高三数学一轮复习

合集下载

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学高考第一轮复习计划(10篇)2023高三数学高考第一轮复习计划(10篇)如何规划好数学第一轮的高考复习计划呢?制定详细的复习计划,学生需要好好把握做好复习计划,复习并不是某种意义上的“炒冷饭”,而是“温故而知新”。

高三数学一轮复习计划和进度安排

高三数学一轮复习计划和进度安排

高三数学一轮复习计划和进度安排(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如公文写作、报告体会、演讲致辞、党团资料、合同协议、条据文书、诗词歌赋、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as official document writing, report experience, speeches, party and group materials, contracts and agreements, articles and documents, poems and songs, teaching materials, essay collections, other sample essays, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!高三数学一轮复习计划和进度安排高三数学一轮复习计划和进度安排(精选16篇)高三数学一轮复习计划和进度安排篇1一、学生基本情况:175班共有学生66人,176班共有学生60人。

高三数学一轮复习备考计划与措施

高三数学一轮复习备考计划与措施

高三数学一轮复习备考计划与措施一、指导思想高三数学一轮复习备考旨在系统梳理数学知识体系,强化学生对基本概念、基本定理、基本方法的理解和掌握,提高数学运算能力、逻辑思维能力及问题解决能力。

本轮复习将以课程标准和考试大纲为依据,结合学生实际情况,科学规划复习进度,注重基础与提高相结合,确保学生在高考中能够稳定发挥,取得优异成绩。

二、复习内容1. 高中数学知识点全面梳理:按照数与代数、图形与几何、统计与概率、数学文化四个模块,逐一复习各章节内容。

2. 重点难点突破:针对数列、函数与导数、三角函数、立体几何、解析几何、概率统计等重点章节进行专题突破。

3. 知识交汇点强化:加强知识点之间的联系,强化知识交汇点的应用,如数列与函数、三角函数与解析几何等。

三、复习方法1. 自主学习与小组合作相结合:鼓励学生自主学习,通过小组合作解决疑难问题,提高学习效率。

2. 专题复习与模拟测试相结合:通过专题复习强化重点难点,通过模拟测试检验复习效果,及时查漏补缺。

3. 精选习题与限时训练相结合:精选典型习题进行练习,提高学生的解题能力;通过限时训练提高学生的答题速度和准确度。

四、复习措施1. 制定详细的复习计划:根据高考时间和学生实际情况,制定详细的复习计划,确保复习进度和质量。

2. 加强教师指导与辅导:教师定期对学生的复习情况进行检查,对存在的问题进行及时指导和辅导。

3. 定期组织模拟考试:定期组织模拟考试,让学生熟悉考试流程,提高应试能力。

4. 建立错题集与反思机制:学生建立错题集,对错题进行深入分析,找出原因并及时改正;教师定期组织学生进行反思,总结复习经验。

五、心态调整1. 保持积极心态:鼓励学生保持积极的心态,遇到困难要勇于面对,相信自己能够克服。

2. 合理安排时间:合理安排学习时间和休息时间,避免过度疲劳和压力过大。

3. 关注身心健康:关注学生的身心健康状况,及时进行心理疏导和身体健康检查。

六、应试策略1. 熟悉考试题型和评分标准:让学生了解各种题型的考查重点和评分标准,为答题提供有力依据。

2024年高三数学第一轮复习计划(五篇)

2024年高三数学第一轮复习计划(五篇)

高三数学第一轮复习计划在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。

这些材料你可以通过网络或者通过老师来获取。

找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。

虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。

对于这两部分材料的研究,最终目的是即使丢开课本,头脑中也能有考试所要求的数学知识体系。

数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。

第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。

一轮复习的重点永远是基础。

要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。

第一轮复习一定要做到细且实,切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实“双基”的目的。

运算能力是学习数学的前提。

因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。

而运算能力并不是靠难题练出来的,而是大量简单题目的积累。

其次,强大地运算能力可以弥补解题技巧上的不足。

我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。

可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。

再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。

此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。

再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题。

每道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。

最后,同学们在复习的时候还要注重以下几点:、跟住老师复习。

高三数学第一轮的复习方法

高三数学第一轮的复习方法

高三数学第一轮的复习方法关于高三数学第一轮的复习方法高三数学第一轮复习方法篇1根据数学学科的特点及我校数学知识掌握情况,我将高三整个复习过程分为重基础,回归教材;整合提高,逐次递进的两个阶段,也称作两轮复习。

这两轮数学的复习目的是希望同学能够把基础打的更牢固一些。

重基础;回归教材阶段(即第一轮复习)。

采用分章分节的系统复习,目的是使学生系统掌握基础知识,基本方法及各部分之间的基本联系。

特点是重基础、重细节、重规范。

第一轮复习从今年8月开始到明年3月中旬,大约用时7个月左右,采用的的是地毯式轰炸,章节复习,不留任何知识死角,追求全面性、基础性,是同学们巩固基础,提高认识的重要阶段。

一、第一轮复习的目标第一轮复习是基础,指导思想是全面、扎实、系统、灵活。

全面———即全面覆盖;扎实———抓好单元知识的理解、巩固、深化;系统———前挂后连有机结合,注意知识的完整性、系统性,初步建立明晰的知识网络;灵活———增强小综合训练,克服单向性、定向性,初步培养综合运用知识、灵活解题的能力。

