系统仿真
系统仿真的步骤
系统仿真的步骤系统仿真是现代工程领域中非常重要的一项技术,它可以帮助我们了解系统的性能、预测系统的行为以及确定系统的最优设计方案。
以下是系统仿真的步骤:1. 定义问题确定需要解决的问题。
这包括明确需要研究的系统、系统的输入和输出、以及仿真需要解决的具体问题。
2. 确定假设和变量在仿真系统中,许多变量都是具有不确定性的,因此需要根据已有的知识和经验来确定假设。
3. 建立模型根据假设和所确定的变量,建立起模型。
模型可以是连续模型或离散模型。
连续模型通常使用微分方程或积分方程来描述,而离散模型则通常使用差分方程或状态转移方程来描述。
4. 确定仿真时间根据仿真目的和所需结果的准确性程度,确定仿真时间的长度。
通常,仿真时间的长度越长,所得到的结果也越准确。
5. 设定初始条件初始条件是数学模型在仿真开始前所设定的变量状态。
这些状态将对仿真的结果产生重要的影响。
6. 设置仿真参数仿真参数通常为模型中的常数或变量。
这些参数通常随着时间变化而变化,因此需要考虑每个仿真时间点的参数值。
7. 运行仿真在计算机中运行建立好的模型,利用数值计算方法来求出每个仿真时间点的变量值。
8. 分析仿真结果对仿真结果进行分析,比较实际值与仿真结果之间的误差。
对于误差过大的结果,需要进行修正。
通过比较仿真结果与实际数据之间的差异,来判断仿真结果的准确性以及模型的可靠性。
10. 优化模型如果发现模型有误差或不准确的地方,需要对模型进行修改和优化,重新进行仿真。
总之,系统仿真是一个非常有挑战性的过程,需要借助一定的数学和计算机知识来完成。
在实际工程应用中,只有经过合理、科学、系统的仿真分析,才能使工程设计达到最优化的目标。
物流仿真系统介绍
各个工序的作业时间,作业员的步行速度等。
系统仿真软件的最佳选择—Flexsim
Witness
Flexsim
分析功能
动画功能
Taylor2
日本某上市公司对世界有名離散型系统仿真软件的评价结果
Flexsim是由美国的Flexsim Software Production公司出品的,是一款商业化离散事件系统仿真软件。Flexsim采用面向对象技术,并具有三维显示功能。建模快捷方便和显示能力强大是该软件的重要特点。该软件体供了原始数据拟合、输入建模、图形化的模型构建、虚拟现实显示、运行模型进行仿真试验、对结果进行优化、生成3D动画影像文件等功能,也提供了与其他工具软件的接口。
运动学(Kinematics)
国外Flexsim应用例(1)
国外Flexsim应用例(2)
国外Flexsim应用例(3)
Flexsim的输出图表
Flexsim的部分用户名单
ADC Telecommunications A-Dec A Epstein & Sons Acco Acuson Corporation ADC Telecommunications ADTRAN AHPC Alcan Jonquiere Alcan Fujikura Allied Signal Aerospace American Bag Corporation American Handling, Inc. Analytics, Inc. Andersen Consulting APM Terminals Arrow Electronics Arthur Andersen & Company ASML ASC, Inc.
系统仿真技术的必要性(1)
简述系统仿真的基本步骤
简述系统仿真的基本步骤
系统仿真是一种通过建立模型来模拟真实系统行为的技术。
它可以用于评估系统性能、预测系统行为、优化系统设计等方面。
系统仿真的基本步骤如下:
1. 定义问题:明确系统仿真的目的和范围,确定需要模拟的系统和需要关注的指标。
2. 建立模型:根据问题定义,选择合适的建模方法,如数学模型、计算机模拟模型等,建立系统的模型。
3. 模型验证:对模型进行验证,确保模型的准确性和可靠性。
这可以通过与真实系统的实验数据进行比较来实现。
4. 参数设置:确定模型的参数,并根据问题定义设置合理的参数值。
5. 仿真运行:运行仿真模型,收集和分析仿真结果。
6. 结果分析:对仿真结果进行分析,评估系统的性能和行为,并与问题定义进行比较。
7. 优化设计:根据仿真结果,对系统设计进行优化,以提高系统性能和效率。
8. 结果验证:对优化后的系统进行再次仿真,验证优化效果。
以上是系统仿真的基本步骤,在实际应用中,可能会根据具体情况进行调整和扩展。
系统仿真需要综合运用数学、计算机科学、工程学等多学科知识,是一项复杂而重要的技术。
系统仿真介绍及应用
系统仿真介绍及应用
01.系统仿真整体介绍
1.1 定义 1.2 如何实施 1.3 应用场景和领域 1.4 重要性
01.系统仿真整体介绍
“系统仿真” 定义
系统仿真(system simulation)就是根据系统分析的目的,在分析系统各要素性质 及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系 或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信 息
EMULATION
02.在水运行业的应用
码头生产
滚装码头作业仿真截图
集装箱码头仿真截图 散货码头作业、堆场管理仿真截图
散货码头皮带机系统仿真截图
02.在水运行业的应用
港区及园区交通
建立港区和物流园区集疏运车流仿真模型,重点对 各种规划道路的交通流进行仿真,得出各种车流评 价指标,辅助优化道路设计以及立交桥设置的必要 性等问题。
SIMULATION
用于运营阶段
可以推演码头从当前开始运行数小时(或数分钟)后的 状态,实现对同码头生产作业决策的评价,最终为码头 生产提供决策的依据。 此外,码头的仿真推演可以与人工智能技术相结合,实 时分析某一决策下的仿真推演的结果与码头生产实际情 况,进而不断改善和提升仿真结果的准确性和可靠性。
