】直接利用诱导公式写出结果即可.【解答】解:cos(π+x)=﹣cosx.故选:B.2.(2017秋•重庆期末)tan390°的值等于()A.√33B.√3C.﹣√33D.﹣√3【分析】利用诱导公式化简求值即可.【解答】解:tan390°=tan30°=√33.故选:A.3.(2018春•嘉兴期末)已知cosα=45,则cos(π﹣α)=()A.−45B.45C.35D.−35【分析】直接利用诱导公式化简求解即可.【解答】解:cosα=45,则cos(π﹣α)=﹣cosα=﹣45.故选:A.4.(2018•北京模拟)已知sinα=513,那么sin(π﹣α)等于()A.−1213B.−513C.513D.1213【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【解答】解:已知sinα=513,那么sin(π﹣α)=sinα=513,故选:C .5.(2018春•古冶区校级期中)若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos (A +B )=cosC B .sin (A +B )=﹣sinCC .tan (A +C )=tanBD .sinB+C 2=cos A2【分析】由题意利用三角形内角和公式、诱导公式,逐一判断各个选项是否正确,从而得出结论.【解答】解:若角A ,B ,C 是△ABC 的三个内角,则A +B=π﹣C ,∴cos (A +B )=cos (π﹣C )=﹣cosC ,sin (A +B )=sin (π﹣C )=sinC ,故A 、B 均错误.由A +C=π﹣B ,可得tan (A +C )=﹣tanB ,故C 错误, 由B +C=π﹣A ,可得B+C 2=π2﹣A 2,∴sin B+C 2=sin (π2﹣A 2)=cos A2,故D 正确, 故选:D .6.(2018春•福州期中)若cos (α﹣2π)>0,sin (π﹣α)<0,则角α的终边在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据三角函数的在各个象限中的符号,得出结论.【解答】解:∵cos (α﹣2π)=cosα>0,sin (π﹣α)=sinα<0,则角α的终边在第四象限, 故选:D .7.(2018•香坊区校级四模)已知cos(π2−α)−3cosαsinα−cos(π−α)=2,则tan(α+π2)=( )5【分析】由已知利用诱导公式,同角三角函数基本关系式可求tanα的值,进而化简所求即可计算得解. 【解答】解:∵cos(π2−α)−3cosαsinα−cos(π−α)=2,∴sinα−3cosαsinα+cosα=tanα−3tanα+1=2,解得:tanα=﹣5, ∴tan(α+π2)=﹣1tanα=﹣1−5=15.故选:C .8.(2018•武侯区校级一模)已知sin (7π6+α)=√33,则cos (2π3﹣2α)=( )A .﹣23B .﹣13C .23D .13【分析】由题意利用诱导公式求得cos (π3﹣α)=﹣√33,再利用二倍角公式求得cos (2π3﹣2α)的值.【解答】解:∵sin (7π6+α)=﹣sin (π6+α)=√33,∴sin (π6+α)=﹣√33,即cos (π3﹣α)=﹣√33,则cos (2π3﹣2α)=2cos 2(π3−α)﹣1=23﹣1=﹣13,故选:B .9.(2018•陕西三模)计算cos2025°=( ) A .√22B .−√22C .√6−√24D .√2−√64【分析】直接利用三角函数的诱导公式化简求值.【解答】解:cos2025°=cos (360°×6﹣135°)=cos (﹣135°)=cos135°=−√22.故选:B .10.(2018•广东二模)若cos(α+π6)=45,则sin(α−π3)=( )55【分析】直接利用诱导公式化简求解即可.【解答】解:若cos(α+π6)=45,则sin(α−π3)=﹣cos(π2+α−π3)=﹣45.故选:D.11.(2018春•东安区校级月考)已知cos(5π12﹣θ)=13,则sin(π12+θ)的值是()A.﹣13B.﹣2√23C.13D.2√23【分析】由已知利用诱导公式化简所求即可得解.