复习的直接目标是解决高考中的基础题,其根本目的是为数学素质的提高作物质准备。

在这一阶段主要抓好对基本概念准确记忆和实质性的理解,抓基本方法、基本技能的熟练应用,抓公式和定理的正用、逆用、变用、巧用,抓基本题型的训练和熟化。

二、第一轮复习的一些具体做法在复习每一章前先利用两天左右的时间把课本上相应章节知识重新研究一遍,并按照自己的理解写出知识总结,可以查阅参考资料。

这是自己对知识的一个再理解过程。

学生通过阅读教材,写出知识总结,预习完成复习资料上的基础训练题,可以了解每一次课的知识系统,知识结构,问题类型及方法、技能,明确本课的重难点,弄清自己的薄弱环节,能带着问题听课,为听好课作好充分准备(即了解自己对本节哪些知识了解,哪些不了解,哪些方法清楚,哪些不清楚)。

然后做一轮复习资料《走向高考》,要把相应的知识点、典型例题、变式题、训练题等认真完成,不需其他的参考资料,你只要把这本《走向高考》一轮复习用书弄熟吃透就足矣。

高三数学一轮复习计划4篇

高三数学一轮复习计划4篇

高三数学一轮复习计划高三数学一轮复习计划精选4篇(一)高三数学一轮复习计划可以根据自己的情况进行调整,但一般建议包括以下内容:1. 确定复习时间:根据高考时间安排,合理安排复习时间,争取充分利用每一天。

2. 制定复习计划:根据高考大纲内容,制定详细的复习计划,确保每个知识点都有涉猎。

3. 梳理知识结构:先复习整体框架,确保对整个数学内容的结构有清晰的了解。

4. 深入理解基础知识:重点复习数学的基础知识,如函数、方程、不等式等,建立扎实的基础。

5. 讲究方法与技巧:复习过程中,注意积累各种解题方法和技巧,提高解题效率。

6. 练习题目:多做练习,尤其是历年高考真题和模拟题,巩固知识点,熟练运用解题技巧。

7. 着重攻克难点:重点攻克自己不擅长的部分,多练习、多思考,找到解题的窍门。

8. 注意错题总结:及时总结做错的题目,查缺补漏,避免同类错误再次发生。

9. 和同学交流讨论:和同学组团学习,相互讨论,共同进步。

以上是一般的复习计划建议,具体复习内容和时间安排需要根据个人情况合理调整。

祝你顺利复习,高考顺利!高三数学一轮复习计划精选4篇(二)高三数学教学计划通常包括以下内容:1. 复习和强化基础知识:在开学初阶段,学生需要复习和巩固高中数学的基本概念和方法,包括代数、解析几何、函数、三角函数等。

2. 针对高考重点:针对高考数学的考试要点和重点内容进行有针对性的讲解和练习,包括真题解析和考点整理。

3. 深化和拓展知识:引导学生深入理解数学概念,学习更高阶的数学知识,如微积分、概率统计等,以准备未来的学习和考试。

4. 解题技巧和应试策略:教导学生解题技巧和应试策略,帮助他们在考试中更高效地解决问题,并提高考试成绩。

5. 知识着重点的强调:对知识点进行有针对性的强化,重点关注学生的薄弱环节,及时进行针对性的辅导和训练。

6. 综合例题练习:通过大量的综合例题练习,帮助学生提升解题能力和分析问题的能力。

7. 个性化辅导:根据学生的学习情况和需求,提供个性化的辅导和指导,确保每位学生能够充分理解和掌握所学知识。

高三数学第一轮复习计划表

高三数学第一轮复习计划表

高三数学第一轮复习计划表一、基础知识复习1. 一元二次方程:a. 了解一元二次方程的定义和基本形式;b. 熟悉完全平方公式的应用;c. 掌握一元二次方程的解的性质和求解方法。

2. 指数与对数:a. 掌握指数与对数的定义和基本性质;b. 理解指数函数与对数函数的关系;c. 熟练运用指数和对数的运算法则。

3. 三角函数:a. 了解三角函数的定义和基本性质;b. 掌握常见角的三角函数值;c. 熟练运用三角函数的公式和性质。

二、解析几何1. 点、直线和平面的位置关系:a. 熟悉平面直角坐标系的基本概念;b. 理解点与直线的位置关系的判定方法;c. 了解平面与直线的位置关系的判定方法。