03.在其他相关领域的应用
微观道路交通仿真
案例2:建立了考虑红绿灯的交叉口交通仿真模型。以车辆在系统内的滞留时间 作为评价指标,对不同的红绿灯灯时设置方案进行比选。
03.在其他相关领域的应用
行人流仿真
案例:建立了铁路站台的行人流仿真模型,模拟地铁进出站以及站台上行人进出闸口、上下楼梯、上下车的 过程,并以密度图的形式动态显示站台上的行人密度。
系统仿真介绍及应用
系统仿真
系统仿真1系统仿真概述1.1定义及实质所谓系统仿真(system simulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。
系统仿真的实质是①它是一种对系统问题求数值解的计算技术。
尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。
②仿真是一种人为的试验手段。
它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。
这是仿真的主要功能。
③仿真可以比较真实地描述系统的运行、演变及其发展过程。
1.2系统仿真的分类根据仿真所采用的模型划分,可将仿真分为数学仿真和物理仿真两大类。
物理仿真亦称为实物仿真,它是在系统生产出样机后,将系统实物全部或部分的引入回路,由于物理仿真能将系统的实际参数、数学仿真中难以考虑到的非线性因素和干扰因素引入仿真回路,因此物理仿真更接近系统的实际情况,通过仿真可以检验实物系统工作的可靠性,可以准确地调整系统元部件的参数。
数学仿真就是将数学模型编排成模拟计算机的排题图或数值计算机的程序。
这一过程是将原始数学模型转换成仿真模型,通过对计算机模型的运行达到对原始系统研究的目的,数学仿真在系统设计阶段和分析阶段是十分重要的,通过数学仿真可以检验理论设计的正确性。
1.3系统仿真的作用①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。
尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。
②对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。
③通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。
④通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。
系统仿真课程设计
系统仿真课程设计一、课程目标知识目标:1. 学生能理解系统仿真的基本概念,掌握仿真模型的构建方法和仿真过程的基本步骤。
2. 学生能够运用所学知识,针对具体问题设计简单的系统仿真模型,并解释仿真结果。
3. 学生能够掌握至少一种系统仿真软件的使用,并运用该软件完成课程项目的实践操作。
技能目标:1. 学生能够运用系统仿真的方法分析解决实际问题,提升问题解决能力。
2. 学生通过小组合作完成课程项目,提高团队协作和沟通能力。
3. 学生能够运用信息技术手段,收集、整理、分析数据,为系统仿真提供支持。
情感态度价值观目标:1. 学生培养对系统仿真技术的兴趣,激发学习热情,形成积极的学习态度。
2. 学生通过课程学习,认识到系统仿真在工程领域的重要作用,增强对工程学科的认识和尊重。
3. 学生在课程实践中,体会团队合作的力量,培养集体荣誉感和责任感。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握系统仿真基本知识的基础上,提高实际操作能力,培养解决实际问题的素养。
通过课程学习,使学生能够运用系统仿真技术为工程领域的问题解决提供支持,同时培养良好的团队合作精神和价值观。
课程目标具体、可衡量,便于后续教学设计和评估。
二、教学内容本课程教学内容主要包括以下几部分:1. 系统仿真基本概念:介绍系统仿真的定义、分类及其在工程领域的应用。
2. 仿真模型构建:讲解仿真模型的构建方法,包括数学建模、物理建模等。
3. 仿真过程与方法:阐述仿真过程的基本步骤,介绍常用的仿真算法及软件。
4. 系统仿真软件应用:学习至少一种系统仿真软件,如MATLAB/Simulink、AnyLogic等,并掌握其基本操作。
5. 课程项目实践:分组进行项目实践,运用所学知识设计、搭建和运行系统仿真模型。
教学内容安排如下:第一周:系统仿真基本概念及分类;第二周:仿真模型构建方法;第三周:仿真过程与方法;第四周:系统仿真软件介绍与基本操作;第五周:课程项目实践(一);第六周:课程项目实践(二);第七周:课程总结与评价。
系统仿真
例:模拟计算仿真
用相对比较容易实现与调整的电气、电 子系统对其它物理系统进行仿真。 模拟电子计算机。 模型与原型之间状态运动规律特性相似
列写图1所示电网络以ui(t)为输入量,
K
uo(t)为输出量的微分方程和图2所示
弹簧-质量-阻尼器机械位移系统在外
F(t) m x(t) f
力F(t)作用下,位移x(t)的运动方程。
复杂系统仿真时往往两者相结合
3.系统仿真
仿真的定义变迁
1961年,G.W. Morgenthater首次定义仿真:在实 际系统尚不存在的情况下对于系统或活动本质的实 现 1978年,Korn的著作《连续系统仿真》定义:用能 代表所研究的系统的模型作实验 1982年,Spriet扩充定义:所有支持模型建立与模 型分析的活动即为仿真活动 1984年,Oren提出:仿真是一种基于模型的活动
Kn(xn,yn)共n个工地,各需混凝土Q1, Q2, ..., Qn 吨,混凝土每吨公里的运费为C元。 如何确定混凝土搅拌中心的位置K0(x0,y0) 使 得费用最少?