【解答】解:∵cos(5π12﹣θ)=13,∴sin(π12+θ)=cos[π2﹣(π12+θ)]=cos(5π12﹣θ)=13.故选:C.12.(2018春•桂林期末)若角A,B,C是△ABC的三个内角,则下列等式中一定成立的是()A.cos(A+B)=cosC B.sin(A+B)=﹣sinCC.cos(A2+C)=sinB D.sinB+C2=cosA2【分析】利用三角形的内角和公式、诱导公式逐一判断各个选项中的式子是否成立,从而得出结论.【解答】解:∵角A,B,C是△ABC的三个内角,∴A+B=π﹣C,∴cos(A+B)=cos(π﹣C)=﹣cosC,故排除A;又sin(A+B)=sin(π﹣C)=sinC,故排除B;∵sin B+C2=sinπ−A2=cosA2,故D满足条件;由于A2+C有可能为钝角,故cos(A2+C)可能小于零,而sinB>0,故C不一定成立;故选:D.二.填空题(共6小题)13.(2017秋•红桥区期末)cos120°=−12.【分析】直接利用有时间的三角函数求解即可.【解答】解:cos120°=﹣cos60°=﹣12.故答案为:﹣12.14.(2018•铜山区一模)已知tan(π6﹣α)=√33,则tan(5π6+α)=−√33.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵tan(π6﹣α)=√33,∴tan(5π6+α)=tan[π﹣(π6﹣α)]=﹣tan(π6﹣α)=﹣√33.故答案为:﹣√3315.(2018•嘉定区一模)已知sinα=45,则cos(α+π2)=−45.【分析】原式利用诱导公式化简,将sinα的值代入计算即可求出值.【解答】解:∵sinα=45,∴cos(π2+α)=﹣sinα=﹣45.故答案为:﹣4516.(2018•上海模拟)已知cosα=45,则cos(α−π2)+2sin(π−α)2tan(π+α)+cot(π2+α)=125.【分析】利用诱导公式化简,再代入即可得出结论.【解答】解:∵cosα=45,∴cos(α−π2)+2sin(π−α)2tan(π+α)+cot(π2+α)=sinα+2sinα2tanα−tanα=3cosα=125. 故答案为:125.17.(2018•黄浦区一模)已知sin (α+π2)=13,α∈(﹣π2,0),则tanα= ﹣2√2 .【分析】由α∈(﹣π2,0)sin (α+π2)=13,利用诱导公式可求得cosα,从而可求得sinα与tanα.【解答】解:∵sin (α+π2)=cosα,sin (α+π2)=13,∴cosα=13,又α∈(﹣π2,0),∴sinα=﹣2√23,∴tanα=sinαcosα=﹣2√2.故答案为:﹣2√2.18.(2018春•思明区校级月考)若cos (π2−α)=﹣13,且π<α<3π2,则tan (π﹣α)= ﹣√24.【分析】由已知利用诱导公式可求sinα=﹣13,结合角的范围,利用同角三角函数基本关系式可求cosα,根据诱导公式,同角三角函数基本关系式即可求得tan (π﹣α)的值.【解答】解:∵cos (π2−α)=sinα=﹣13,且π<α<3π2,∴cosα=﹣√1−sin 2α=﹣2√23,∴tan (π﹣α)=﹣tanα=﹣sinαcosα=﹣√24.故答案为:﹣√24.三.解答题(共4小题)19.(2018春•兴庆区校级期中)已知角α的终边在第二象限,且与单位圆交于点P (m ,√154).(1)求实数m 的值; (2)求sin(α−π2)sin(π+α)−sin(3π2−α)+1的值. 【分析】(1)由题意利用任意角的三角函数的定义,求得m 的值. (2)利用诱导公式化简所给的式子,可得结果.【解答】解:(1)角α的终边在第二象限,且与单位圆交于点P (m ,√154), ∴m 2+1516=1,且m <0,求得m=﹣14,∴cosα=m=﹣14,sinα=√154;(2)sin(α−π2)sin(π+α)−sin(3π2−α)+1=−cosα−sinα+cosα+1=14−√154−14+1=3−√15=﹣3+√156. 20.(2018春•陆川县校级月考)若cosa=23,a 是第四象限角,求sin(a−2π)+sin(−a−3π)cos(a−3π)cos(π−a)−cos(−π−a)cos(a−4π)的值.