2. 二次曲线:a. 掌握椭圆、双曲线、抛物线的定义和基本性质;b. 理解二次曲线的标准方程和一般方程的转换;c. 理解二次曲线的几何性质及其应用。

三、数列与数学归纳法1. 数列的基本概念:a. 理解数列的定义和常见类型;b. 掌握数列的通项公式和求和公式;c. 熟练运用数列的性质和计算方法。

2. 数学归纳法:a. 了解数学归纳法的基本思想和应用条件;b. 掌握数学归纳法证明命题的方法;c. 运用数学归纳法解决问题。

四、概率与统计1. 概率的基本概念:a. 掌握事件、样本空间和概率的定义;b. 理解概率的加法定理和乘法定理;c. 运用概率计算实际问题。

2. 统计的基本概念:a. 了解统计的基本方法和思想;b. 理解统计中的频率分布和统计图形;c. 运用统计方法进行数据分析。

五、综合应用1. 知识综合运用:a. 理解和运用各个知识点的综合应用;b. 解决综合性问题的思路和方法;c. 提高解题的速度和准确性。

2. 做题技巧与考点总结:a. 总结各个知识点的典型考点;b. 分析解题思路和关键步骤;c. 研究解题技巧和方法,提高解题能力。

3. 模拟试题训练:a. 完成模拟试题的训练和练习;b. 分析试题的解题思路和解题方法;c. 查漏补缺,提高答题水平。

浅谈高三数学一轮复习的有效性

浅谈高三数学一轮复习的有效性

浅谈高三数学一轮复习的有效性【摘要】高三数学一轮复习对于提高考试成绩至关重要。

设置合理的复习计划可以帮助学生合理分配时间,确保每个知识点都得到充分复习。

重点突破难点知识是关键,通过有针对性的复习和练习,可以解决学生在理解和应用上的困难。

巩固基础知识是保证学生能够应对各种题型的基础,提高解题效率。

总结归纳方法技巧可以帮助学生整合知识,形成系统化的学习方法。

多做真题可以提高学生的应试技能,熟悉考试题型和考点。

通过高三数学一轮复习,学生可以有效地提升数学水平,最终取得优异的考试成绩,验证了高三数学一轮复习的有效性。

【关键词】高三数学、一轮复习、有效性、重要性、合理计划、难点知识、基础知识、方法技巧、真题、验证1. 引言1.1 高三数学一轮复习的重要性高三数学一轮复习的重要性在于其对学生最后阶段的备考起着至关重要的作用。

高三是学生备战高考的关键时期,数学是高考各科中的重要科目之一,因此一轮复习的有效性直接关系到学生在高考中的成绩表现。

通过系统的复习和总结,能够帮助学生巩固知识,提高解题能力,更好地应对高考考试。

数学一轮复习不仅仅是简单地重复学过的知识点,更重要的是帮助学生建立起完整的知识结构,填补知识漏洞,找出自己的薄弱点并进行有针对性的弥补。

通过复习,学生还能够熟练掌握各种解题技巧和方法,提高解题的速度和准确性。

这对于高考中需要在有限时间内完成大量题目的学生来说尤为重要。

2. 正文2.1 设置合理的复习计划在高三数学一轮复习中,设置合理的复习计划是至关重要的。

一个合理的复习计划能够帮助学生充分利用有限的时间,集中精力进行复习,从而提高复习效率。

制定一个详细的复习计划是必不可少的。

这个计划应该包括每天要复习的内容、复习的时间安排、休息时间的安排等。

学生可以根据自己的情况和特点来制定计划,例如早上复习数学,下午复习其他科目,晚上进行总结归纳等。

在制定计划时,要考虑到个人的学习习惯和身体状况,不要过于紧张或过于松懈。

高三数学第一轮复习知识点

高三数学第一轮复习知识点

高三数学第一轮复习知识点高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三:数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四:空间向量和立体几何。

在里面重点考察两个方面:一个是证明;一个是计算。

第五:概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六:解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七:押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

这是高考所考的七大板块核心的考点。

高三数学第一轮复习教学计划

高三数学第一轮复习教学计划

高三数学第一轮复习教学计划高三数学第一轮复习教学计划范文(通用5篇)时间过得太快,让人猝不及防,教学工作者们又将迎来新的教学目标,让我们对今后的教学工作做个计划吧。

如何把教学计划写出新花样呢?下面是小编为大家收集的高三数学第一轮复习教学计划范文(通用5篇),欢迎大家分享。

高三数学第一轮复习教学计划1一、夯实基础。

今年高考数学试题的一个显著特点是注重基础。

扎实的数学基础是成功解题的关键,从学生反馈来看,平时学习成绩不错但得分不高的主要原因不在于难题没做好,而在于基本概念不清,基本运算不准,基本方法不熟,解题过程不规范,结果“难题做不了,基础题又没做好”,因此在第一轮复习中,我们将格外突出基本概念、基础运算、基本方法,具体做法如下:1、注重课本的基础作用和考试说明的导向作用;2、加强主干知识的生成,重视知识的交汇点;3、培养逻辑思维能力、直觉思维、规范解题习惯;4、加强反思,完善复习方法。

二、解决好课内课外关系。

课内:(1)例题讲解前,留给学生思考时间;讲解中,让学生陈述不同解题思路,对于解题过程中的闪光之处或不足之处进行褒扬或纠正;讲解后,对解法进行总结。

对题目尽量做到一题多解,一题多用。

一题多解的题目让学生领会不同方法的优劣,一题多用的题目让学生领会知识间的联系。

(2)学生作业和考试中出现的错误,不但指出错误之处,更要引导学生寻根问底,使学生找出错误的真正原因。

(3)每节课留5-10分钟让学生疏理本节知识,理解本节内容。

课外:(1)除了正常每天布置适量作业外,另外布置一两道中档偏上的题目,给学有余力的学生做到拔尖补差。

(2)加强重点生中的缺腿生的辅导工作:①判作业时对缺腿生面批面改;②指出知识的疏漏,学法的不正;③每周5天集中辅导,对普遍问题讲解。

三、强化学生“参与”“合作”。

1、多让学生板演,对于有些章节知识,选择六至八道,按难易程度分别让不同程度的学生板演,下面的学生尽量独自完成,无法独立解决的可以相互讨论。

高三数学一轮复习工作计划安排6篇

高三数学一轮复习工作计划安排6篇

高三数学一轮复习工作计划安排6篇第1篇示例:高三数学一轮复习工作计划安排一、明确复习目标高三学生们需要明确自己的复习目标,即要复习哪些知识点、弱项在哪里、需要提高的能力是什么等。