仿真举例
解1:数学计算 记第K个工地的位置为 (xk,yk),
中心的位置为(x0,y0), 则目标函数为
c Q
i 1 n i
计算机仿真的基本概念
长江三峡工程
三峡水库总库容393 亿立方米,总装机容量 1820万千瓦,是世界上最大的水电站。 但是三峡的安全问题是一个很重要的问题,我 们不可能等到建好后再看它的安全性,用计算机仿 真就可以很好的解决这一问题。
飞机设计 计算机仿真的基本概念
飞机设计中有一个重要环节:风洞试验。 实际的风洞试验费用巨大。 使用计算机仿真进行模拟风洞试验,使费用大大降低。
系统仿真技术的介绍(第一章)NEW
系统仿真技术的介绍(第一章)(一)什么是系统仿真系统仿真技术在国内还是一个新事物,大家不难发现,在5年或者10年前,很少会有人谈到仿真技术,学校也没有这门课程,在网络上搜索,相关的资料也是很少。
可是近2~3年,仿真逐步在国内高校内发展起来,也逐渐在一些世界级的大企业、国家重点单位得到了应用,出现了一部分基于仿真的咨询机构,并且一度海外风险投资基金也欲介入这个潜在的市场。
现在国内在物流、供应链、工业工程等相关的网站、论坛上都能找到系统仿真的踪迹,并且也出现了一些比较有名的仿真论坛,主要有itpub的供应链仿真论坛,道于仿真论坛,还有各大仿真软件公司或者代理开设的专门的讨论区,技术支持区,人气也相当火。
姑且不论我们国内论坛的人气旺盛和实际上仿真技术应用比较低靡的巨大反差,至少也可以说这是一个良好的开端。
系统仿真是工业工程中系统工程的一个小分支,在国外已经有50多年的历史[1955,K.D. Tocher]。
尤其在美国,仿真研究已经广泛应用于企业应用,主要被应用于通讯、制造、服务、卫生、物流和军事等,为这些行业的发展提供了巨大的推动作用。
仿真和虚拟现实,有本质的区别,我们经常听到仿真枪,仿真玩具,还有比如工程仿真软件,这些都是和虚拟现实相关的可视化的设计而已。
美国的仿真著名学者Jerry Banks对系统仿真的定义是:“仿真就是实时地对现实世界的流程和系统的运作进行模拟,仿真包含人为地产生系统的“历史”,并通过观察这些“历史”数据来获得它所代表的现实系统的运作的推断。
仿真是解决很多现实世界问题不可获缺的解决工具。
仿真被用来描述和分析系统的行为,提出关于现实系统的what-if的问题,并帮助现实系统的设计。
现存的系统和概念中的系统都可以用仿真来模拟。
”采用系统仿真的方法和传统方法的区别在于仿真属于预测性技术,在不影响实际系统的情况下通过有目的的选取研究的对象,确定研究范围,抽象系统的本质进行一系列策略和参数的模拟。
系统仿真技术教学大纲+考试大纲
系统仿真技术教学大纲一、课程简介1.1 课程名称:系统仿真技术1.2 学分:3学分1.3 先修课程:无1.4 课程类型:必修课二、教学目标2.1 理论目标:- 了解系统仿真技术的基本概念和原理- 掌握系统仿真建模的方法与技巧- 熟悉系统仿真软件的使用2.2 技能目标:- 能够应用系统仿真技术解决实际问题- 具备系统仿真实验的设计和分析能力- 能够进行系统仿真结果的可视化展示和报告撰写三、教学内容3.1 系统仿真技术概述- 系统仿真技术的发展背景和应用领域- 系统仿真技术的定义和分类- 系统仿真技术在工程领域中的重要性和作用3.2 系统建模与仿真- 系统建模的基本原理和方法- 离散事件仿真和连续仿真的比较与选择- 系统建模中常用的数学模型和统计方法3.3 系统仿真软件- 常用的系统仿真软件介绍和比较- 系统仿真软件的基本操作和功能- 使用系统仿真软件进行实际案例分析3.4 系统仿真实验设计与分析- 系统仿真实验的目标和方法- 系统仿真实验的设计和参数设置- 分析系统仿真实验结果和优化方法四、教学方法4.1 理论课程- 教师讲授课程中的基本概念、原理和方法- 学生通过阅读相关教材和文献进行自学和讨论 - 教师指导学生进行系统仿真建模和实验设计4.2 实践课程- 学生使用系统仿真软件进行实际仿真操作- 学生独立完成系统仿真实验和结果分析- 学生进行实验结果的报告撰写和展示五、教材与参考书目5.1 教材:- 《系统仿真技术导论》作者:张三,出版社:XX出版社5.2 参考书目:- 《系统仿真理论与技术》作者:李四,出版社:XX出版社 - 《系统仿真软件与应用》作者:王五,出版社:XX出版社六、考核方式6.1 平时成绩:包括课堂讨论和实验报告等6.2 期末考核:闭卷考试,占课程总成绩的70%6.3 实验成绩:学生使用系统仿真软件进行的实验和实验报告,占课程总成绩的30%七、教学进度安排7.1 第1周:系统仿真技术概述7.2 第2周:系统建模与仿真7.3 第3周:系统仿真软件介绍7.4 第4周:系统仿真实验设计与分析7.5 第5周:复习与总结八、其他事项8.1 学生应自觉遵守学术道德和实验室安全规定8.2 学生可根据自身兴趣和实际需求,选择具体的系统仿真案例进行研究和实验8.3 学生对系统仿真技术及其应用领域进行深入了解和研究,可作为研究课题或未来的就业方向考试大纲一、考试形式1.1 闭卷考试1.2 考试时间:120分钟二、蓝本内容2.1 系统仿真技术概述- 系统仿真技术的基本概念和应用领域(20分)- 系统仿真技术在工程领域中的作用和意义(30分)2.2 系统建模与仿真- 系统建模的基本原理和方法(20分)- 离散事件仿真和连续仿真的比较与选择(30分)2.3 系统仿真软件- 系统仿真软件的基本操作和功能(30分)- 使用系统仿真软件进行实际案例分析(20分)2.4 系统仿真实验设计与分析- 系统仿真实验的设计和参数设置(20分)- 分析系统仿真实验结果和优化方法(30分)三、参考书目- 《系统仿真技术导论》- 《系统仿真理论与技术》- 《系统仿真软件与应用》四、注意事项4.1 考试过程中禁止交流和抄袭4.2 考试结束后,将试卷和答案整齐放在桌面上,离开考场时禁止携带任何试卷或草稿纸等物品以上为系统仿真技术教学大纲和考试大纲的详细内容,希望能够为学生提供系统学习系统仿真技术的指导和评估依据。
第6章 系统仿真
§6.1 系统仿真概述
(3)在系统仿真时,尽管要研究的是某些特定时刻的系统状 态或行为,但仿真过程也恰恰是对系统状态或行为在时间序列 内全过程的描述。即仿真可以比较真实地描述系统的运行、演 变及其发展过程。