【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【解答】解:∵cosa=23,a 是第四象限角,∴sina=﹣√1−cos 2a =﹣√53,∴sin(a−2π)+sin(−a−3π)cos(a−3π)cos(π−a)−cos(−π−a)cos(a−4π)=sina+sina⋅(−cosa)−cosα+cosa⋅cosa =sina(1−cosa)cosa(cosa−1)=−√53⋅1323⋅(−13)=√52. 21.(2018春•葫芦岛期末)已知f (α)=sin(α−π2)cos(3π2−α)tan(7π−α)tan(−5π−α)sin(α−3π).(1)化简f (α); (2)若tan (α﹣3π2)=﹣2,且α为第一象限角,求f (α)的值.【分析】(1)由条件利用诱导公式进行化简所给的式子,可得结果.(2)由题意应用诱导公式、同角三角函数的基本关系求得cosα的值,可得f (α)的值. 【解答】解:(1)f (α)=sin(α−π2)cos(3π2−α)tan(7π−α)tan(−5π−α)sin(α−3π)=−cosα⋅(−sinα)⋅(−tanα)−tanα⋅(−sinα)=﹣cosα.(2)若tan (α﹣3π2)=﹣cotα=﹣cosαsinα=﹣2,∴cosαsinα=2.由sin 2α+cos 2α=1,∵α为第一象限角,∴cosα=2√55,∴f (α)=﹣cosα=﹣2√55.。
高中数学三角函数专题:诱导公式
4 22
4 22
2
根据诱导公式化简: cos(2x 3 ) 。 2
第一步: 3 的终边在 y 轴负半轴, y 轴负半轴划分第三象限和第四象限。 2
第二步:另一个角为 2x ,另一个角为正 2x 3 是第四象限角。 2
第三步:余弦 cos 在第四象限为正。
第四步: 3
是
的奇数倍 三角函数名称改变 余弦 cos
改成正弦 sin
。
22
所以: cos(2x ) sin 2x sin 2 (x ) 1 1 cos(2x ) 1 1 sin 2x 。
2
4 22
2 22
② cos2 (x 3 ) 。 4
根据三角函数半角公式得到: cos2 (x 3 ) 1 1 cos[2(x 3 )] 1 1 cos(2x 3 ) 。
第三步:正弦 sin 在第二象限为正。
第四步: 为 的偶数倍 三角函数名称不变 正弦 sin 还是正弦 sin 。
2
第2页共5页
所以: sin(x ) sin x 。
② cos(x 900 ) 。
第一步: 900 的终边为 y 轴的正半轴, y 轴的正半轴划分第一象限和第二象限。
② cos(x 3 ) 2
⑤ tan(x 2700 )
③ tan( x) ⑥ sin( x)
⑦ tan(
x)
2
⑧ sin(900 x)
⑨ cos(x )
题型二:半角接诱导公式化简。
知识点:三角函数的半角公式。
① cos2 x 1 1 cos 2x 22
② sin 2 x 1 1 cos 2x 22
第二部分:诱导公式题型
题型一:诱导公式化简。
例题:化简下列三角函数关系式。
三角函数的诱导公式
2k ( k Z)
图示
与角终 边的关系
相同
关于原点对称 关于x轴对称
角
2
2
图示
与角终 边的关系
关于y轴 对称
关于直线y=x 对称
2.六组诱导公式 组数 一
2k ( k Z)
sin
cos
二
三
sin
cos
四
4 3 2.在第四象限, cos( ) , 则 sin( )的值是 2 5 2
3 3 3 4 A. B. C . D. 5 5 5 5
课堂
练习
0
1 3.已知 cos(75 ) ,α为第三象限角,求 3
cos( 0 ) sin( 150 ) 的值. 15
诱导公式总结:
口诀:奇变偶不变,符号看象限 意义:k k Z)的三角函数值 (
2 1 )当k为偶数时,等于的同名三角函数值,前面加上 一个把 看作锐角时原三角函数值的符号; 2)当k为奇数时,等于的异名三角函数值,前面加上 一个把 看作锐角时原三角函数值的符号;
运用诱导公式转化三角函数的一般步骤: 任意负角的 三角函数 任意正角的 三角函数
锐角三角函数
0 0 ~360 0 的角 的三角函数
可以简称为:负化正,大化小,化到锐角是 终了.