通过对数学知识的全面梳理和分析,制定具体的复习计划。

二、合理安排复习时间高三学生们在备考数学时,需要按照覆盖范围和复习计划制定合理的时间安排。

可以制定每天具体的学习计划表,明确时间分配,保证每一个知识点都能得到充分的复习和掌握。

三、分类整理知识点在进行数学一轮复习时,高三学生们可以将知识点进行分类整理,建立层次性的复习体系。

可以根据重难点和易错题进行分类,制定复习重点,并进行有针对性地深入学习。

四、每天做计划高三学生们每天应该制定详细的学习计划,明确要完成的任务和目标。

可以将任务拆分成小块,逐步完成,提高学习效率,同时可以对自己的学习情况进行及时检查和调整。

五、注重练习数学是一门需要大量练习的学科,高三学生们在进行复习时必须注重练习。

可以通过做试题、刷题、模拟考试等方式加强练习,巩固知识点,提高解题能力。

六、及时总结高三学生们在复习结束后,需及时总结所学的知识点,对每一道做过的题进行反思和归纳。

总结错题本,分析错误的原因,并对遗忘的知识点进行有针对性的补习。

七、保持积极心态在进行数学一轮复习时,高三学生们要保持积极的学习态度,定期进行休息,保持良好的身体状态。

同时要调整好心理状态,增强信心,不断激发学习动力,积极备战高考。

高三学生们在进行数学一轮复习工作时,需要明确目标、合理安排时间、分类整理知识点、每天做计划、注重练习、及时总结、保持积极心态等方面进行认真细致的安排和准备,努力提高自己的数学水平,顺利迎接高考的到来。

希望以上工作计划安排对高三学生们有所帮助,取得优异的成绩!愿每一位高三学子都能在数学复习中取得理想的成绩,实现高考的梦想!第2篇示例:高三数学一轮复习工作计划安排是高三学生备战高考的重要任务之一。

数学作为高考科目之一,在高考中所占比重较大,因此高三数学的复习显得尤为重要。

高三数学一轮复习资料基础知识归纳整理

高三数学一轮复习资料基础知识归纳整理

高三数学一轮复习:根底学问归纳第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题详细化、形象化、直观化,然后利用数形结合的思想方法解决3.(1) 元素及集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 〔2〕德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==.〔3〕A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=留意:探讨的时候不要遗忘了φ=A 的状况. 〔4〕集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空真子集有2n –2个.4.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数及导数1.映射:留意: ①第一个集合中的元素必需有象;②一对一或多对一.2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义〔斜率、间隔 、 肯定值的意义等〕;⑧利用函数有界性〔xa 、x sin 、x cos 等〕;⑨平方法;⑩ 导数法 3.复合函数的有关问题: 〔1〕复合函数定义域求法:① 假设f(x)的定义域为[a ,b ],那么复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出② 假设f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.〔2〕复合函数单调性的断定:①首先将原函数)]([x g f y =分解为根本函数:内函数)(x g u =及外函数)(u f y = ②分别探讨内、外函数在各自定义域内的单调性③依据“同性那么增,异性那么减〞来推断原函数在其定义域内的单调性. 4.分段函数:值域〔最值〕、单调性、图象等问题,先分段解决,再下结论。

高三数学第一轮复习的教学计划(5篇)

高三数学第一轮复习的教学计划(5篇)

高三数学第一轮复习的教学计划(5篇)高三数学第一轮复习的教学规划1一、背景分析近几年来的高考数学试题逐步做到科学化、标准化,坚持了稳中求改、稳中创新的原则。

考试题不但坚持了考察全面、比例适当,布局合理的特点,也突出表达了变学问立意为力量立意这一举措。

更加注意考察学生进入高校学习所需的根本数学素养,这些变化应引起我们在教学中的关注和重视。

二、指导思想在全面推行素养教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。

通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学根底学问,从而培育学生思维力量,激发学生学习数学的兴趣,使学生树立学好数学的信念。

教师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,精确把握课程标准和考试说明的各项根本要求,立足根本学问、根本技能、根本思想和根本方法教学,针对学生实际,指导学法,着力培育学生的创新力量和运用数学的意识和力量。

三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生力量为目标,加强学生对学问的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题力量。

为此,我们确立了一轮复习的总体目标:通过梳理考点,培育学生分析问题、解决问题的力量;使学生养成思索严谨、分析条理、解答正确、书写标准的良好习惯,为二轮复习乃至高考奠定坚实的根底。

详细要求如下:1、第一轮复习必需面对全体学生,降低复习起点,在夯实双基的前提下,注意培育学生的力量,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等根本力量。

提高学生对实际问题的阅读理解、思索推断力量;以及数学地提出、分析和解决问题(包括简洁的实际问题)的力量,数学表达和沟通的力量,进展独立猎取数学学问的力量。

复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大局部“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。