3.系统仿真的作用 (1)仿真的过程也是试验的过程,而且还是系统地收集和积 累信息的过程。尤其适用一些复杂的随机问题,仿真技术是获 取信息惟一令人满意的方法。 (2)对一些难以建立物理模型和数学模型的对象系统,可通 过仿真模型来顺利地解决预测、分析和评价等系统问题。 (3)通过系统仿真,可以把一个复杂系统降阶成若干子系统, 以便于分析。 (4)通过系统仿真,不仅能启发新的思想或产生新的策略, 还能暴露出原系统中隐藏着的一些问题,以便及时解决。
1968年,来自世界各国的几十位科学家、教育家和经济学 家等学者聚会罗马,成立了一个非正式的国际协会--罗马俱 乐部(The Club of Rome)。其工作目标是关注、探讨与研究 人类面临的共同问题,使国际社会对人类困境包括社会的、经 济的、环境的诸多问题有更深入的理解,并提出应该采取的能 扭转不利局面的新态度、新政策和新制度。
§6.1 系统仿真概述
系统动态学的概念和原理是在上世纪 50年代末由美国麻省理工学院的斯隆管理 学院福雷斯特(Jay .W .Forrester)教授提 出来的,当时称“工业动力学”(Industrial Dynamics)。
当时主要应用于工业 和经济系统方面,如研究 企业规模、雇佣劳动、调 整生产、调整产品价格等. 随着应用范围的扩大,很 难反映它的实际意义,将 其改为“系统动态学”。
§6.1 系统仿真概述
四、应用系统动态学模型的步骤
1. 系统分析(以某地区人口问题分析研究为例) 2. 绘制诸因素的因果反馈关系图,建立模型框架 3. 依照系统因果关系图绘制系统流图 4. 将各子系统流图衔接为总模型流图 5. 最后收集整理数据
系统仿真技术3篇
系统仿真技术系统仿真技术是一种基于计算机模拟的技术,在工程领域中广泛应用。
它可以用于进行设计、测试、优化等工作,其主要目的是提高效率和降低成本,同时也能减少生产和测试过程中的不确定性。
系统仿真技术的应用范围很广,包括航空、航天、汽车、电力、电子、计算机等众多领域。
这种技术可以模拟实际系统的行为,以便更好地理解和分析各种数据,从而预测系统在各种情况下的响应和行为。
本文将会介绍系统仿真的基本概念、主要步骤、应用领域和技术发展等方面的内容。
一、系统仿真技术的基本概念系统仿真是利用计算机模拟实现对具体系统的分析、优化或者结构设计的过程。
该种技术是运用计算机的处理能力,把对象系统的各种现象、规律以及运用要求放到模拟应用系统中加以模拟和研究,从而研究和改进所要模拟的系统。
而系统仿真的基本概念包括以下几个方面:1. 系统:指被仿真的对象,可以是物理系统、经济系统、管理系统等等。
2. 模型:指对系统中关键部分的描述,可以是数学模型、物理模型、仿真软件等等。
3. 数据:指用来反映系统行为情况的信息,可以是温度、速度、功率等等。
4. 仿真:指基于模型来对系统进行模拟和分析,以寻找出最优解或者做出最优决策的过程。
二、系统仿真技术的主要步骤系统仿真的具体操作过程可以划分为以下四个步骤:1. 问题定义:在解决实际问题的过程中,首先需要明确问题的范围和涵义,确立系统仿真的具体目标。
2. 模型建立:建立好仿真模型是开展仿真工作的重要步骤。
建立好的模型可用于了解系统的各个方面,进而进行解决问题的分析和优化。
3. 数据收集:数据收集是系统仿真的关键环节。
只有收集到有意义的数据,才能对模型进行实验验证、分析和优化。
4. 分析与验证:运行仿真模型并收集数据后,需要进行分析、验证和总结,以确定优化方案,实现仿真目标。
三、系统仿真技术的应用领域1. 航空航天领域:仿真技术可以用来预测飞行器在各种气象条件下的空气动力学和控制性能,为飞行员培训提供训练环境。
系统建模与仿真-第3章 系统仿真方法与技术
3.4 系统仿真技术的应用
3.4.5 仿真技术在CIMS中的应用
(1)CIMS的需求分析仿真 (2)CIMS的设计仿真 (3)CIMS的仿真测试 (4)CIMS运行与维护的仿真支持
3. 5 系统仿真技术的特点
(1)安全性 (2)经济性 (3)可重复性
Add Your Company Slogan
3.2 系统仿真技术的分类
2.根据仿真计算机类型分类
根据所使用的仿真计算机类型也可将仿真分为三类: (1)模拟计算机仿真; (2)数字计算机仿真; (3)数字模拟混合仿真。
3.2 系统仿真技术的分类
3.根据仿真时钟与实际时钟的比例关系分类
实际动态系统的时间基称为实际时钟。而系统仿真时模 型所采用的时钟称为仿真时钟。根据仿真时钟与实时时 钟的比例关系,系统仿真分类如下: (1)实时仿真。 (2)亚实时仿真。 (3)超实时仿真。
3.4 系统仿真技术的应用
3.4.4 仿真在产品开发及制造过程中的应用
设计人员或用户甚至可“进入”虚拟的制造环境检验其 设计、加工、装配和操作,而不依赖于传统的原型样机的反 复修改。这样使得产品开发走出主要依赖于经验的狭小天地 ,发展到了全方位预报的新阶段。下图简要表示了虚拟制造 与实际制造的联系与区别。
(5) 试验时间太长、费用太大或者有危险等。
3.4 系统仿真技术的应用
3.4.3 仿真在教育与训练中的应用
训练仿真系统是利用计算机并通过运动设备、操纵设备、显 示设备、仪器仪表等复现所模拟的对象行为,并产生与之适 应的环境,从而成为训练操纵、控制或管理这类对象的人员 的系统。 根据模拟对象、训练目的,可将训练仿真系统分为三大类: (1)载体操纵型:这是与运载工具有关的仿真系统,包括航空 、航天、航海、地面运载工具,以训练驾驶员的操纵技术为 主要目的。 (2)过程控制型用于训练各种工厂(如电厂、化工厂、核电站 、电力网等)的运行操作人员。 (3)博弈决策型用于企业管理人员(厂长、经理)、交通管制人 员(火车调度、航空管制、港口管制、城市交通指挥等)和军 事指挥人员(空战、海战、电子战等)的训练。
系统仿真
系统仿真1系统仿真概述1.1定义及实质所谓系统仿真(systemsimulation),就是根据系统分析的目的,在分析系统各要素性质及其相互关系的基础上,建立能描述系统结构或行为过程的、且具有一定逻辑关系或数量关系的仿真模型,据此进行试验或定量分析,以获得正确决策所需的各种信息。
系统仿真的实质是①它是一种对系统问题求数值解的计算技术。
尤其当系统无法通过建立数学模型求解时,仿真技术能有效地来处理。
②仿真是一种人为的试验手段。
它和现实系统实验的差别在于,仿真实验不是依据实际环境,而是作为实际系统映象的系统模型以及相应的“人造”环境下进行的。
这是仿真的主要功能。
③仿真可以比较真实地描述系统的运行、演变及其发展过程。
1.2系统仿真的分类根据仿真所采用的模型划分,可将仿真分为数学仿真和物理仿真两大类。