牛刀
小试
1 5 1 : sin( ) , sin( ) 6 3 6 1 5 2 : cos( ) , cos( )
6 3 6
挖掘角的相互关系,寻求诱导公式的应用
2 2
三角函数诱导公式讲义
学乐教育学生姓名 ____________________ 就读年级 ____________________ 授课日期 ____________________ 教研院审核___________________三角函数的诱导公式一、学习目标:1.熟练掌握诱导公式,利用诱导公式进行求值,化简,证明.2.了解从未知到已知,从复杂到简单的转化过程,提高分析和解决问题的能力.二、知识要点:诱导公式(一)tan )2tan(cos )2(cos sin )2sin(ααπααπααπ=+=+=+k k k结构特征:①终边相同的角的同一三角函数值相等②把求任意角的三角函数值问题转化为求0~π2角的三角函数值问题。
诱导公式(二)tan )tan(cos )cos( sin )sin(ααπααπααπ=+-=+-=+结构特征:①函数名不变,符号看象限(把α看作锐角时)②把求(απ+)的三角函数值转化为求α的三角函数值。
诱导公式(三)tan )tan(cos )cos( sin )sin(αααααα-=-=--=-结构特征:①函数名不变,符号看象限(把α看作锐角)②把求(α-)的三角函数值转化为求α的三角函数值诱导公式(四)tan )tan(cos )cos( sin )sin(ααπααπααπ-=--=-=-诱导公式(五)sin )2cos( cos )2sin(ααπααπ=-=- 诱导公式(六)sin )2cos( cos )2sin(ααπααπ-=+=+ 方法点拨:①可以是任意角;公式中的α ②前四组诱导公式可以概括为: 符号。
看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,,, ),Z (2-+-∈+k k ③公式(五)和公式(六)总结为一句话:函数正变余,符号看象限三、基础自测:1、求下列各三角函数值:①cos225° ②tan (-π)2、sin480°的值为( ) A 、21-B 、23-C 、21D 、233、cos330°等于( ) A 、21 B 、21- C 、23 D 、23-四、典型例题分析:例1、求值(1)10sin()3π-= __________. (2)29cos()6π= __________. (3)0tan(855)-= _______ ___. (4)16sin()3π-= __________.变式练习1:求下列函数值:︒︒-580tan )4( ,670sin )3( ),431sin()2( ,665cos )1(ππ的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州学乐教育
学生姓名 ____________________
就读年级 ____________________
授课日期 ____________________
教研院审核___________________
三角函数的诱导公式
一、学习目标:
1.熟练掌握诱导公式,利用诱导公式进行求值,化简,证明.
2.了解从未知到已知,从复杂到简单的转化过程,提高分析和解决问题的能力.