高三数学第一轮复习-知识点

高三数学第一轮复习-知识点

高三数学第一轮复习-知识点高中数学一轮复习知识点第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01.集合与简易逻辑知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾:(一)集合1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何集合的子集,记为A;③空集是任何非空集合的真子集;如果AB,同时BA,那么A=B.如果AB,BC,那么AC.[注]:①Z={整数}(√)②已知集合S中A的补集是一个有限集,则集合A也是有限集.(某)(例:S=N;A=N,则CA={0})③空集的补集是全集.④若集合A=集合B,则CBA=,CAB=CS(CAB)=D(注:CAB=).3.①{(某,y)|某y=0,某∈R,y∈R}:坐标轴上的点集.②{(某,y)|某y<0,某∈R,y∈R:二、四象限的点集.第1页共73页③{(某,y)|某y>0,某∈R,y∈R}:一、三象限的点集.[注]:①对方程组解的集合应是点集.例:某y3解的集合{(2,1)}.2某3y12②点集与数集的交集是.(例:A={(某,y)|y=某+1}B={y|y=某+1}则A∩B=)4.①n个元素的子集有2个.②n个元素的真子集有2-1个.③n个元素的非空真子n集有2-2个.5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题.②一个命题为真,则它的逆否命题一定为真.原命题逆否命题.例:①若ab5,则a2或b3应是真命题.解:逆否:a=2且b=3,则a+b=5,成立,所以此命题为真.②某1且y2,某y3.解:逆否:某+y=3某1且y2nn某=1或y=2.某y3,故某y3是某1且y2的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围.3.例:若某5,某5或某2.4.集合运算:交、并、补.交:AB{某|某A,且某B}并:AB{某|某A或某B}补:CUA{某U,且某A}5.主要性质和运算律(1)包含关系:AA,A,AU,CUAU,AB,BCAC;ABA,ABB;ABA,ABB.(2)等价关系:ABA(3)集合的运算律:交换律:ABBA;ABBA.BAABBCBUUA结合律:(AB)CA(BC);(AB)CA(BC)分配律:.A(BC)(AB)(AC);A(BC)(AB)(AC)0-1律:A,AA,UAA,UAU等幂律:AAA,AAA.求补律:A∩CUA=φA∪CUA=UCUU=φCUφ=U反演律:CU(A∩B)=(CUA)∪(CUB)CU(A∪B)=(CUA)∩(CUB)6.有限集的元素个数第2页共73页定义:有限集A的元素的个数叫做集合A的基数,记为card(A)规定card(φ)=0.基本公式:(1)card(AB)card(A)card(B)card(AB)(2)card(ABC)card(A)card(B)c ard(C)card(AB)card(BC)card(Ccard(ABC)A)(3)card(UA)=card(U)-card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸1.整式不等式的解法根轴法(零点分段法)①将不等式化为a0(某-某1)(某-某2)…(某-某m)>0(<0)形式,并将各因式某的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(某的系数化“+”后)是“>0”,则找“线”在某轴上方的区间;若不等式是“<0”,则找“线”在某轴下方的区间.某1某2某3某m-3-某m-2某m-1+-某m+某(自右向左正负相间)则不等式a0某a1某nn1a2某n2an0(0)(a00)的解可以根据各区间的符号确定.2特例①一元一次不等式a某>b解的讨论;②一元二次不等式a某+b 某+c>0(a>0)解的讨论.000二次函数ya某2b某c(a0)的图象一元二次方程有两相异实根有两相等实根无实根a某2b某c0a0的根a某2b某c0(a0)的解集a某2b某c0(a0)的解集某1,某2(某1某2)b某1某22a某某某或某某12b某某2aR某某1某某2第3页共73页2.分式不等式的解法(1)标准化:移项通分化为f(某)f(某)f(某)f(某)>0(或<0);≥0(或≤0)的形式,g(某)g(某)g(某)g(某)(2)转化为整式不等式(组)3.含绝对值不等式的解法f(某)f(某)f(某)g(某)00f(某)g(某)0;0g(某)0g(某)g(某)(1)公式法:a某bc,与a某bc(c0)型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.4.一元二次方程根的分布2一元二次方程a某+b某+c=0(a≠0)(1)根的“零分布”:根据判别式和韦达定理分析列式解之.(2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之.(三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列(知识点很全)

高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数 列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n n qa a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q 时,1na S n =②当1≠q 时,qq a a qq a S n nn --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列;⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n qa a mn m n⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、 已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S nn ,则=55b a .3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( )4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n nS n T n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。