物理仿真亦称为实物仿真,它是在系统生产出样机后,将系统实物全部或部分的引入回路,由于物理仿真能将系统的实际参数、数学仿真中难以考虑到的非线性因素和干扰因素引入仿真回路,因此物理仿真更接近系统的实际情况,通过仿真可以检验实物系统工作的可靠性,可以准确地调整系统元部件的参数。
数学仿真就是将数学模型编排成模拟计算机的排题图或数值计算机的程序。
这一过程是将原始数学模型转换成仿真模型,通过对计算机模型的运行达到对原始系统研究的目的,数学仿真在系统设计阶段和分析阶段是十分重要的,通过数学仿真可以检验理论设计的正确性。
1.3系统仿真的作用①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。
尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。
②对一些难以建立物理模型和数学模型的对象系统,可通过仿真模型来顺利地解决预测、分析和评价等系统问题。
③通过系统仿真,可以把一个复杂系统降阶成若干子系统以便于分析。
④通过系统仿真,能启发新的思想或产生新的策略,还能暴露出原系统中隐藏着的一些问题,以便及时解决。
系统工程导论 第五章 系统建模与仿真 第四节系统仿真概述
5.4系统仿真概述
仿真的缺点:
(1)开发仿真软件,建立运行仿真模型是一项艰巨的工作 (2)系统仿真只能得到问题的一个特解或可行解,不可能获得问题的通解 或者是最优解。
(3)仿真建模直接面向实际问题,对于同一问题,由于建模者的认识和 看法有差异,往往会得到迥然不同的模型,自然,模型运行的结果也就 不同。
仿真(Simulation)就是利用模型对实际系统进行实验研究的过 程。但由于安全上、经济上、技术上或者是时间上的原因,对实际系 统进行真实的物理实验是很困难的,有时甚至是不可能时,系统仿真 技术就成了十分重要、甚至是必不可少的工具。
在我国,仿真技术最初是用于航空、航天、核反应堆等少数领域, 后来逐步发展到电力、冶金、机械、电子、通信网络等一些主要工业 部门。现在,系统仿真已逐步扩大应用于社会经济、交通运输、生态 环境、武器装备研制、军事作战、企业管理等众多领域。
第三,系统仿真的输出结果是在仿真过程中,是仿真软件自动给出的。
第四,一次仿真结果,只是对系统行为的一次抽样,因此,一项仿真 研究往往由多次独立的重复仿真所组成,所得到的仿真结果也只是对真实 系统进行具有一定样本量的仿真实验的随机样本。因此,系统仿真往往要 进行多次试验的统计推断,以及对系统的性能和变化规律作多因素的综合 评估。
5.4系统仿真概述
仿真优点: (1)可以研究哪些不可能正确地用解析方法计算的数学模型来描述的 复杂的、带有随机因素的现实世界系统。 (2)系统仿真采用问题导向来建模分析,并使用人机友好的计算机软 件,使建模仿真直接面向分析人员,他们可以集中精力研究问题的内部 因素及其相互关系,而不是计算机编程、调试及实现。 (3)仿真允许人们在假设的一组运行条件下估计现有系统的性能。 (4)仿真比用系统本身做实验能更好地控制实验条件。 (5)仿真使人们能在较短的时间内研究长时间范围的系统(如经济系
Simulink系统仿真原理
仿真效率取决于计算机性能、模型复杂度和数值算法的优化程度。
03
Simulink模型建立
模型元素
模块
Simulink中的模块是构成模型的基本单元, 每个模块代表一个特定的功能或算法。
连接线
连接线用于将不同模块连接起来,表示数据 流或信号流。
参数设置
每个模块都有一些参数可以设置,用于调整 模块的行为或功能。
性能评估
根据仿真结果,评估系统性能指标,如响应时间、超调量、稳态误 差等。
优化设计
基于仿真结果,对系统参数和结构进行优化设计,提高系统性能和 稳定性。
05
模型优化与改进
参数优化
参数优化
在Simulink模型中,参数的选择和调整对仿真结果的影响非常大。通过调整模型中的 参数,可以优化模型的性能,提高仿真的准确性和效率。
通过点击Simulink界面上的“开 始”按钮或使用命令行指令来启 动仿真。
实时监测
02
03
结果导出
在仿真过程中,可以通过 Simulink界面实时监测系统状态、 变量值和输出结果等。
将仿真结果导出为文本、图像或 数据文件,以便进一步分析或与 其他软件进行交互。
模型性能分析
稳定性分析
通过分析仿真结果,判断系统是否稳定,并找出可能的不稳定因素。
特点
支持图形化建模、交互式仿真、动态 系统分析等,适用于多种领域的系统 建模与仿真。
Simulink的历史与发展
1980年代初
由美国MathWorks公司推出Simulink的早期版 本。
1990年代
随着计算机技术的进步,Simulink的功能不断 扩展,支持更多的系统和算法。
2000年代至今
(完整版)第一章系统仿真的基本概念与方法
第一章控制系统及仿真概述控制系统的计算机仿真是一门涉及到控制理论、计算数学与计算机技术的综合性新型学科。
这门学科的产生及发展差不多是与计算机的发明及发展同步进行的。
它包含控制系统分析、综合、设计、检验等多方面的计算机处理。
计算机仿真基于计算机的高速而精确的运算,以实现各种功能。
第一节控制系统仿真的基本概念1.系统:系统是物质世界中相互制约又相互联系着的、以期实现某种目的的一个运动整体,这个整体叫做系统。
“系统”是一个很大的概念,通常研究的系统有工程系统和非工程系统。
工程系统有:电力拖动自动控制系统、机械系统、水力、冶金、化工、热力学系统等。
非工程系统:宇宙、自然界、人类社会、经济系统、交通系统、管理系统、生态系统、人口系统等。
2.模型:模型是对所要研究的系统在某些特定方面的抽象。
通过模型对原型系统进行研究,将具有更深刻、更集中的特点。
模型分为物理模型和数学模型两种。
数学模型可分为机理模型、统计模型与混合模型。
3.系统仿真:系统仿真,就是通过对系统模型的实验,研究一个存在的或设计中的系统。
更多的情况是指以系统数学模型为基础,以计算机为工具对系统进行实验研究的一种方法。
要对系统进行研究,首先要建立系统的数学模型。
对于一个简单的数学模型,可以采用分析法或数学解析法进行研究,但对于复杂的系统,则需要借助于仿真的方法来研究。
那么,什么是系统仿真呢?顾名思义,系统仿真就是模仿真实的事物,也就是用一个模型(包括物理模型和数学模型)来模仿真实的系统,对其进行实验研究。
用物理模型来进行仿真一般称为物理仿真,它主要是应用几何相似及环境条件相似来进行。
而由数学模型在计算机上进行实验研究的仿真一般则称为数字仿真。
我们这里讲的是后一种仿真。