二、知识要点:
诱导公式(一)
tan )2tan(cos )2(cos sin )2sin(ααπα
απααπ=+=+=+k k k
结构特征:①终边相同的角的同一三角函数值相等
②把求任意角的三角函数值问题转化为求0~π2角的三角函数值问题。
诱导公式(二)
tan )tan(cos )cos( sin )sin(ααπα
απααπ=+-=+-=+
结构特征:①函数名不变,符号看象限(把α看作锐角时)
②把求(απ+)的三角函数值转化为求α的三角函数值。
诱导公式(三)
tan )tan(cos )cos( sin )sin(ααα
ααα-=-=--=-
结构特征:①函数名不变,符号看象限(把α看作锐角)
②把求(α-)的三角函数值转化为求α的三角函数值
诱导公式(四)
tan )tan(cos )cos( sin )sin(ααπααπααπ-=--=-=-
诱导公式(五)
sin )2cos( cos )2sin(
ααπ
ααπ=-=- 诱导公式(六)
sin )2
cos( cos )2sin(
ααπ
ααπ
-=+=+ 方法点拨:
①可以是任意角;公式中的α ②前四组诱导公式可以概括为: 符号。
看成锐角时原函数值的前面加上一个把三角函数值,的同名
的三角函数值,等于它ααπαπααπ ,,
, ),Z (2-+-∈+k k ③公式(五)和公式(六)总结为一句话:函数正变余,符号看象限
三、基础自测:
1、求下列各三角函数值:
①cos225° ②tan (-π)
2、sin480°的值为( )
A 、2
1-
B 、23-
C 、21
D 、23
3、cos330°等于( ) A 、
21 B 、2
1
- C 、23 D 、23-
四、典型例题分析:
例1、求值(1)10sin()3π-
= __________. (2)29
cos()6
π= __________. (3)0
tan(855)-= _______ ___. (4)16sin()3
π-= __________.
变式练习1:求下列函数值:
︒︒-580tan )4( ,670sin )3( ),4
31sin()2( ,665cos )1(π
π
的值。
求:已知、例)
sin(2)4cos()
3sin()2cos( ,
3)tan( 2απααπαπαπ-+-+--=+
变式练习2:
若1
sin()22π
α-=-,则tan(2)πα-=________. 变式练习3:
已知
()()()()
29cos sin 4cos sin 3=+---++απαααπ,则αtan = .
五、巩固练习:
1、对于诱导公式中的角α,下列说法正确的是( )
A .α一定是锐角
B .0≤α<2π
C .α一定是正角
D .α是使公式有意义的任意角 2、⎪⎭
⎫
⎝⎛-
π619sin 的值等于( ) A .
2
1
B . 2
1-
C .
2
3 D . 2
3-
3、若(),2,5
3
cos παππα<≤=
+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5
4-
4、下列各式不正确的是 ( )
A . sin (α+180°)=-sin α
B .cos (-α+β)=-cos (α-β)
C . sin (-α-360°)=-sin α
D .cos (-α-β)=cos (α+β) 5、sin
34π·cos 6
25π·tan 45π的值是
A .-43
B .4
3
C .-43
D .
4
3
6、)2cos()2sin(21++-ππ等于
( )
A .sin2-cos2
B .cos2-sin2
C .±(sin2-cos2)
D .sin2+cos2
7、已知()2
1
sin -
=+πα,则()πα7cos 1+的值为 ( )
A .
332 B . -2 C . 332- D . 3
3
2± 8、如果A 为锐角,2
1
)sin(-
=+A π,那么=-)cos(A π ( ) A 、2
1- B 、21
C 、23-
D 、23
9、已知a = 200sin ,则
160tan 等于 ( )
A 、21a a
-- B 、21a
a
- C 、a a 21-- D 、a a 2
1-
10、tan600°的值是
( )
A .33
-
B .
3
3
C .3-
D .3
11、α是第四象限角,13
12
cos =α,则sinα等于( ) A.135 B.135- C.125 D.12
5- 二、填空题
1、tan2010°的值为 .
2、已知5
3
sin -
=α,且α是第四象限的角,则)2cos(απ-的值是 . 3、计算:cos (-2640°)+sin1665°= . 4、计算:)4
25tan(325cos 625sin
π
ππ-++= . 5、化简:)
(cos )5sin()4sin()
3(sin )(cos )4cos(222πθθππθπθπθπθ--+-+++=______ ___.
6、若a =αtan ,则()()απαπ+--3cos 5sin = ____ ____.
7、如果51cos =
α,且α是第四象限角,那么)2
cos π
α+(=_________________. 8、已知552sin =
α,2
π
≤α≤π,则tanα=______________.
9=__________.
10、若α是三角形的一个内角,且21
)23cos(=+απ,则α= 。
11、已知x x f 3cos )(cos =,则)30(sin
f 的值为 。
12、化简:
20
sin 1160sin 160cos 20sin 212
--+。