高三数学第一轮的复习讲义

高三数学第一轮的复习讲义

高三数学第一轮的复习讲义一.复习目标:1.了解相互独立事件的意义,会求相互独立事件同时发生的概率;2.会计算事件在次独立重复试验中恰好发生次的概率.二.知识要点:1.相互独立事件的概念: .2.是相互独立事件,则 .3.次试验中某事件发生的概率是,则次独立重复试验中恰好发生次的概率是 .三.课前预习:1.下列各对事件 (1)运动员甲射击一次,“射中环”与“射中环”, (2)甲、乙二运动员各射击一次,“甲射中环”与“乙射中环”, (3)甲、乙二运动员各射击一次,“甲、乙都射中目标”与,“甲、乙都没有射中目标”, (4)甲、乙二运动员各射击一次,“至少有一人射中目标”与,“甲射中目标但乙没有射中目标”,是互斥事件的有 (1),(3) .相互独立事件的有 (2) .2.某射手射击一次,击中目标的概率是,他连续射击次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第次击中目标的概率是;②他恰好击中目标次的概率是; ③他至少击中目标次的概率是,其中正确结论的序号①③ .3.件产品中有件次品,从中连续取两次,(1)取后不放回,(2)取后放回,则两次都取合格品的概率分别是、.4.三个互相认识的人乘同一列火车,火车有节车厢,则至少两人上了同一车厢的概率是 ( )5.口袋里装有大小相同的黑、白两色的手套,黑色手套只,白色手套只,现从中随机地取出两只手套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜,则甲、乙获胜的机会是 ( )甲多乙多一样多不确定四.例题分析:例1.某地区有个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.(1)求个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率. 解:设个工厂均选择星期日停电的事件为.则.(2)设个工厂选择停电的时间各不相同的事件为.则,至少有两个工厂选择同一天停电的事件为,. 小结:个工厂均选择星期日停电可看作个相互独立事件.例2.某厂生产的产品按每盒件进行包装,每盒产品均需检验合格后方可出厂.质检办法规定:从每盒件产品中任抽件进行检验,若次品数不超过件,就认为该盒产品合格;否则,就认为该盒产品不合格.已知某盒产品中有件次品.(1)求该盒产品被检验合格的概率;(2)若对该盒产品分别进行两次检验,求两次检验得出的结果不一致的概率.解: (1)从该盒件产品中任抽件,有等可能的结果数为种,其中次品数不超过件有种,被检验认为是合格的概率为.(2)两次检验是相互独立的,可视为独立重复试验,因两次检验得出该盒产品合格的概率均为,故“两次检验得出的结果不一致”即两次检验中恰有一次是合格的概率为答:该盒产品被检验认为是合格的概率为;两次检验得出的结果不一致的概率为.例3.假定在张票中有张奖票(),个人依次从中各抽一张,且后抽人不知道先抽人抽出的结果,(1)分别求第一,第二个抽票者抽到奖票的概率,(2)求第一,第二个抽票者都抽到奖票的概率.解:记事件:第一个抽票者抽到奖票,记事件:第一个抽票者抽到奖票,则(1),,(2)小结:因为≠,故A与B是不独立的.例 4. 将一枚骰子任意的抛掷次,问点出现(即点的面向上)多少次的概率最大?解:设为次抛掷中点出现次的概率,则,∴,∵由,得,即当时,,单调递增,当时,,单调递减,从而最大.五.课后作业:1.将一颗质地均匀的骰子(它是一种各面上分别标有点数的正方体玩具)先后抛掷次,至少出现一次点向上的概率是 ( )2.已知盒中装有只螺口与只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第次才取得卡口灯炮的`概率为: ( )3.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是,这位司机遇到红灯前,已经通过了两个交通岗的概率是 ;4.甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.求该题被乙独立解出的概率。

高三数学一轮复习.pptx

高三数学一轮复习.pptx
第22页/共60页
(2)集合 A={1,4,7,10,13,16,19,21},则集合 A 有___2_8____个 子集、___2_8-__1__个真子集、__2_8_-__1__个非空子集、__2_8-__2___个非 空真子集.
解析:因为集合 A 中有 8 个元素,所以集合 A 有 28 个子集, 28-1 个真子集,28-1 个非空子集,28-2 个非空真子集.
第2页/共60页
§1.1 集合及其运算
第3页/共60页
考纲展示► 1.了解集合的含义,体会元素与集合的属于关系. 2.理解集合之间包含与相等的含义,能识别给定集合的子集. 3.理解两个集合的并集与交集的含义,会求两个简单集合的 并集与交集. 4.理解在给定集合中一个子集的补集的含义,会求给定子集 的补集. 5.能使用韦恩(Venn)图表达集合间的基本关系及运算.
第41页/共60页
解析: 设 x∈∁U(A∪B),则 x∉A∪B,得 x∉A 且 x∉B,即 x ∈∁UA 且 x∈∁UB,即 x∈(∁UA)∩(∁UB),即∁U(A∪B)⊆(∁UA)∩(∁ UB);反之,当 x∈(∁UA)∩(∁UB)时,得 x∈∁UA 且 x∈∁UB,得 x∉ A 且 x∉B,则 x∉A∪B,所以 x∈∁U(A∪B),即∁U(A∪B)⊇(∁UA)∩(∁ UB).根据集合相等的定义,得∁U(A∪B)=(∁UA)∩(∁UB).同理可 证另一结论.
第25页/共60页
(2)已知集合 A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}, 若 B⊆A,则实数 m 的取值范围为______(_-__∞__,__3_]______.
[解析] ∵B⊆A, ∴①若 B=∅,则 2m-1<m+1,此时 m<2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一轮复习1.已知数列{}n a 的前n 项和为n S ,已知21++=+n n n a S S , . ①283-=+a a ;②287-=S ;③2a ,4a ,5a 成等比数列;请在①②③这三个条件中选择一个,填入题中的横线上,并解答下面的问题: (1)求数列{}n a 的通项公式;(2)求n S 的最小值并指明相应n 的值.解:(1)21++=+n n n a S S ,21=-∴+n n a a ∴数列{}n a 是公差2=d 的等差数列。

选①2-922-183=+∴=+d a a a 解得10-1=a 122-=∴n a n 选②287-=S 解得10-1=a 122-=∴n a n选③由2a ,4a ,5a 成等比数列得5224a a a =即())4)((31121d a d a d a ++=+解得10-1=a 122-=∴n a n (2)解法一:令⎩⎨⎧≥≤+001n n a a 即⎩⎨⎧≥-≤-01020122n n 解得65≤≤n∴当65==n n 或时,n s 取得最小值,且最小值为30-解法二:)11(-=n n s n∴当65==n n 或时,n s 取得最小值,且最小值为30-2.在①231a b b =+,②44a b =,③255-=s 中选择一个作为条件,补充在下列题目中,使得正整数k 的值存在,并求出正整数k 的值设等差数列{}n a 的前n 项和为n s ,{}n b 是等比数列,★_______,51a b =,32=b ,81-5=b 是否存在正整数k ,1+k k s s ,21++k k s s解:32=b ,81-5=b 3-=∴q 151-==∴a b 274=∴b011 ++∴k k k a s s 0221 +++∴k k k a s s ,0-12 d a a k k =∴++若存在正整数k ,1+k k s s ,21++k k s s ,那么等差数列{}n a 的前n 项和为n s 必然为开口向上()0 d 的函数模型,在条件选择的时候,选择条件②2744==a b ,由151-==a b 显然公差()0 d ,由此产生矛盾,从而简化解答。