数字仿真是指把系统的数学模型转化为仿真模型,并编成程序在计算机上投入运行、实验的全过程。
通常把在计算机上进行的仿真实验称为数字仿真,又称计算机仿真。
计算机仿真包括三个基本要素:系统、模型与计算机。
系统级仿真 示例-概述说明以及解释
系统级仿真示例-概述说明以及解释1.引言1.1 概述系统级仿真是一种通过模拟和仿真整个系统的方法,旨在准确地预测系统的行为和性能。
系统级仿真可以模拟包括软件、硬件和其他系统组件在内的各种系统,包括电子设备、通信网络和航天器等。
它通过建立模型,使用数学和物理原理,模拟系统中各个组件的交互和行为,从而可以评估系统在不同条件下的性能,优化设计方案,并提前发现潜在问题。
系统级仿真在现代科学和工程领域具有广泛的应用。
在电子设备领域,它可以用于评估电路的信号传输、功耗和热管理等性能,优化电路设计。
在通信网络领域,它可以用于评估网络的吞吐量、时延和容错性能,优化网络拓扑和协议设计。
在航天器设计领域,它可以用于评估航天器的轨道和稳定性,指导设计和操作策略的制定。
系统级仿真的优势在于可以提供全面的系统性能评估,减少实际测试的成本和时间。
它可以模拟不同组件的复杂交互,捕捉系统的细节和动态行为。
同时,系统级仿真还可以提供设计优化的方案,帮助工程师和科学家在设计阶段识别和解决问题,提高产品质量和性能。
然而,系统级仿真也面临着一些挑战。
首先,构建系统模型需要对系统的结构和行为有深入的理解,需要耗费大量的时间和资源。
其次,系统级仿真需要涉及多个层面的模型,包括物理、逻辑和控制层面,需要统一各个模型之间的交互和数据传输。
此外,系统级仿真需要合理选择仿真的精度和规模,以保证结果的准确性和可信度。
总之,系统级仿真在科学和工程领域具有重要的作用。
它可以帮助我们深入理解系统的行为和性能,并为优化设计和决策提供有力的支持。
随着科学技术的不断进步,系统级仿真在未来的发展中将继续发挥重要的作用,并为解决复杂问题和推动科学进步做出贡献。
文章结构部分是对整篇文章的框架进行介绍,让读者了解到接下来的内容有哪些主要部分。
以下是文章结构部分的内容示例:1.2 文章结构本文按照如下结构进行展开:1. 引言:首先介绍系统级仿真的概念、背景和意义,以及本文的目的和主要内容。
系统仿真
达的平均天数 现模拟今后 批货物到达的平均天数 模拟今后10批 今后
根据已知条件,到货天数X的概率见表 解:① 根据已知条件,到货天数 的概率见表
到货天数X 到货天数X 概率P 概率P 2 0.20 3 0.40 5 0.08 7 0.25 8 0.05 12 0.02
模型的表示方法 • 因果关系图: 因果关系图: • 因果链: 因果链: • 反馈回路: 反馈回路:
第二节:SD结构模型化原理
1、系统运行过程 • 分析系统的状态 • 利用状态信息进行决策 • 决策产生行动 • 行动导致系统状态发生变化 从而形成反馈回路 反馈回路。 反馈回路
系统动力学仿真的基本方法是建立系 统的结构模型和量化分析模型 结构模型和量化分析模型, 统的结构模型和量化分析模型,并将其转 换为适合在计算机上编程的仿真模型, 编程的仿真模型 换为适合在计算机上编程的仿真模型,然 后对模型进行仿真实验。 后对模型进行仿真实验。
(三)系统动力学
系统动力学又称系统动态学( Dynamics) 简称SD 系统动力学又称系统动态学(System Dynamics)——简称SD 简称 系统动力学的理论基础: ◆ 系统动力学的理论基础:反馈控制理论 系统动力学的技术手段: ◆ 系统动力学的技术手段:计算机技术 系统动力学的研究对象: ◆ 系统动力学的研究对象:擅长研究复杂社会经济大系统 ◆ 系统动力学的研究方法:从系统内部微观结构入手,建立SD数学模型。 系统动力学的研究方法:从系统内部微观结构入手 建立SD数学模型。 内部微观结构入手, SD数学模型 运用计算机技术,并按时间步长(足够小) 运用计算机技术,并按时间步长(足够小)法 模拟上机运行。根据前一时刻系统状态, 模拟上机运行。根据前一时刻系统状态,估算 出下一时刻系统状态, 出下一时刻系统状态,一步步展现系统动态演 变过程。 变过程。 —系统动力学模拟时间可长可短,尤长为好, 系统动力学模拟时间可长可短, 系统动力学模拟时间可长可短 尤长为好, 尤其适用中长期预测预报, 尤其适用中长期预测预报,这一特性对具有 大惯性的社会经济系统的模拟尤为珍贵 社会经济系统的模拟尤为珍贵。 大惯性的社会经济系统的模拟尤为珍贵。
连续系统仿真方法
连续系统仿真方法连续系统仿真是指通过对系统进行建模和模拟计算,来分析和预测系统的行为和性能。
它是现代工程领域中一种重要的设计和分析工具,可以帮助工程师们快速而准确地了解和评估系统的行为,并在设计过程中进行优化。
连续系统仿真方法主要由系统建模、模型求解和结果分析三个步骤组成。
首先是系统建模。
在连续系统仿真中,系统被描述为一组微分方程或差分方程,这些方程描述了系统的动态行为。
系统的建模可以使用多种方法,包括物理模型、数学模型、状态空间模型等。
物理模型是通过对系统的物理特性进行建模,将系统的动态行为转化为物理参数和方程。
数学模型则是将系统的行为转化为数学方程来描述。
状态空间模型则是通过引入状态变量来描述系统的行为。
根据具体的系统特性和实际需求,可以选择不同的建模方法。
其次是模型求解。
求解模型通常使用数值计算方法,如欧拉法、Runge-Kutta法等。
这些方法将系统的微分方程或差分方程转化为一系列离散时间点上的数值。
通过迭代计算,在每个时间点上更新系统的状态变量,并计算系统的输出。
数值计算方法的选择要考虑到系统动态特性、求解精度和计算效率等因素。
最后是结果分析。
仿真结果可以用来分析系统的动态行为、输出响应和性能指标。
可以通过绘制时间域图、频率域图和相图等,来直观地展示系统的响应和特性。
根据仿真结果,可以对系统的工作状态和性能进行评价,并进行灵敏度分析、优化设计等进一步分析。
连续系统仿真方法在工程领域中有广泛的应用。
例如,在电子电路设计中,可以使用连续系统仿真方法来分析电路的动态响应和稳定性。
在机械系统设计中,可以使用仿真方法来分析结构的强度和振动特性。
在控制系统设计中,可以使用仿真方法来评估控制系统的闭环性能和稳定性。
在通信系统设计中,可以使用仿真方法来分析信号传输的效果和误码率。
与传统的试验方法相比,连续系统仿真方法具有时间和成本的优势。
仿真可以在计算机上进行,不需要进行实际的试验和测试。
通过对系统的各种参数和条件进行调整和变化,可以快速地评估系统的性能和响应,为系统的设计和优化提供便利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Automod 物流分拣系统课程设计班级: 1516027班姓名: 邓超(151602716)指导老师:黄银娣地点:教五楼日期:2016年7月6日Automod 物流分拣系统课程设计一、设计原理(一)、此次建模综合了conveyor系统,生产线与AGV系统,自动化生产车间的优化。
(二)、设计流程。
1.问题定义2.设定目标与整体规划3.资料收集4.模式范围的定义5.模型建构6.模式验证7.模式确认8.实验设计9.模式的执行与分析10.模式额外的执行11.书面报告整理12.模式结果的执行(三)、输送带系统AutoMod的输送带系统可以模拟大多数实务上的输送带系统,包括输送带的长度、高度、宽度,同时输送带的速度、加速度、减速度等,也可由参数的设定来达到。
此外,输送带也可设定成有或无固定间距类型,累计或非累计类型等,两条输送带会流时输送带上的Loads的排序、Load在输送带系统上不同路径的选择等,皆可通过automod的输送带系统来设定,以符合实际物流系统上的要求。
Automod的输送带系统是由Sections所组成,Sections之间相互连接来搬运Loads。
当Loads在Sections上移动时,可以调整Section相关参数以控制Loads的移动速度和方向。
Loads进入或离开Conveyor都是透过一个控制点,在Conveyor System中称之为Station。
Conveyor系统上有一种模拟实际系统中由红外线的光束所控制的光眼(Photoeyes),当Loads在Coveyor上移动时,Loads能遮蔽(Block)或通过(Clear)光眼,并驱动某一个程序进行Black或Clear后所需进行的工作,如计数、验证等工作。
最后也可以透过take down和bring up motors 来控制Loads在Conveyor上移动。
(四)、路线移动系统Path mover system是一种路线移动系统,此路线移动系统是由Vehicles (载具)和行走的轨道(guide paths)所构成的系统,在Path Mover系统中的loads,是由Vehicles从装卸点运送到卸载点。
Path Mover System常用来模拟物流搬运系统中的AGV(无人搬运车)、叉举车、人员搬运车等系统;也可用来模拟工厂或物流中心操作人员移动的路径,或零售店中顾客行进路线与工作人员补货路线等。
事实上,该系统具有相当高的模拟弹性,只要模拟者所要模拟的系统符合人、车、或机具,在事先规划好的路径移动并载运货物至路径上的不同地点者,皆可以该系统进行模拟。
二、系统概况及描述货车上有4种不同形态的栈板:Lstock、Lfront、Lmiddle、Lback,分别代表进入储存,或送至组装线的前段、中段以及后段的货物。
每卸一个Lstock的栈板所需的时间为均匀分配40-50秒,每卸一个Lfront的栈板所需要的时间为常态分配平均40秒,标准差为5秒;每卸一个Lmiddle的栈板所学时间为三角型分配25-40秒,且分值为35秒;每卸一个Lbackde 栈板所需时间为指数分配平均55秒。
Lstock的栈板,经输送带送至cpStock 后,移至Qstock储存;Lfront的栈板经输送带送至cpFront后,移至Qfront 储存;Lmiddle的栈板,经输送带送至cpMiddle后,移至Qmiddle储存;Lback的栈板,经输送带送至cpBack后,移至Qback储存。
在Qfront的栈板Lfront经AVG送至Qrsfrontin而后由Rfront的设备加工,每一Lfront的栈板可产生12箱物料,Lfrontbox,且每产生一箱的时间为3分钟,而后至Qrsfrontout等待avg循环(nextof)送至Qassmfront (1)与Qassmfront(2)等待组装。
在Qmiddle的栈板Lmiddle经avg送至Qrsmiddle而后由Rmiddle的设备加工,每一Lmiddle的栈板可产生10箱物料,Lmiddlebox,且每产生一箱的时间为5分钟,而后移至Qrsmiddleout 等待agv循环(nextof)送至Qassmmiddle(1)与Qassmmiddle(2)等待组装。
在Qback的栈板,由AGV送至Qrsback而后由Rback的设备加工,每一Lback的栈板可产生6箱物料,Lbackbox,且每产生一箱的时间为6分钟,而后由AGV循序(nextof)送至Qassmback(1)与Qassmback(2)等待组装。
三、仿真系统设计过程1.定义Process2.定义Loads3.定义Resources4.定义Queues5.布置程序系统Process System6.建立输送带系统7.建立Path Mover系统8.设计Path Mover路径图9.Vehicles的设定10.Scheduling Lists的设定Named List方面,设计了两个Lists:start01与start02,分别指到cppark01与cppark02,以便在Vehicles设定时使用,如图所式:Work Lists是Vehicles找Loads去载运的控制点所形成的,本模式的WorkLists的设定如下:Park lists为vehicles卸完货闭置后仍找不到loads去载运时,所要去停靠的控制点。
本模式Park Lists的设定:11.模式画面布置12.Run Control的设定13.