3.已知数列{}n a 是公比为2的等比数列,其前n 项和为n S . (1)在①13222S S S +=+,②373S =,③2344a a a =,这三个条件中任选一个,补充到上述题干中,求数列{}n a 的通项公式,并判断此时数列{}n a 是否满足条件P:任意m,*n N ∈,m n a a 均为数列{}n a 中的项,说明理由;(2)设数列{}n b 满足11n n n n a b n a -+⎛⎫= ⎪⎝⎭,*n N ∈,求数列{}n b 的前n 项和n T .注:在第(1)问中,如果选择多个条件分别解答,按第一个解答计分. 解:(1)选①,因为S 1+S 3=2S 2+2,所以S 3-S 2=S 2-S 1+2,即a 3=a 2+2,又数列{a n }是公比为2的等比数列, 所以4a 1=2a 1+2,解得a 1=1, 因此a n =1×2n -1=2n -1. ……… 4分此时任意m ,n ∈N *,a m a n =2m -1·2n -1=2m +n -2,由于m +n -1∈N *,所以a m a n 是数列{a n }的第m +n -1项, 因此数列{a n }满足条件P . …7分选②,因为S 3=73,即a 1+a 2+a 3=73,又数列{a n }是公比为2的等比数列,所以a 1+2a 1+4a 1=73,解得a 1=13, 因此a n =13×2n -1.…………… 4分 此时a 1a 2=29<a 1≤a n ,即a 1a 2不为数列{a n }中的项,因此数列{a n }不满足条件P . ………………………………… 7分 选③, 因为a 2a 3=4a 4, 又数列{a n }是公比为2的等比数列, 所以2a 1×4a 1=4×8a 1,又a 1≠0,故a 1=4,因此a n =4×2n -1=2n +1. …………………………………4分 此时任意m ,n ∈N *,a m a n =2m +1·2n +1=2m +n +2,由于m +n +1∈N *,所以a m a n 是为数列{a n }的第m +n +1项,因此数列{a n }满足条件P . ……………………………………7分 (2)因为数列{a n }是公比为2的等比数列,所以a n +1a n =2,因此b n =n ×2n -1. 所以T n =1×20+2×21+3×22+…+n ×2n -1, 则2T n = 1×21+2×22+…+(n -1)×2n -1+n ×2n,两式相减得-T n =1+21+22+…+2n -1-n ×2n ………………………10分=1-2n1-2-n ×2n =(1-n )2n -1, 所以T n =(n -1)2n+1. …………12分4. 阅读本题后面有待完善的问题,在下列三个关系①a n +1=12a n +1,②a n +1=a n +2,③S n =2a n -1中选择一个作为条件,补充在题中横线标志的★_______处,使问题完整,并解答你构造的问题.(如果选择多个关系并分别作答,在不出现逻辑混乱的情况下,按照第一个解答给分)设数列{}n a 的前n 项和为n s ,a1=1,对任意的n ∈N*,都有★_______;等比数列{bn}中,对任意的n ∈N*,都有bn >0,2bn +2=bn +1+3bn ,且b1=1,问:是否存在k ∈N*,使得:对任意的n ∈N*,都有anbk ≤akbn ?若存在,试求出k 的值;若不存在,试说明理由. 解 设等比数列{b n }的公比为q .因为对任意的n ∈N *,都有2b n +2=b n +1+3b n ,所以2q 2=q +3,解得q =-1或32. ………………………………………2分因为对任意的n ∈N *,都有b n >0,所以q >0,从而q =32.又b 1=1,所以123-⎪⎭⎫ ⎝⎛=n n b ……5分 显然,对任意的n ∈N *,b n >0.所以,存在k ∈N *,使得:对任意的n ∈N *,都有a n b k ≤a k b n ,即a n b n ≤a kb k .记c n =a nb n ,n ∈N *.下面分别就选择①②③作为条件进行研究. ①因为对任意的n ∈N *,都有a n +1=12a n +1,即a n +1-2=12(a n -2).又a 1=1,即a 1-2=-1≠0,所以a n -2≠0,从而a n +1-2a n -2=12,所以数列{a n -2}是等比数列,公比为12,得a n -2=-⎝⎛⎭⎫12n -1,即a n =2-⎝⎛⎭⎫12n -1…8分 所以c n =a n b n =2n -13n -1,从而c n +1c n =2n +1-13(2n -1).由2n +1-13(2n -1)≤1⇔2n ≥2⇔ n ≥1,得:c 1=c 2,当n ≥1时,c n +1<c n ,…………………10分 所以,当n =1或2时,c n 取得最大值,即a nb n 取得最大值. 所以对任意的n ∈N *,都有a n b n ≤a 2b 2=a 1b 1,即a n b 1≤a 1b n ,a n b 2≤a 2b n ,所以存在k =1,2,使得:对任意的n ∈N *,都有a n b k ≤a k b n .………………………12分 ②因为对任意的n ∈N *,都有a n +1=a n +2,即a n +1-a n =2, 所以数列{a n }是等差数列,公差为2.又a 1=1,所以a n =1+2(n -1)=2n -1. ………………………………………8分所以c n =a n b n =(2n -1)⎝⎛⎭⎫23n -1>0,从而c n +1c n =2(2n +1)3(2n -1).由2(2n +1)3(2n -1)≤1⇔2n ≥5⇔n ≥52,得:当n ≤2时,c n +1>c n ;当n ≥3时,c n +1<c n ,10分所以,当n =3时,c n 取得最大值,即a nb n 取得最大值. 所以对任意的n ∈N *,都有a n b n ≤a 3b 3,即a n b 3≤a 3b n .所以存在k =3,使得:对任意的n ∈N *,都有a n b k ≤a k b n .