定义Source FileSource File的详细指令如下:begin Pread arrivingwhile 1=1 dobeginwait for e 6 minread Afront,Amiddle,Aback,Astock from "C:/AutoMod/data2.txt" at end send to dieclone 1 load to Pinitialendendbegin Pinitial arriving proceduremove into Qinitialwait for n 5,1 minmove into Qparkwait for u 20,5 minsend to Pdockendbegin Pdock arriving procedureset Adock to oneof(1:1,1:2,1:3,1:4)move into Qdock(Adock)get Rdockworkerget Rliftforkwhile Afront+Amiddle+Aback+Astock>0 dobeginset Atype to oneof(Afront:1,Amiddle:2,Aback:3,Astock:4)if Atype =1 thenbeginwait for n 40,5 secclone 1 load to Pconv nlt Lfront dec Afront by 1endelse if Atype =2 thenbeginwait for t 25,35,40 secclone 1 load to Pconv nlt Lmiddle dec Amiddle by 1endelse if Atype =3 thenbeginwait for e 55 secclone 1 load to Pconv nlt Lback dec Aback by 1endelse if Atype =4 thenbeginwait for u 45,5 secclone 1 load to Pconv nlt Lstock dec Astock by 1endendfree Rliftforkfree Rdockworkerendbegin Pconv arriving proceduremove into conv:stain(Adock)if Atype =1 thenbegintravel to conv:cpfrontmove into Qfrontwait for 30 minsend to Pagvendelse if Atype =2 thenbegintravel to conv:cpmiddlemove into Qmiddlewait for 30 minsend to Pagvendelse if Atype =3 thenbegintravel to conv:cpbackwait for 30 minsend to Pagvendelse if Atype =4 thenbegintravel to conv:cpstockmove into Qstockwait for 1 hrendendbegin Pagv arriving proceduremove into pm:cpin(Atype)if Atype = 1 thenbegintravel to pm:cprsfrontinmove into QrsFrontInset Anum to 12get Rfrontwhile Anum > 0 dobeginwait for 3 minclone 1 load to PfrontBox nlt LfrontBox dec Anum by 1endfree Rfrontendelse if Atype = 2 thenbegintravel to pm:cprsmiddleinmove into QrsMiddleInset Anum to 10get Rmiddlewhile Anum > 0 dobeginwait for 5 minclone 1 load to PmiddleBox nlt LmiddleBox dec Anum by 1endfree Rmiddleendelse if Atype = 3 thenbegintravel to pm:cprsbackset Anum to 6get Rbackwhile Anum > 0 dobeginwait for 6 minclone 1 load to PbackBox nlt LbackBoxdec Anum by 1endfree Rbackendendbegin PfrontBox arriving proceduremove into QrsFrontOutmove into pm:cprsfrontouttravel to nextof(pm:cpassemfront1,pm:cpassemfront2) move into nextof(QassmFront(1),QassmFront(2))wait for 1 hrendbegin PmiddleBox arriving proceduremove into QrsMiddleOutmove into pm:cprsmiddleouttravel to nextof(pm:cpassemmiddle1,pm:cpassemmiddle2) move into nextof(QassmMiddle(1),QassmMiddle(2))wait for 1 hrendbegin PbackBox arriving proceduremove into pm:cprsbacktravel to nextof(pm:cpassemback1,pm:cpassemback2)wait for 1 hrendbegin Prdockworker arriving procedurebring up Rdockworkerwait for 100 mintake down Rdockworkerwait for 15 minbring up Rdockworkerwait for 100 mintake down Rdockworkerwait for 40 minbring up Rdockworkerwait for 100 mintake down Rdockworkerwait for 15 minbring up Rdockworkerwait for 100 mintake down Rdockworkerwait for 10 minsend to Prdockworkerendbegin Prliftfork arriving procedurebring up Rliftforkwait for 6 hrtake down Rliftforkwait for 30 minsend to Prliftforkendbegin pm:cplook01 passing station functionif pm:cptrack1 total < pm:cptrack2 total then dispatch theVehicle to pm:cptrack1else dispatch theVehicle to pm:cptrack2return trueEnd14.本模式执行画面。