………………………12分 ③因为对任意的n ∈N *,都有S n =2a n -1,所以S n +1=2a n +1-1, 从而a n +1=S n +1-S n =2a n +1-1-(2a n -1)=2a n +1-2a n ,即a n +1=2a n . 又a 1=1>0,所以a n >0,且a n +1a n =2,从而数列{a n }是等比数列,公比为2,得a n =2n -1.………………………………8分所以c n =a n b n =⎝⎛⎭⎫34n -1>0,从而c n +1c n =34<1,所以c n +1<c n ,………………………10分 所以,当n =1时,c n 取得最大值,即a nb n 取得最大值. 所以对任意的n ∈N *,都有a n b n ≤a 1b 1,即a n b 1≤a 1b n .所以存在k =1,使得:对任意的n ∈N *,都有a n b k ≤a k b n .……………………12分5. 在①n n b na =;②2,log ,n n na nb a n ⎧=⎨⎩为奇数为偶数;③()()21221log log n n n b a a ++=.这三个条件中任选一个,补充在下面问题中,并完成问题的解答.问题:已知数列{}n a 是等比数列,且11a =,其中1a ,21a +,31a +成等差数列.(1)求数列{}n a 的通项公式;(2)记________,求数列{}n b 的前2n项和2n T .注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)设数列{}n a 的公比为q ,因为1a ,21a +,31a +成等差数列,()213211a a a ∴+=++,又因为11a =,所以22(1)2q q +=+,即220q q -=,所以,2q或0q =(舍去),所以,12n na .(2)由(1)知12n n a ,选择条件①,则12n n b n -=⋅,01212122222n n T n -∴=⨯+⨯+⋯+⨯, 12222122222n n T n ∴=⨯+⨯+⋯+⨯,01212212121222n nn T n -∴-=⨯+⨯+⋯+⨯-⨯2221222(12)2112n n n n n -=-⨯=-⋅-- 22(21)21n n T n ∴=-⋅+.由(1)知12n na ,选择条件②,则12,1,n n nb n n -⎧=⎨-⎩为奇数为偶数,所()()()022*********n n T n -=++++⋯++-()0222222(1321)n n -=++⋯++++⋯+-214(121)4114233-+-=+=+--n n n n n . 由(1)知12n na ,选择条件③,则1(1)nb n n ,211112232(21)n T n n ∴=++⋯+⨯⨯+111111223221n n =-+-+⋯+-+1212121n n n =-=++,2221n nT n ∴=+.6.(本小题满分12分)设数列{}n a 的前n 项和为n S ,11a =,________.给出下列三个条件:条件①:数列{}n a 为等比数列,数列1{}n S a +也为等比数列;条件②:点()1,n n S a +在直线1y x =+上;条件③:1121222n n n n a a a na -++++=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式;(2)设221n n b log a =+,若{}n b 中去掉{}n a 的项后余下的项按原来的顺序组成数列{}n c , 求{}n c 的前30项和30T .解:选①:由数列1{}n S a +也为等比数列得()()1311212)(a s a s a s ++=+即()()123112122)(2a a a a a a a +++=+设等比数列公比为q,则()()22222q q q ++=+解得)(02舍或==q q 1112--==∴n n n q a a选②点()1,n n S a +在直线1y x =+上;11+=∴+n n s a 退位得()211-≥+=∴n s a n n ,两式相减有n n a a 21=+,又2112=+=s a 也适合上式,故数列{}n a 为首项是1,公比为2的等比数列,1-n 2=∴n a 选③1211222+-=⋅⋅⋅⋅⋅⋅++n n n n na a a a退位()n n n n a n a a a 1-2221-2211-=⋅⋅⋅⋅⋅⋅++-变型()()n n n n a n a a a 1-222221-2211-=⋅⋅⋅⋅⋅⋅++-相减有n n n a a a )(1-n 2-21+=,整理得n n a a 21=+又2112=+=s a 也适合上式,故数列{}n a 为首项是1,公比为2的等比数列,1-n 2=∴n a(2)n b n n 212log 122=+=-,120621)21(22)722(36)()(67323632130=---+=⋅⋅⋅⋅⋅⋅++-⋅⋅⋅⋅⋅⋅+++=a a a b b b b T7. 已知数列{}n a 是公差不为零的等差数列,11=a ,其前n 项和为n s ,数列{}n b 为等比数列,其前n 项和为n T ,从①521,,a a a 成等比数列,n n b T -2=;②23-535=S S ;1-n 21-2⎪⎭⎫ ⎝⎛=n T ③64321=a a a ③数列{}n b 为等比数列,101111021n n n a a =+=∑,11b a =,8543=b a 这三个条件中任选一个作为已知条件并解答下列问题.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列⎭⎬⎫⎩⎨⎧n n b a 的前n 项和n M .解:(1)选择①521,,a a a 成等比数列,n n b T -2=,设等差数列{}n a 的公差为d ,由521,,a a a 成等比数列得()5122a a a =即()()d a a d a 41121+=+即()()d d 4112+=+解得20==d d 或又因为数列{}n a 是公差不为零,所以12-=n a n 。

相关文档
最新文档